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Calculating the Best Approximate Solution
of an Operator Equation*

By H. Wolkowicz** and S. Zlobec™***

Abstract. This paper furnishes two classes of methods for calculating the best ap-
proximate solution of an operator equation in Banach spaces, where the operator is
bounded, linear and has closed range. The best approximate solution can be calcu-
lated by an iterative method in Banach spaces stated in terms of an operator param-
eter. Specifying the parameter yields some new and some old iterative techniques.
Another approach is to extend the classical approximation theory of Kantorovich for
equations with invertible operators to the singular case. The best approximate solu-
tion is now obtained as the limit of the best approximate solutions of simpler equa-
tions, usually systems of linear algebraic equations. In particular, a Galerkin-type
method is formulated and its convergence to the best approximate solution is estab-
lished. The methods of this paper can also be used for calculating the best least
squares solution in Hilbert spaces or the true solution in the case of an invertible
operator.

1. Introduction. A solution of a consistent operator equation
1 Ax = b,

where A is a bounded linear operator from a Banach space X into itself and b is an ele-
ment of X, can be calculated in two ways. One can use a simple iterative scheme set
up in X, e.g. Krasnosel'skii et al. [18, Chapter 1], or an extension to Banach spaces of
various well-known matrix iterative schemes, as suggested by, e.g. Petryshyn [29], [30]
and Kammerer and Nashed [14]. The other way is to approximate the original equa-
tion (1) by a sequence of equations

@) Ax =1b,

which are possibly easier to handle, and use appropriate error analysis. The latter ap-
proach is generally ‘more successful. One of the first theories which studies the rela-
tionship between (1) and (2) was given by Kantorovich [16] and elaborated in the book
by Kantorovich and Akilov [17]. Kantorovich’s theory has been developed only for
consistent equations. In particular, it is concerned with the following problems:
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(i) Find conditions under which the consistency of (1) implies the consistency
of (2).

(ii) If both (1) and (2) are consistent, estimate the distance between their solu-
tions.

(iii) Find conditions under which the solutions of a sequence of approximate
equations (2) converge to the solution of the equation (1).

(iv) Estimate the norm of A in terms of the norm of 4 and vice versa.

Kantorovich’s approximation theory is rather general and, therefore, it is in principle
applicable in many consistent situations, including the study and numerical treatment
of infinite systems of linear equations, integral equations, ordinary differential equa-
tions and boundary value problems.

Various approximation theories have been recently developed and applied to par-
ticular problems by different authors, many of whom use the Kantorovich theory as a
starting point. For instance, Thomas [38] refines some of Kantorovich’s ideas and
applies them to develop an approximation theory for the Nystrom method of solving
integral equations. Phillips [31] and Prenter [32] formulate approximation theories
for the collocation method, while Ikebe [13] works with the Galerkin method. Anse-
lone [1] and Anselone and Moore [2] use the notion of collectively compact operators
to formulate a different error analysis. Moore and Nashed [22] further developed the
ideas of Anselone and Moore for possibly inconsistent operator equations in Banach
spaces. They use the notions of generalized inveses of linear operators on Banach spaces
and “best approximate” solutions of linear operator equations. Furthermore, they get,
in special cases, some results in the perturbation theory of rectangular matrices obtained
earlier by Ben-Israel [6] and Stewart [36].

An approximation theory for general, possibly inconsistent, linear equations in
Hilbert spaces has been studied using the classical approach of Kantorovich (rather than
the one of Moore and Nashed) by Zlobec [41]. One of the objectives of this paper is
to continue the latter approach and formulate Kantorovich’s theory for general, possibly
inconsistent, linear equations in Banach spaces. The basic idea is here to establish and
explore a relationship between best approximate solutions of (1) and (2) and then use
this relationship as a source for formulating various specific schemes for calculating the
best approximate solution of (1).

In the iterative computation of the best approximate solutions, as well as in
Kantorovich’s theory for singular equations, we will often use the concept of the gener-
alized inverse of an operator. Some basic results on generalized inverses in Banach
spaces are summarized in Section 2. In Section 3 an iterative scheme is set up in Ban-
ach spaces for calculating both the best approximate solution and the generalized in-
verse. This section extends from Hilbert to Banach spaces some results from the book
by Ben-Israel and Greville [9, Chapter 8]. In Section 4, conditions for the consistency
of Ax =y, for every y in a given subspace, are stated in terms of an approximate equa-
tion. Various error estimates are obtained as special cases. Kantorovich’s theory for
general linear equations is formulated in Section 5. The results are formulated in such
a way that a comparison with the corresponding results for the nonsingular case from
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[17] is easily made. The most important results in this section are Theorem 4, which
gives an error estimate, and Theorem 5, which gives conditions for convergence of ap-
proximate schemes. Using Kantorovich’s theory, in Section 6, a Galerkin-type method
for calculating the best approximate solution is stated, and its convergence is established
for a class of operator equations in Banach spaces.

Situations where inconsistent linear operator equations arise are numerous and
they include: integral equations in the theory of elasticity, potential theory and hy-
dromechanics, e.g. Muskhelishvili [24], the integral formulation of the interior Neu-
mann problem for the Laplacian, e.g. Kammerer and Nashed [14] and Atkinson [4],
the eigenvalue problem in the case of a nonhomogeneous integral equation when the
associated homogeneous equation has a nontrivial solution, e.g. Kammerer and Nashed
[14], and boundary value problems, e.g. Langford [19]. They also appear in the
numerical solution of differential equations, for instance in the collocation method
when the number of collocation points is bigger than the number of coefficients to
be determined, e.g. Krasnosel'skii et al. [18]. If the number of collocation points is
smaller than the number of coefficients, then, if consistent, the approximate equation
(2) has infinitely many solutions; and one may again be interested in calculating the
best approximate solution. Under- and over-determined initial value problems have
been studied by Lovass-Nagy and Powers [20]. In the finite dimensional case the
under- and over-determined systems appear frequently in statistics, e.g. Rao and Mitra
[33]; see also Ben-Israel and Greville [9].

2. Best Approximate Solutions and Generalized Inverses. In order to formu-
late an iterative method for calculating the best approximate solution and develop
Kantorovich’s theory for general, possibly inconsistent, operator equations in Banach
spaces, we employ the following notation and notions in the sequel:

X, Y, X, Y denote real or complex Banach spaces,

I(X, Y) the set of all linear operators from X into Y,

1,(X, Y) the set of all bounded linear operators from X into Y,

I(X) and 1,(X) the sets I(X, X) and [,(X, X), respectively.

If A €I(X, Y), then ||A|| denotes the operator norm of 4, i.e. 4|l =
sup, =1 lAxll. Further, if S C X, then Alg means 4 restricted to S.

a(A) is the spectrum of A and

P(A) = supycq(4)l Nl the spectral radius of A.

For every A € (X, Y), R(4) = {y € Y: y = Ax for some x € X} is the range
space of A and N(4) = {x € X: Ax = 0} is the null space of A. 1f X and Y are Hil-
bert spaces, A* is the adjoint of A. For the above notions and their properties, see
e.g. Taylor [37]. For any two operators 4 € I(Y) and B € I(X), we denote R {4, B} =
{Z€1,(X, Y): Z= AUB, where U € (X, Y)}, e.g. Ben-Israel [5]. A linear operator
P € (X)), is called a projection (of X) if P> = P. If R(P) = M, then we denote P by
Py, and call it the projection of X onto M. Every projection Py, decomposes X into
two algebraic complements M = R(P,,) and N = R(I — P,,). This implies X = M + N,
and we write N = M°. If M and N are both closed, then we say that M has a topologi-
cal complement in X and write
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€)] X=M®N.

For an example of decomposition (3), the reader is referred to Nashed’s paper [25, p.
327]. Recall that a closed subspace M of X has a topological complement if, and only
if, there exists a continuous projection P,, (of X), e.g. Taylor [37, p. 241]. However,
not every closed subspace has a topological complement, as shown by Murray [23] in
1937.

