Finite Differences of the Partition Function

By Hansraj Gupta

Abstract. From the Hardy-Ramanujan-Rademacher formula for p(n)—the number of unrestricted partitions of n, it is not difficult to deduce that there exists a least positive integer $n_0(r)$ such that $V^r p(n) \ge 0$ for each $n \ge n_0(r)$, where V p(n) = p(n) - p(n-1) and $V^r p(n) = V\{V^{r-1} p(n)\}$. In this note, we give values of $n_0(r)$ for each $r \le 10$ and conjecture that $n_0(r)/r^3 \sim 1$.

1. Notation. In the following,

small letters denote positive integers unless stated otherwise;

p(n) denotes the number of unrestricted partitions of n;

p(n, m) is the number of partitions of n into exactly m summands, when $m \le n$; and we take as usual

$$p(0) = 1, \quad p(-n) = 0;$$

$$p(n, m) = 0$$
 for $n < m$; $p(0, m) = 0 = p(-n, m)$.

For any arithmetic function f(n), the operator V is defined by

$$Vf(n) = f(n) - f(n-1)$$
 and $V^{r}f(n) = V\{V^{r-1}f(n)\}.$

2. Differences of p(n). We have [1]

(1)
$$p(n) - p(n-1) = \sum_{m \ge 1} p(n-m, m)$$
 for each $n \ge 1$;

so that $Vp(n) \ge 0$ for $n \ge 1$. For n = 0, Vp(n) = 1. Again,

$$V^{2}p(n) = p(n) - 2p(n-1) + p(n-2)$$

(2)
$$= \sum_{m \ge 1} \{ p(n-m, m) - p(n-1-m, m) \}, \quad n \ge 2.$$

Hence, we have the known result

$$V^2p(n) \ge 0$$
 for $n \ge 2$.

For n = 1, however, $V^2 p(n) = -1$. For n = 0, $V^2 p(n) = 1$.

Using the well-known Hardy-Ramanujan-Rademacher series for p(n), it is not difficult to show that

(3)
$$V^{r}p(n) = C_{r}p(n)(1 + O(n^{-1/2})),$$

Received November 28, 1977.

AMS (MOS) subject classifications (1970). Primary 10A45, 12H10.

Copyright © 1978, American Mathematical Society

where $C_r=(\pi/\sqrt{6})^r/4\sqrt{3}$. Hence, there exists a least positive integer $n_0(r)$ such that $V^rp(n)\geqslant 0\quad \text{for each } n\geqslant n_0(r).$

More explicitly, on the basis of our calculations, we can say that for each odd $n < n_0(r)$, $V^r p(n)$ is negative; for each odd $n \ge n_0(r)$, $V^r p(n)$ is ≥ 0 ; while for each even $n \ge 0$, $V^r p(n) \ge 0$.

r	n_0	n	$V^{r}p(n)$	r	n_0	n	$V^{r}p(n)$
3	26	21	-4	7	352	349	-780 36820
	20	23	-2	′	332	351	-424 37469
		25	-4			352	17748 68363
		26	32			353	8 65716
		27	1			355	522 81173
		28	38			359	1841 78679
		29	5			339	1041 70079
		29	J				
4	68	65	-87	8	510	509	-57339 70174
		67	- 64			510	33 48946 29181
		68	1497			511	12505 02420
		69	17			513	93196 02052
		71	152				
5	134	129	-8840	9	704	703	-45 72279 29371
		133	-3143			704	7839 27672 53289
		134	1 12115			705	99 97628 46394
		135	951			709	451 37612 23991
6	220	222	7.00502	10	024	022	14510 50404 20200
6	228	223	-7 89593	10	934	933	-14518 50404 20380
		225	-5 59660			934	20 81467 28166 39740
		227	-2 47781			935	19110 28378 57344
		228	123 79258			937	56641 87086 56258
		229	1 25723				
L	L		L	L	Ll	1	

3. The Table. In the table above, we give the values of $n_0(r)$ for $3 \le r \le 10$. We give also values of $V^r p(n)$ for some values of n in the neighborhood of $n_0(r)$ to bring out clearly how the change takes place. The Royal Society Tables of Partitions [2] were freely used in preparing this table.

It is noteworthy that within the limits of our