Consider 4 € 1,(X, Y). We shall assume that there exist continuous projections,
Pyicay € 1,(X) and Pp(4y € 1,(Y). (In particular, such an 4 must have a closed range.)
Py 4y determines the complement N(4)* = (I = Pyc4y)X. Similarly, Pp(,y determines
the complement R(4)° = (I — Pp(4))Y. Hence, X = N(4) ® N(4)° and Y = R(4) &
R(A)°. When A € 1,(X, Y) and projections Py 4y € [,(X) and Py 4, € 1,(Y) are
given, then the system

4 ATA=P
N(4)

(%) AAY =Ppiyys

() ATPpy=A"

always has a unique solution 4™ €1, (Y, X), called the generalized inverse of A (rela-
tive to the projections Py 4y and Pg(4)). The operator A then establishes a one-to-
one correspondence between R(4) and N(A)°, i.e. A* g4y = (AIN(A) )~ !, e.g. Nashed
[25], Kammerer and Plemmons [15]. For every given b in Y, the vector x* =
A*b is called the best approximate solution of the equation Ax = b (relative to
Py(ay and Pp(,y). The vector A*b is then a unique solution in N(4)° of the pro-
jectional equation Ax = Pp(4)b.

Remark 1. The term “best approximate” solution is used by Newman and Odell
[27] under different circumstances. There X is a “best approximate” solution of Ax =
b, where A: X — Y, b € Y if, for every x € X with x # X, either

lA% - bll <|lAx — bl|
or

lA% — bll = llAx — bll and |IxIl <|lxII.

(This corresponds to the notion of best least squares solution in the case of Hilbert
spaces.) In order to avoid possible ambiguity, we shall refer to the above X as the

“X, Y-best approximate” solution of the equation Ax = b. If the norms on X and Y
are strictly convex, then an “X, Y-best approximate” solution exists. If they are not
strictly convex, then an “X, Y-best approximate” solution may not exist. In order to
find X, we need the notion of an X-projection (also called a “metric projection” by
Blather, Morris and Wulbert in [11]). Suppose that S is a subspace of X. Then the
mapping Ej is the X-projection onto S if, for every x € X, Egx solves the minimization
problem miny,cgllx — pll. In general, the mapping Eg is not linear. An instance in
which Eg is linear is when S and S¢ have a basis and the norm in X is a “TK norm”
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with respect to these bases, e.g. Singer [34]. In Hilbert spaces, Eg corresponds to the
orthogonal projection Pg. When the “X, Y-best approximate” solution ¥ exists, then
X =Bb,where B=( - F N( A))A+ER( 4) and A1 is any generalized inverse of 4 with

respect to some P and Py 4y (Note that B need not be linear.) Thus, we see that

N(A)E
when E\ (4 and E;(;) are linear, one may choose PN(A e =1- EN(A) and PR(A) =
Ep(4) in which case the “X, Y-best approximate” solution X = Bb coincides with the
“best approximate” solution x* = A*b. (See Example 3 below.)

Suppose that Y (but not necessarily X) is a Hilbert space, A € [,(X, Y), 4 has
closed range and X = N(4) ® N(4)°. Then one may choose Pp( 4y = Ep(4), Which is
now the orthogonal projection on R(4), i.e. R(4)° = R(4)", and write Y = R(4) ®
R(A)°. If AT is the generalized inverse of A with respect to PN(A e and P4, the
best approximate solution x* = A% b is the unique least squares solution of Ax = b in

N(A)¢, i.e. x* solves the problem

©) ;T.lelgl( l4x — bll;

and among all solutions of (7), it is the only one in N(4)¢. If both X and Y are Hil-
bert spaces and 4 € [, (X, Y) has closed range, we may choose Priay = Egea) and
PN(A e = I - Ey(4)- These are now the orthogonal projections, i.e. N(4)° = R(A4™),
R(4)° = N(A4*) and X = Bb = A*b = x* is the best least squares solution of the equa-
tion Ax = b. This means that x* is the only solution in N(4)° of the minimization
problem (7), and among all solutions of (7) it is the unique one of smallest norm. For
a detailed discussion of the generalized inverse and best least squares solution in Hilbert
spaces, the reader is referred to the book by Ben-Israel and Greville [9].

3. An Iterative Method for Calculating the Best Approximate Solution. In order
to calculate the best approximate solution x* of the operator equation

1) Ax = b,

where 4 € ,(X, Y), PN(A e € 1,(X) and Ppeay € 1,(Y), one can use the following
iterative scheme:

®) Xgp1 =X, —BAx, +Bb, k=0,1,...,

where
Be R{PN(A)C’ PR(A) }.

This scheme has been suggested for calculating the best least squares solution in Hilbert
spaces in [41]; see also [9, p. 356].
THEOREM 1. Let A€, (X, Y), b EY, PN(A v € 1,(X), Ppe4y € 1,(Y), and

Be R{PN(A e Prea)} be given. Then the sequence {x4 }, generated by (8), con-

verges 'to the best approximate solution x* of Ax =b for all x4 € NA)® if
Proof. We find that
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Xg41 —X* = —BA)x, + Bb—x*, by (8)
= (I - BA)x; + BPp4yb —x*, since B € R{PN(A)C,PR(A)}
= (I — BA)(x, —x*), since Ppcayb = Ax*
=~ BA)**!(x, —x*), by iteration
®) =(P

— BAY**1(x, — x*), since x,, and x* are in N (4)°.

N(4)€
_ — 1 _ nnl/n
But p(PN(A) . — BA) =lim supII(PN(A)c BAY'||1/" < 1, by the property of p

(e.g. Taylor [37]) and the assumption. Therefore, there exists a real number s and a

n— oo

positive integer n, such that

IP . —BAI" <s<1, foralln>n,.

N(4)€

Hence, "(PN(A)“ — BA)*|| <s"™ — 0 as n —> . This implies (P
as n — o, Thus, x, converges to x*, by (9). O

Remark 2. Necessary conditions for convergence of x; to x*, for every x, €
N(A4)e, are p(PN(A)c — BA) < 1 (not p(P — BA4) < 1!) and PN( o — BA has no
eigenvalue X such that [A| = 1.

Proof. When x, — x* for any x, € N(4)°, then

(P

NGDE Bay —0

N(4)€ A4)

NAY® —BAY(xy ~x*) — 0 ask— oo,

by (9). Hence, for every x € X,
— BAY*x|| < oo,

su P
k>p1 I N(4)€

Now, by the Banach-Steinhaus theorem, there exists M > 0 such that
(P -BAYI<M,k=1,2,.... But

- BA)* = p[(P

N(4)E

[p(P - BA)¥], by the spectral mapping theorem

N4 N(4)€

<P -BAMI <M.

N(4)E
Therefore, p(PN(A) ¢ — BA) < 1. In order to prove the second necessary condition, we
observe that for 0 # x € X and |\l = 1, such that (PN(A)" — BA)x = Ax, x € N(4)°
and (PN(A ) P BA)Y*x = N¥x > 0 as k — oo contradicting X, —>x* by (9). O

The above remark is demonstrated by the operator A € [, (I,) defined on x =
(x;) by (4x); = 0 and (Ax); =(1 — 27%)x;,i=2,3,.... If NA)° = R(4), RMA) =
N(4) and B = 24, then

p(P —BA) = sup {|—1 + 227 — 2172} = 1,

N i>2

But for every x € N(4)°,

0, ifi=1,
a —BA)kx)i = . .
(=1 422 =217 2ky, ifi=2,3,...,

which implies convergence.
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Remark 3. It is a consequence of Remark 2 that Theorem 1 gives not only a
sufficient but also a necessary condition for convergence, if X is finite dimensional. In
the case of a Hilbert space X and a normal operator T = PN(A e~ BA, one can show
that T"x — 0 if, and only if, p(T') < 1 and the spectrum of T has no mass on the
unit circle |z] = 1. (This follows from the spectral theorem and the Lebesgue domina-

ted convergence theorem.) Specifying P = Ppeq*) and B = aA* one now estab-

N(A4)€
lishes the following characterization of convergence: The sequence {x;}, x, € R(A4™),

converges to the best least squares solution of Ax = b if, and only if,
0<a<2/lA*Al

and ||A*A| is not an eigenvalue of A*4 if a = 2/||A*A|l. We recall that Petryshyn in
[28] gives only the sufficient condition 0 < a < 2/|l4*A|l.

Specifying B in (8), one obtains various iterative schemes for computing the best
approximate solution. In particular, if one splits A = M + N, where N(4) C N(M) and
R(4) = R(M), chooses M™* with respect to the continuous projections Ppar) and PN(M) ¢

such that Pp sy = P4y and N(@)® C N(4)° and specifies B = wM™, w # 0, then
(8) becomes

(10) Xep1 = [ - ) —wMtN]x, + wM*b, x5 € NM)".
Further, for w = 1, (10) becomes
¢8)) Xgy1 = —M*Nx, +M*b, x5 € NM).

If both 4 and M are invertible, then (10) and (11) become, respectively,

12) Xppp = [(1 - ) —wM™'N]x, + M~ 'b, x,€EX,
and
13) Xep1 =M 'WNx, +M7'b, x,E€EX

The scheme (12) has been studied by Petryshyn [29], who calls it the “Extrapolated
Jacobi Method”. The scheme (13) is the well-known Jacobi method. Other methods
can be obtained by the splitting 4 = D + S + Q with B = (w™'D + §)*, w # 0,
where w™'D + S €1,(X, Y) and P = Ppqy> N(@™!D + 8)° C N
Then (8) becomes

Xep1 =D+ ST [(1 - w)D - wQ]x;, + (D + wS)*h,

R(w~1D+5)

(14) _
X € NW™!'D + 8)°.

If both 4 and D + wS are invertible, the scheme (14) becomes
(5) xpp; =@+ wS)'[(1 - wD - wQ]x, + WD +wS)™'b, x,€EX,

which is known as the “Successive Over-Relaxation Method” (abbreviated SOR method).
Specifying w = 1 in (15), one obtains

(16) X1 =—D+8)10x, + (D +8)'h. x5 €X,
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which is known as the Gauss-Seidel method. In the case of an n x n invertible matrix
A = (a;), one frequently specifies
D=M=(@;), i=1,...,n,

S=(ai]-), i>ji=1,...,n,j=1,...,n — 1, zero otherwise,
Q=A-D-38,
N=A-M

in (12), (13), (15) and (16). Properties of these schemes for systems with invertible
matrices (and linear operators) have been extensively studied, see, e.g. Varga [39], [40]
and Petryshyn [28], [29]. Scheme (11) for systems with singular matrices has been
studied by Berman and Plemmons [10].

Remark 4. 1If in the splitting 4 = M + N, where N(4) C N(M) and R(4) = R(M),
one also requires that N(4)€ C N(M)°, then the splitting 4 = M + N with N(4) =
N, N(4)¢ = N(M)® and R(4) = R(M) is obtained. The latter, when applied to
matrices, is called a proper splitting, by Berman and Plemmons. Note that this proper
splitting, in the case of Hilbert spaces and the usual (orthogonal) complements, reduces
to A =M+ N, where N(4) = N(M) and R(4) = R(M). The proper splittings are not
only useful in iterative calculation of the best least squares solution, but they also
play an important role in the Kantorovich approximation theory (see Section 6).

One can slightly modify (8) in order to compute the generalized inverse A™.

THEOREM 2. Let A €1, (X, Y), Py 4y € 1,(X) and Pp 4y € I,( Y). IfB€

R{P PR( A)}, then the sequence {X; }, generated by

N(4)€’
17) Xy =X, —BAX, +B, k=0,1,2,...,
converges to A%, the generalized inverse of A relative to Py 4) and PR( Ay for all X,
ER{PN(A)C’ PR(A)} zfp(PN(A)c - B4)< 1.
Proof. Here
Xer1 —AY =X, —BAX, +B-A*
= - _ +
(P Ny BA) X, + BPp4) PN(A)"A
— _ —4+) = — A _
(PN(A)" By — A7) = (PN(A)C BAY T Xy — A7),

The rest of the proof is analogous to the proof of Theorem 1. (Note that the proof
remains valid for X, € R{PN(A)C’ 1}) O

If (17) is modified as follows:
(18) Xe1 =X, - BX,+B, k=0,1,2,...;

and if one chooses

then the sequence generated has the property
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Xiy1 = Preay = Preay — B 1 (X —Preqy), k=0,1,2,....

Hence one concludes that whenever p(PR( 4)~ B) <1, the sequence {X, }, generated by
(18) and (19), converges to the projection Pp(4). If X and Y are Hilbert spaces and
Pp(4) is the orthogonal projection on R(4), then one can choose

X, =AZ,A* and B = AZ,A*,

where Z,, Z, €1,(X, X). In particular, one can specify Z, =1, Z, = al, where
is a real parameter with the property p(RR( 4~ adA*) < 1.

The iterative scheme (8) can be used to calculate the best approximate solution
of the equation (1) in abstract spaces. However, in many situations, it is actually used
to calculate the best approximate solution of an approximate equation (2), which is
frequently a more manageable finite system of linear algebraic equations. Both cases
will be demonstrated. First we use scheme (8).

Example 1. Let us calculate the best least squares solution x* of the inconsis-
tent equation Ax(s) = (I — K)x(s) = b(s), where

Kx(s) = 127 f : (sin s sin & + % cos s cos £)x(£)d

and b(s) =s. The operator K is chosen from [35]. The problem will be solved in
X =Y =L,[0, n] using the iterative scheme (8).

We choose B = a4*, where 0 < a < 2 = 2/||A*A||l. This guarantees here that
P(Preay ~ ®AA*) < 1, and the scheme (8) is convergent for every choice of x(s) in
N(A)® = R(4*). For x4(s) = 0 one finds:

x,(s) = o(s — 2 sin s + 2(cos s)/m)
= a(ll)s - agl)sin s+ agl)cos s,
where aﬁl) = Q, agl) = 2o and ag" = 2a/m,

x,(8) = [(1 - a)a(ll) +a]s—[(1- a)a(zl) + 2a] sin s

+ [(1 —%) o —%Oia(ll) +%—a] cos §

= a(lz)s - agz) sin s + agz) cos s,
where of?) = (1 — 0)a{!) + o, o{?) = (1 — @)af") + 2, o{?) = (1 ~ o/4)a) - )
(3a/7r)a(ll) + (2/n)a. In general, if
X, (s) = ag")s - agk)sin s+ ag")cos s,

then
X ) =[(1 - a)a(l") +als—[(1- a)ag") + 2a] sin s

_a) ) _3a (k) Z]
+ [(1 4>a3 = o] +7ra Ccos §

= off+Ds — o+ Dsin 5 + ol * Dcos s.
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Since the iterative schemes
¥+t = (1 - 0)al®) +q,

oD = (1 - 0)al®) + 20,

k+1) = (1 =)k — 32 (k) 4 2
oy ——(1 Z>a3 T 9 +;a

are convergent themselves with the solutions a =1, 0y =2and @y =— 4/m, respec-
tively, one concludes that

x*(s) = s — 2sin s — 4(cos s)/m

is the best least squares solution.
Using (17) with B defined by

Bx(s) = x(s) - 2 | Z sin s sin £x(¢)d,

one can show that X, converges to A™, which is here
+ 20m
A7 x(s) = x(s) — Ff (sin s sin £ — cos s cos £)x(¥) dt.
0

The best least squares solution of the equation introduced in Example 1 will be
calculated in Example 4 via Kantorovich’s approximation theory. We conclude this sec-
tion by demonstrating how the iterative scheme (8) can be applied to matrices.

Example 2. Calculate the best least squares solution, using the iterative scheme (8),
of the inconsistent system

X, +3x3=1,

—-x, +x, =1,
X, — X, =1,
X, +x5=0.
Here
1 0 3 1
-1 10 1
A= , b=
1 -1 0 1
0 1 1 0
Specifying

B = aA’, where a = 2/trace 4’4

one obtains

1 -1 1 0
=1 -
B-—g 0 1 11

30 01
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It is easy to verify that for the above choice of B and a, p(PP(A - BA) <1, whenever

rank 4 > 1. One can start iterating from x° = 0, in which case the following numerical
results are obtained:

k| X x
1 0.2500000 0.0000000 0.2500000
2 0.2500000 0.0625000 0.3125000
3 0.2656250 0.0625000 0.3281250
4 0.2656250 0.0664063 0.3320313
5 0.2666016 0.0664063 0.3330018
6 0.2666016 0.0666504 0.3332520
7 0.2666626 0.0666504 0.3333130
8 0.2666626 0.0666657 0.3333282
9 0.2666664 0.0666657 0.3333321

10 0.2666664 0.0666666 0.3333330

11 0.2666667 0.0666666 0.3333333

The eleventh approximation x11 gives the best least squares solution correct to six deci-
mal places:

x* =4/15, x¥=1/15, x}=1/3.

Example 3. In this example we apply scheme (8) to solve the problem
min,  »[lAx — b|l, where X is a two-dimensional Banach space of scalars

=l #=a) = =)

If we specify the norm
Ixll = 1&,1 + 1&,] + max {I§,], 1&,], 1§, + &1}

(which is a TK norm with respect to the basis ((1) ), ((1))), then Ep 4, is linear and equal to
(g ). Thus, in order to solve the problem, we must choose Pp 4) = Ep(4). Since N(4)°
can be arbitrarily chosen, let it be N(4)¢ = R(4). Hence

1 %
P = ,
M \o o

Further, we choose
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% 0

and x, = 0.
0 o> °

B =P yye Prn = <

The sequence

converging to x* = 1/é((l)) is obtained.

4. Condition for the Consistency of the Exact Equation. One of the most use-
ful results in the formulation of the classical Kantorovich theory is a lemma which gives
a condition for the consistency of the exact equation (1), e.g. [17, p. 543]. This lem-
ma will now be extended so that it also applies to singular equations.

LemMA 1. Let V €1, (X, Y), E a closed subspace of X and F any subspace of
Y containing V(E). If there exists, for every y € F, an % € E such that

(20) 1Vx -yl <qllyl and IR <alyl,
where q < 1 and « are constants, then the equation

1) Vx =y

has, for every y € F, a solution x € E satisfying

22) lxll < allpll/(1 - g).

Proof. Similarly to the proof in [17], we will construct an exact solution of (21)
by recursion. Take an arbitrary y € F. Set y, =y. By hypothesis, an X, € E exists
such that

(23) W, —» I <qliyll, Xl <alyl
Denote
24) Y, =y, — Vx,.

Clearly y, € F, since y, € F and F is a subspace containing V(E). We now apply the
condition (20) to y,. This implies the existence of X, € E such that

IVZ, =»,ll <qlly,ll = qlly, = Vx,ll, by (24)

<q’ly,ll, by (23).

Also, [|X,]l < ally,ll < aglly,|l. Continuing this process, sequences {y,} and {X,} are
obtained such that

(25) Vi1 =V~ Vi, k=1,2,...,
and

(26) Iyl <@ Myl 1% < ag® iyl
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By iteration, (24) and (25) give

27 Vw1 =V1 — V@ +3, 4 +3%), k=1,2,....

Using the second inequality in (26), and recalling that y,; = y, one obtains

<

s -1
1% <a X g iyl
k=1

-
2 X
k=1

T™M:s

1

. o s A o -
Since ¢ < 1, the series 2, X, is convergent. Hence x = Z;_, X; belongs to E,
since E is a closed subspace. Furthermore,

Ixl <a ¥ ¢ Uiyl =2= 1yl
k=1 1-q

So taking limits in (27) gives
klim Vi = klim (y, —V(x, +%, + 22 +X%))
=y, — Vx, by the continuity of V.

Also, since g < 1, we see from (26) that lim,_, ., ¥, = 0. Thus Vx =y. We have
shown that x € E is a solution of (21) and it satisfies (22). O

Note that part of the conclusion of Lemma 1 is actually that F = V(E). Lemma
1 has been proved in [17] in the special case when E = X and F = Y. The above re-
sult will be used in the next section in the approximation theory. However, Lemma 1
is of an independent interest; and in the remainder of this section we will show how,
using the lemma, one can establish some new and some well-known estimates related to
the equation (1).

PROPOSITION 1. Let M € I, (X, Y) and let N(M) and R(M) have topological
complements. Denote by M the generalized inverse of M with respect to these topo-
logical complements. Consider

(28) A=M+N
such that A €1,(X, Y) and ||[NM*|| < 1. If
(29) RWV) C R(M),

then the equation

(30) Ax =y
has, for every y € R(M), a solution x* € N(M)¢. Also,
Mt
G31) < 0y
1 —INMT|

and R(A) = R(M). In addition to the above assumptions, if

(32) N@1)* N N@4) = {0},

then
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M|
33) 4+ < ———,
( 1 — INMT]|
where A denotes the generalized inverse of A with respect to P =P and

N(4)C N(M)€
Ppeay = Premy:
Proof. We will show that the assumptions of Lemma 1 are satisfied with V = 4,

E=NM)°, F=RM), q=IINM*| and « = |[M*}l. Choose an arbitrary y € R(M)
and let 8 = M*y. Then

lAx = yll = 1M + N)x - yll
= |I(M + N)x — MM*y|l, since y € R(M)
< INMF|[1 I,

and ||%ll = IM*yll <Ml |lyll. Thus (20) holds. Now we apply Lemma 1 to the
equation (30) to conclude that for every y € R(M), the equation Ax = y has a solution
x* € N(M)° satisfying (31). This implies that

(€0 R(M) C R(4).

However,

(39 R(4) C R(M), by (28) and (29).
Now (34) and (35) imply

(36) R@A) = R(M).

Since N(M)° is isomorphic to R(M) via M, it is also isomorphic via 4, by (36) and the
assumption (32). Thus, one can choose N(4)¢ = N(M)°. This determines 4™ with re-
spect to the topological complements N(M)® and R(M). Now, since x* € N(A)¢ =
N@M), we have x* = A%y, and (33) follows from (31). O

COROLLARY 1. Let H € I,(X) with |H|| <1 and P € 1,(X) such that P2=p
If R(H) C R(P), then the equation (P + H)x =y has a solution x* € R(P) for each
Yy €R@). Also llx*II <lIyll/(1 = IHI), R + H) = R(P) and |(P + H)*|| <
1/(1 — ||HI), where (P + H)* denotes the generalized inverse with respect to P
= Pand Ppep, gy = P.

Proof. We will show that the hypotheses of Proposition 1 are satisfied with M =
Pand N = H. Clearly, P € [,(X) has topological complements N(P)° = R(P) and
R(P)° = N(P). So P* (= P) is the generalized inverse of P with respect to these
complements. Also, P + H € [,(X), since |[H|| < 1. Take an arbitrary y € R(P).
Then J?é Py (see the proof of Proposition 1, where M = P) is equal to y, i.e. X = y,
since P = P*. Therefore, the assumption ||[HP|| < 1, in Proposition 1, can be re-
placed by ||H|| < 1. Also, the assumption (32), which reads here

(37 NP) N N + H) = {0}

N(P+H)€

is satisfied. If (37) were not true, there would exist an x # 0 such that both

x €ENP) =R@P) and x € NP + H).
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Hence (P + H)x = x + Hx = 0, which contradicts the assumption [|H|| < 1. O
COROLLARY 2 (BEN-ISRAEL [6]). Let H be an n x n real matrix, |H|| < 1 and
L be a subspace of R™ such that R(H) C L. Then

Py, +H)*Il < 1/(1 = IHI).

Proof. Specify P = P; in Corollary 1. O

CoROLLARY 3 (KANTOROVICH AND AKILOV [17, p. 172]). Let M € I,(X) and
suppose that M~' € I,(X) exists. If N € 1,(X) and INM~'|| < 1, then (M + N)~!
exists and

I + Ny~ < UM/ = VM ).

Proof. Apply Proposition 1 to the case when X = Y and M~ ! exists. O
When M = I, Corollary 3 becomes the classical result of Banach, e.g. [17]. O

5. Kantorovich’s Theory for Singular Equations. Let X and Y be closed subspaces
of the Banach spaces X and Y, respectively. Further, let X and ¥ be isomorphic via
mappings J, and H,, to the Banach spaces X and Y, respectively. Suppose also that J
and H are linear extensions of J,, and H,, to all of X and Y, respectively. Such exten-
sions always exist, for we may take J = J Py and H = HPy. In many practical situ-
ations, X and Y are chosen to be finite dimensional.

Consider the following two equations:

(1 Ax =p,
where A: X — Y, b €Y, and
@) Ax = b,

where A: X — Y, b € Y. We shall refer to (1) as the “exact” equation and to (2) as
its “approximate” equation. We assume that 4 € [, (X, Y), 4 € [,(X, Y) and that the
following decompositions are possible:

X =N ®NAY¥, X=NA)®NAY,

Y =RMA) ®RMA), Y=RA)DRA.

The symbol @ is here used to indicate that all eight complements are necessarily closed.
Denote by AT € 1, (Y, X) the generalized inverse of A relative to the continuous pro-
jections Py ,y and Pp 4, and by A+ €1,(Y, X) the generalized inverse of 4 relative to
the continuous projections Pyzy and Ppz)- Let us denote by x* = A%b and x* =
A*b, the best approximate solutions of the equations (1) and (2), respectively.

In the sequel we will state results relating the exact and approximate equations
when some or all of the following conditions are satisfied:

(I) The operator 4 is represented as A = M + N, where M is bounded and X =
N@M) & N(M)°, N(A)° C N(M)® and Y = R(M) & R(M)°. (In this situation M de-
notes the generalized inverse of M, relative to the continuous projections PN(M) ¢ and
Prany) ~ o

(I) J, maps N(M)° N X into N(4)° C X,
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(II1) H has the property A*b = A" HP, b N

(IV) |14J,% — HAX|l < ellX]l for some constant € > 0 and all X € N(M)° N X.

(V) For every x € N(4)° there is a u € N(M)° N X such that || Mu — PronNxll
< n,lIx|| for some constant n, = 0.

(VD) There exists a vector v € N(M)° N X such that IMv = PparyPriarbll <
7?2||PR( 4 )bII for some constant n, = 0.

THEOREM 3. (Conditions for the solvability of the approximate equation.) Let
the conditions (1), (IV) and (V) be satisfied. In addition, suppose that

(A) M*: Y — X,

(B) Hy'HR(A4) C R(A),

(C) JINM)®) is closed and

(D) R(A) C HR(A).
If

(38) q = [e(1 +nIM*1) + 0y IHANIM TN NATHG ' < 1,
then the equation
(39) AX = HPpg(4)b

has a solution x* € J(N(M)®) for every b € Y. Furthermore

(40) 16| < all HPg( 4)bIA1 = @),
where
(1) a =Tl +ny IMFI)IATHG .

Proof. 1t is sufficient to show that the conditions (20) of Lemma 1 are satisfied
for the equation (39) with E = JINM)®), F = HR(A), V =4,y = HPy (4)b and o« and
q as in (38) and (41). First, consider the equation Ax = Hy 1HPR( )b and its solution
Xo = ATHg 'HPp 4\b. Denote z = Mx, — Hy 'HPp( 4\b. Since x, € N(A)° and
N(4)¢ € N(M)®, by condition (I), we find that

(42) Xo =M*z + M*Hy ' HPy(4)b
and also
(43) Axo = Hy 'HPp( 4)b
by definition of x, and condition (B). Therefore, z = Mx, — Ax, = — Nx,, since
A=M+N.
Now, for x = — x,, condition (V) implies that there exists u € N(M)° N X such
that
(44 1Mu = Proapy N(— xo)ll = [I1Mu — Ppppyzll < myllxl

for some n; > 0. Denote ¥ =u + M* Hy 'HPy 4 )b. Note that ¥ € N(M)° N X, by
conditions (V) and (A). We will now show that J,X is the required element X of £ in
Lemma 1. First,
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l4JoX — HPg( 4ybll = I4JoX ~ HHG ' HPp 41Dl
= |l 4J,X — HAxll, by condition (B) and definition of x,
< IIZJO'J?— HAX|| + ||[HAX - HAxyll, by the triangular inequality
<ellXll + IHAIIIX — x,ll, by condition (IV).
-Since
1% = xoll = llu + M*Hg ' HPp(4b —~ M*z = M* Hy ' HPy 4 \blI,
by definition of X and X
=|lu—-Mtzl| = IM*Mu - M+PR(M)2||
(45) <mIM*lIx,ll, by (44)
< IMFIIATHg Il IHPg 4)Bll, by definition of x, and
11 < lixgll + 1% = x4l
<1+ IMFDlixll, by (45)
<@+ IMFIDIATHG HIHP b1l
the above inequality gives
14Ty ~ HPq(4bll < [e(1 + n IMHIDIA* Hg 1l
+ 0 IHAINM* N A* Hg I HPg 4l
(46) = qllHPg4)bl,
where ¢ is the constant defined by (38). Also
47) o X I < ol X1 < all HPg 4B,

where « is defined by (41). The inequalities (46) and (47) correspond to the assump-
tions (20) of Lemma 1 with V=4, % = Josc' and y = HPp(4)b. Conditions (C) and (D)
guarantee that £ = J(N(M)®) be a closed subspace of X and F = HR(A4) be a subspace
of Y containing V(E) = A(J(N(M)®)). All conditions of Lemma 1 are now satisfied, and
the conclusions of Theorem 3 follow. O

COROLLARY 4. Let A € 1,(X, Y) and suppose that the conditions (I), (IV), (V),
(A), (B), (C) and (D) are satisfied. If q <1 and A satisfies the condition

(E) JINM)®) € N(A)*
then

IA* 1 < all Py I/(1 - g),

where q and o are as in Theorem 3.
Proof. We need to show that

AT o _ _
A+ < -2 Il PryllFl,  for every y € Y.
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Let X* denote the solution in J(N(M)®) of the equation A¥ = Py (2)37- Such an x*
exists, by Theorem 3. In fact, by condition (E), X* =A4 "y, i.e. X* is a unique best
approximate solution in N(4)° of the equation 4x = y. But Ppayy =HPp(4yb for
some b € Y, by condition (D). So X* is also a solution of the equ'ation Ax = HPp4)b
and it satisfies

Il S 7= 1 HPraybl, by (40).

Therefore,

T a o _
4y < -7 | HPg 4)bll = 1—_q—IIPR(;)y Il

<7 1Pr@lllFl. O

IfX=Y,X=Y=X=Y,M=TIand A~ " exists then the conditions (A),(B),
(C), (D), and (I) are trivially satisfied, while (IV), (V) and (VI) reduce to

(IV") 1A%~ HAX|| < el|%| for some constant € > 0 and all ¥ € X,

(V') For every x € X there is a u E} such that |lu — Nx|| < n, x|l for some
constant n, = 0.

(VI') There exists a vector v € X such that |lv — b|| < n,||b|l for some constant
n, = 0.

In the nonsingular case, Theorem 3 reduces to the following result of Kantorovich
and Akilov [17, p. 545].

COROLLARY 5. Let A € 1,(X) have an inverse and let the conditions (IV') and
(V') be satisfied. If

q=[el +n)+nllHANIA" <1,
then the equation AX = b has a solution x* € X for every b €X. Also

I < «libll/(1 - g),

where o = (1 + n )47

An estimate for the norm of the generalized inverse A* was obtained using Theo-
rem 3. In the nonsingular case, Corollary 4 gives the following result of Kantorovich
and Akilov [17, p. 546].

COROLLARY 6. Let the hypotheses and the notation of Corollary 5 hold and let
A satisfy the condition:

(E") “The existence of a solution of the equation AX = b for every b €X implies
its uniqueness”.

Then

1471 < o/(1 - q).
Proof. Condition (E") and Corollary 5 imply the existence of A=!. The result

now follows from Corollary 4, since the conditions (D) and (E) are satisfied when 4!
and A~ ! exist. O
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The following theorem estimates the distance between the best approximate solu-
tion X* of the approximate equation and the best approximate solution x* of the exact
equation.

THEOREM 4. (Estimate of the distance between best approximate solutions.)
Consider the equation Ax = b and its approximate equation A% = b. If the condition
(D—(VY) are satisfied, then

(48) llx* = Jg '3 < plx*|l,

where

(49) p=e(l + NI NATI +c(1 + 1175 4T HAI)
and

(50) ¢ =min {1, (n; + n,IlADIM*|}.

Proof. First we show that x* can be approximated by an ¥ € N(M)¢ N X to the
order of n; + n,. We know, by conditions (V) and (VI), that there exist # and v in

N@)e N X such that

(51) |Mu — PR(M)Nx*" < nlllx*ll
and
(52) | Mo —PR(M)PR(A)b" < 7?2||PR(A)b"-

Denote x = MT(Mv — Mu). Clearly, X € N(M)° N X We now show that x* can be
approximated by X to the order of n, +1,.

llx* — Xl = IM*Mx* — X|l, by condition (I)
=||-M*Nx* + M*(M + N)x* - M+ (Mv — Mu)|,
by definition of x
=|l— M*Nx* + M*Py 4 )b — M*(Mv — Mu)l,
since 4 =M + N and Ax* = Pp4\b
< IMTIIMu — PoiapyNx*Il + 1Mo = Pgyr,Praybl):
since M* = M* Py
< IM*Fli(nyllx*) + N,llPrea)blD), by (51) and (52)
<IMFlI(n; + n,llAIDIx*I,  since 1Pyl = IlAX*II < ANl llx*]I.
Hence, we conclude that there exists an X € N(M)® N X such that
(53) llx* = X1 < cllx*|,

where ¢ = min{1, (n, + n2||A||)|IM+II}. (Note that ¢ < 1, since we can always choose
X = 01in (53).)
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Let us now prove (48). Denote X, = AtHAX. Then
(54) llx™* —Jg 1 %*) < lIx* XN +1x =I5 1 E N + 1Ty ey — T .
The first term on the right-hand side |[x* — X|| is estimated by (53). The two remain-
ing terms will now be estimated. First
X—Jg'%, =x — Jy YA HAX, by definition of X,
=J5'(J, ~ATHA)Y, since xEX
=J5At (AT, — HA)X ,

since ATAJ X = P Jox = Jo, by condition (II).

N(A4)E
Hence, “4)

1% = Tg 1%l < 15 A I(AT, — HAXXTI
<elJy"ATIXNl, by condition (IV)
<elJy'AtNx*I + lx* = X1l), by the triangle inequality
<e(l +ollJg A Nx*ll, by (53).
The third term is estimated as follows:
g 1%y —Jg ' X = IlJg (AT HAX = AT A% *)|l, by definition of X,
= 1Jg (A1 HAX — A+ Py 1))
= /g (A HAX — A" HP p 4\b)ll, by Condition (III)
< |IJg 'A*HAINX — x*Il, since Py 4)b = Ax*
<cllJg AT HAllx*|l, by (53).

After substituting the above estimates into (54), the conclusion follows. O

Remark 5. It may happen that we could approximate x* by some x € N(M)° N
X directly. Then we no longer need the conditions (V) and (VI), and we can set ¢ =
min{l, Ix* — X} in (49).

Remark 6. If p <1, we can write the estimate (48) as follows

Ix* = Jg %™ < pllJg 'x /(1 - p).
This is true, since
lx* = Jg 'X*I < pllx*Il < p(IlTg T x* || + lIx* - J5 13 *)).

Remark 7. If X and Y are Hilbert spaces and N(4)¢ = R(4™), R(4)° = N(4*),
then Theorem 4 reduces to a result obtained by Zlobec in [41]. However, the Hilbert
space version of Theorem 4 is proved there under slightly different assumptions.

Remark 8. It may happen that one cannot satisfy condition (III) but that a con-

stant n4 such that _
||A+b _A+HPR(A)b" < 773||X*||
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is found. In this case the constant p in (48) is different. Now

1T 1%y = Jg 1%l < (cllVg AT HAIl + nsl5 ) lIx*I,
and hence
p=[e(1 + TN+ na 115 + (1 + 175 14T HAI).

In the nonsingular case, we get the following result from [17, p. 547]. (Recall
that in our setting x* € N(4)°. Also, as in [17], we specify b = Hb.)

COROLLARY 7. Let the conditions (IV'), (V') and (VI') be satisfied and let A~*
and A~ exist. Then

* —_—
lIx* = %*II < pllx*|l,

where x* is the solution of the exact equation (1), X* is the solution of the approxi-
mate equation (2) and

p = 2ellA " + (n, +n,ll A (1 + 4™ HALD.

Proof. Specify M =1, X = Yand X =Y = X = ¥ in Theorem 4. O

Our next result gives conditions for convergence of approximation schemes. Sup-
pose that the exact equation Ax = b is approximated by a sequence of equations an
= Fn, n=1,2,...,rather than by a single equation. This determines a sequence of
the spaces fn, ?n, X,, Y, the operators 4,,, (J,,),,, (H,),, J,, H, and the constants
€ns Mns> M2)> €> Q> @, Py n = 1,2, .. .. For the sake of notational simplicity
these indices will generally be omitted in the sequel. The following theorem gives con-
ditions for the convergence of the sequence XY, the best approximate solution of Z,,En
= En, n=1,2,...,tox* the best approximate solution of the exact equation.

THEOREM 5. (Convergence of the best approximate solutions.) Consider the equa-
tion Ax = b and a sequence of approximate equations Ax = b. Suppose that for each
n=1,2,...the conditions:

@ @M—(VI) and (A), (B), (C), (D) and (E),

(i) sup,llJyll < oo, sup,llHy Il <o and sup,|lPqczll <=,

(iii) lim,,_, . ellJg Il = 0, lim,,_, ., 0, I/ "NIHI = 0, lim,_, ., n, /g IlIHI =0
are satisfied. Then lim,_, . n, =0, lim,_, . n, = 0 and the sequence of best approxi-
mate solutions of Ax = b converges to the best approximate solution x* of Ax = b, i.e.

lim |Ix* - J5'x*| = 0.
n—>oo
More precisely,

llx* = J5 1%

—1 - _
< [eey G+ ny(ep + c5llTg HHHID + ny(cq + csllTy HILEID] x*|l,
where ¢, to c are some constants independent of the index n.
Proof. Since Hngl =1, it follows that ||H51||||H0|| =>1,n=1,2,.... Hence

(55) inf|Hyll >0
n
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using the second assumption in (ii). Similarly, one concludes that
(56) inf|lJg ' >0
n
using the first assumption in (ii). Also || H| = I|Hyll, since Hy, = H|3. Therefore,
by (55),
(57) inf|[H| > 0.
n

From (56), (57) and condition (iii), we conclude that, in particular,

(58) lim e = 0, lim n = 0, lim Ny = 0, lim 771||H|| =0.

n—oo n—oo n—oo n—oo

Recall the constant g introduced in Theorem 3:
q = [e(1 + n,IM¥I) + n | HAILIME AT HG I

For sufficiently large #n, using (58), one has ¢ < % and for such values of n Theorem 3
is applicable. But we can also apply Corollary 4 to obtain

1A% 1 < all Py /(1 = ) < 2al| Py l-

Since a = [|Jll(1 + n, IMTIDILATHy I, one concludes, using the third assumption in
(ii), that |4 ™|l is bounded independently of the index n, i.e.

(59) supllAT|| =5 < oo,
n

The desired estimate now follows for sufficinetly large n:

llx* = Jg 'x*| < [2ellJg AT+ (n, + n,ll Al + g "ATHAIDIM [T 11x*|],
by (49) and (50)
< [ec, 1T Ml + (e, + e3llTg HHLHI + ny(cq + csllTg LA Nlx*|l,

where ¢; = 25, ¢, = [M7|, ¢y = sll AL M7, ¢, = 1ANIM™T, cs = slAl2 1M,
and s is defined by (59). The right-hand side in the above inequality tends to zero
when n — oo, by (iii) and (58). O
A corresponding result in the nonsingular case is given in [17, p. 549] as follows.
COROLLARY 8. Consider the equation Ax = b and a sequence of approximate
equations AX = b. Assume that A~ exists and that A satisfies condition (E') for each
n=1,2,.... Assume further that for esch n = 1, 2, . . . the conditions (IV'),
V"), (VI') are satisfied, and that

lim e =0, lim n|H|l=0 and lim n, I H|l = 0.
n—>oo n—oo

n—co

Then the approximate equations are consistent for sufficiently large n and the sequence
of approximate solutions converges to the exact solution x* of Ax = b, ie.

lim ||x* - X*| = 0.

n—oo
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More precisely,

lx* = X*I < [ec; +my(cy + 3l HI) +nycq + el HIDT Ix*I,

Where ¢, to cs are some constants independent of the index n.

Proof. SetX=Y, X = Y=}= ;andM=Iin Theorem 3. Then J, = H, =
I'and ||H|| = I/l = 1. Furthermore, from Corollary 3, we see that R(4) = X. So
condition (E) is satisfied and 1Pg (71)” = 1. Conditions (i)—(iii) of Theorem 5 hold and
the result follows. O

Remark 9. Constants €, n,, n, and ¢; to ¢g in Theorem 5 reduce, in the non-
singular case, to the corresponding constants in Corollary 8.

Let us recall that Corollary 4 gave us an estimate for ||[4 || in terms of |4t via
constants « and g. Our last result gives us the reverse estimate.

THEOREM 6. (Estimate for the norm of the generalized inverse.) Let A €
L,(X, Y) and A € 1,(X, Y). If the conditions (1)—(V) are satisfied and

r=[e(1 +n IMTIDITFHNIAT + ML+ |1T5 AT HAI] < 1,
then
lati<(@-n-t g A HI + 1M1 + elJg HiA* + 75 1At HAY)] .

Proof. Take x € X, x € N(A). Then x* = PN(A) X is clearly the best approxi-
mate solution of the equation

(60) Ax = Ax .

By condition (V), there exists a u € N(M)° N X such that

(61) lMu ~PranNC P aye <myliB, ol
Now
* _ - oo
lle® = ull IIPN(A)cx ull
= ||M+MPN(A)CJ? — M*™Mu|l, by condition (I)
< ) ° 5+ M+
< (IIWN(A)cx +NPN(A)cx” + ”PR(M)NP N(4)C X Mu“)" Il

P Il

Ax* A
< [y AN p Mt by (6
1B, aye¥ | e

Apply Remark 5 to the exact equation (60) and its approximate equation AX = HAX,
with

¢ =min{l, IMFll(n, + l4ZII/IP %} in (49).

N(4)C

Then
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lx* = Jg'x*| = IIP, X —Jg'AYHAZ|

N(4)E

A%
< {e[l + UMl (m +~”+"—£" ]uJ;'uuA*n
N(A)c

[l AX]| -
+ — (1 + 14+ HA P
+ 1M <n1 +"P~(,4)cx”> 1+ 17, II)} II \(4)°

xIl,

by (48) and (49)

(62) < [e(1 + 0 IMTIDITGHINATN + oy IMFNCL + 115 YAt HAIDWIP, l

N(A)cx
+IMEN + el g AT + 1175 AT HAIDIAXI.

Now

P wi<IpP

% — J= YA HARN + 1J-14+ 2
e woyes ~ o AT HARI +1J5 AT HI AR,

by the triangle inequality

< o
< rIIPN(A)cxII

+ [ YA HI + IMEN( + el " IIAT I+ 1175 AT HAID] AR,

by (62) and the definition of 7.
Hence

N 1 -
A% = 4

i - - P&l
IJg "A*HI + IMTI(L + ell S NIA* | + 175 A HAl - M4

=P xll,

where ¢ denotes the coefficient of IIPN(A )CJ?II. Take an arbitrary 0 # y € R(4). Then
there exists an £ € X, £ € N(4) such that y = 4%, Hence Aty = PN(A) % Further-
more, by the above inequality,

o0l =
4™yl = "PN(A)C
which gives the desired estimate for A*. Note that here # > 0, since r < 1. If y =0,
the above inequality is trivially satisfied. O

Remark 10. If A €1,(X) and in addition X =Y, X =Y =X = ’)7, then the above
result reduces to the bound for a left inverse of 4 given in [17, p. 550].

<t AR =y,

6. Galerkin’s Method for Best Approximate Solutions. In this section we will use
Kantorovich’s theory to prove that a Galerkin type method, when applied to a certain
kind of, possibly inconsistent, operator equation, produces the best approximate solu-
tion. This solution is obtained as the limit of a sequence of best approximate solutions
of, possibly inconsistent, systems of linear algebraic equations. In the case of Hilbert
space, another method is suggested by Nashed [26]. Unlike our approach he finds the
best least squares solution by applying Galerkin’s method, with a suitably chosen basis,



BEST APPROXIMATE SOLUTION OF AN OPERATOR EQUATION 1207

to the consistent equations A*Ax = A™b and Ax = PR( 4 )b, rather than to Ax = b.
Consider an equation Ax = b in a separable Banach space X, where 4 € [, (X) and

b € X, not necessarily b € R(A4), are given. We assume that 4 = I + N, where N is
compact (which implies that N(A4) is finite dimensional) and R(4) is closed. Further
we assume that R(4) = N(4)°. Denote by {p;:i =1,...,m} a basis of N(4), m =
dim N(A), and by {y;:i=1,2,...} abasis of R(4). It is assumed that R(4) has a
countable basis. Then every x € X can be written as

m o

X = Z ci(x)‘Pi + Z di(x)‘pi,

i=1 i=1
where ci(x),i=1,...,m,and d(x),i =1, 2, ..., are some coefficients which de-
pend on x. The above situation occurs, for instance, in X = C[0, 1] with 4 a Fred-
holm integral operator of the second kind with a continuous and symmetric kernel.
The best approximate solution of such an equation can be calculated by Galerkin’s
method as follows: For sufficiently large n solve the system of n linear algebraic equa-
tions in # unknowns.

(63) f di(AY)E =d;(b), i=1,...,n
j=1

We will show that, for sufficiently large n, the system (63) is consistent, and that the
sequence of solutions X = (EI-) converges to the best approximate solution of Ax = b,
with respect to PN(A) ¢ = Pr(a) and Py 4y, when n —> o=, (Note that in this situation
both 4 and A% leave R(4) invariant.) In order to prove the consistency of (63), for large
n, we will use a result from Krasnosel'skif et al. [18, p. 212] which is stated here as

the following lemma.

LEMMA 2. Let T € I,(X) be compact and let {P,: n =1, 2, ...} be a sequence
of projections in 1,(X), where X is a Banach space. If P, — I strongly, i.e., for every
x E€X,

I1P,x —x|| — 0 asn—> oo,
then || — P)T|| — O as n —> oo.
In our situation we specify

Y=X Y=X= span{y, ..., ¥,} and P"; =Py,
which is defined by
'm oo n
Py x =P§<Z c;(); + Z dj(-"’)‘l’,') = Z di(x)ll/i-
i=1 i=1

i=1
Further, J and H are defined by
d,(x)
Jx =Hx = ,
d,(x)
while
Jo=Hy=Jlg, b=Hb and A =HAJ;".
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Note that Py = Hy 'H and X = Y is the space of all n-tuples. The norm in X and Y is
defined by

k
64 x|l = IlJxIl = sup

k=1,...,n

di(x) v;
i=1
We will first show that the system (63) is consistent for large n and then that all con-
ditions of Theorem 5 are satisfied.
Matrix 4 = (Eii), a; = d;(4 t]/,-), i,j=1,...,n, hasthe inverse if, and only if,
Pg Al has the inverse. By Lemma 2, where X = R(A), I = IIR(A), P, = Pf'n(A) and
T'=Nlg(ay

I reay = P&reayNVreayll = 1Pg = DPr(ayM gea)ll =0

as n — oo. Since (4lg( A))_l is bounded (by the assumptions on A4), this further im-
plies that

IP% = DPra)NreaylllAl pe4 ))_lll <1
for sufficiently large n. Now, by specifying X = ¥ = R(4),
M= Algeqy and N =@Pg=DPreayMrca)
in Proposition 1, we conclude that M + N is invertible, which is here
Alpcay t B = DPpisyNlgay = Ilray + P Nlr(a)
= Py Aly  when restricted to X

Therefore, A is invertible, which implies that the system (63) is consistent for large 7.

Let us now show that all assumptions of Theorem 5 are satisfied for sufficiently
large n.

Condition I. Since M = I, this condition is obviously satisfied.

Condition II. We know that 4 is invertible, so this condition, for large n, reduces
to Jy: X — X, which is always satisfied.

Condition IIL. Since A is invertible, the condition becomes b = HPg( 4b, which
is satisfied by our construction of H and b.

Condition IV. One can specify € = 0, because A = HAJ; .

Condition V. For an arbitrary x € N(4)¢, take u = PgNx. Then

lMu = PppryNxll = I(Pg — Pg4))Nxll, since M = I and N(4)°* = R(4)
< Py — PR(A ))N| R(A)" [1xIl.

So, one can specify n, = [I(Py — PR(A))NIR(A)II.
Condition VI. Take v = PyPR( 4 )b. Then

1240 = Pp 4y Praybll = Py = Py 4))Pr )bl

Therefore, one can choose
1

Ny ="
27 1Py

(P = Pray)Prea)bll-
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If PR(A)b = 0, then set n, = 0.

Condition A. Since M =1 and X = Y the condition is satisfied. -

Condition B. By our construction of H and H,,, Hy 1H = Pg. Since X C R(4),
one concludes that Hy ' HR(4) C R(A).

Condition C. J(N(M)°) = X, which is closed.

Condition D. Since R(4) = X, this condition is satisfied by the construction of H.

Condition E. For large n, A4 is invertible and N(4)° = X, so the condition is
satisfied.

In order to prove conditions (ii) of Theorem 5 we proceed as follows: Define a
linear mapping T from R(A) into the space of sequences Tx = (d;(x)),i=1,2, ...,
such that 2;7 | d,(x)y; is an element in R(4). It is shown in [21, p. 135] that T'is a
linear bijection and that T is bounded and has the bounded inverse 771, if the norm
in the sequence space is defined by

Since [|Jox|l < I Tx|| for every x € Xc R(A4), where the norms are taken as in (64) and
(65), respectively, one concludes that IToll < IIT|| < oo, regardless of n. Hence
sup, |l7,ll < e°. Space X is homeomorphic with the subspace of the above sequence
space consisting of all sequences with zero components from (n + 1)st on. Therefore,
Hy'X = T7'% for all x €X. Hence, NHG I = 1T~ gl S IT7I < oo, regardless of
n; and one concludes that sup, |l Hy 1| < oo, Since A4 is invertible for large n, PR(Z) =
I; and thus, SUp,,IIPR(Z)“ < oo,

Finally, the conditions (iii) are satisfied, since € = 0, n, — 0 and n, —> 0 as
n —> o, by Lemma 2, while /o, = Hy; and thus sup,||J5 'l = sup, ||Hy |l < e, and
[|HxIl < || Tx|l for every x € R(4), Hx = 0 for x € R(4)°, by the construction of H and
T, which implies sup, || H|| < ||T|| < oo, regardless of n.

k
(65) I TxIl = sup|| > d;(x)y;
=

All the conditions of Theorem 5 are satisfied; and one concludes that
lim,_, lIx* —Jg 1%*|| = 0, where x* is the best approximate solution of Ax = b; and
X* is the exact solution (for large n) of the approximate equation (63).

The best approximate solution of Ax = b can also be calculated by solving systems
of linear algebraic equations (63) in the case of a proper splitting 4 = M + N if, in
addition to the proper splitting, M*: : X — X for sufficiently large n. All the conditions
of Theorem 5 are still satisfied. The only modification is that u and v in Conditions
V and VI are taken as follows: u =M +P}'}'Nx andv=M +f§PR( 4 )b. Here X is still
span{y, ..., ¥,} in R(4). In fact, this requirement on X can be relaxed. One can
choose X = span{r,, ..., 7,}, where {ry, ..., 7,} is an arbitrary set of linearly in-
dependent vectors in X provided that PzPpiay = Pp(4)Pg for sufficiently large n and
Tys e+ Ty Tpyps - - - i8S a basis of X. However, with this arbitrary construction of
X’, the system (63) may be inconsistent for sufficiently large n, in which case the best
approximate solution ¥* = 47 b is obtained. Now one can show, using Lemma 2, that

Jo(N@)¥ NX)=NA)X NX and Hy(N@A) NX) = NA) N X
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for sufficiently large n. These relations imply that the only conditions which need verifi-
cation, i.e. Conditions II and III, are also satisfied.

A Galerkin method for calculating the best approximate solution of Ax = b can be
formulated as follows:

(i) Find a proper splitting 4 = M + N with N compact.
(i) Find a basis {r,, Ty, - .. } of X such that

(66) MY X—X and PyPyy) = PrayPx

for sufficiently large n, where } =span{r,..., Tt

(iii) Calculated = HAJ;' and b = Hb. The elements of 4 = (a;7) are determined
by a;; = e(A7;), where e,(x) is the ith coefficient of x in the expansion x =
Z;~ 1e{x)7;, while the elements of b = (b;) are determined by b; = e/(b).

(iv) Calculate the best approximate solution of A% = b, i.e. ¥* =A*h.

If A is written as A = I + N, in which case we may not have a proper splitting,
then the basis {r,, 7,, ... } must be chosen as a basis of R(4). The conditions (66)
are then redundant, and 4 is invertible for sufficiently large n.

ExAMPLE 4. The best least squares solution of the equation Ax = b from Exam-
ple 1 will now be calculated using Galerkin’s method.
First, the operator A can be written as 4 = M + N, where

Mx(s) = x(s) — (x(s), \/ % sin s) \/ —27; sin s,

Nx(s) = — %— <x(s), \/ g cos s> \/ % Cos S.

Here (+, ) denotes the inner product in L, [0, m]. Since M is the orthogonal projec-
tion on (span {sin s})* and (Vx(s), sin s) = 0 for every x € L, [0, n], one concludes
that R(V) C (span{sin s})* = R(M). Furthermore

2 %
IV < <f2f: <%cos tcos .§> dt dg) =%< 1,

which implies that A = M + N is a proper splitting, by Corollary 1.
Second, we choose the following basis of X:

(67) \/% cos s, \/%— sin s, \/% sin 3s, \/% sin 5, . . ..

The conditions (66) are now satisfied for every n.
Third, we calculate 4 and b forn =1, 2, . . ..

a,, = <\/% cos s,A<\/i—7; cos s)) =%,

since A(cos s) = %cos s
b, = <s,\/% coss> =—2\/%_.

Thus, A% = b for n = 1 is given by %X = — 24/2/m, which gives ¥* = — 4y/2/m. For
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(o o= ()
00 ¥ /2T

and its best least squares solution is

g (—4\/%)
- 0

For n = 3, the system (63) becomes

n = 2, the system (63) is

% 0 0 N
0 0 0|x=| n/2Ir
0 01 (/3)2/n
with the best least squares solution
—4V2/n
* = 0
(n/3)\/2/n
At the nth step (n = 3), we obtain
=2
% 0 m
— 0 —
A= 1 =_ /2
1 , b= 7 /3 ;
0 1 n/5
7/(2n — 3)
and the best least squares solution is
-4
0
#=om|
7/5
a/(2n — 3)

Hence

ngf*=%<—4coss+£sin3s+£sin Ss 4 oo + 1 sin(2n—3)>.

3 5 2n — 3

1211
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Since the coefficients (x*(s), 7;), i = 1, . . ., n, of the function x*(s) =s — 2 sin s —
4(cos s)/m, in the basis (67), are

5

for every n, we conclude that J5 1X* —> x*(s), i.e. x*(s) is the best least squares
solution of Ax = b. The same result has been obtained in Example 1 using iteration
in L, [0, 1].

Let us note that the Kantorovich theory for singular equations leads to various
methods for calculating the best approximate solution, the Galerkin method described
above being only one of them. By weakening our present conditions (as in Remark 8)
one obtains different types of convergence schemes, e.g. based on the fact that
Jo 'N(A4,)* — N(4)° (possibly J5 *N(4,,)° € N(4)°), Hy 'R(4,,) — R(A4) (possibly
Hy'R(4,) € R(A)), etc.
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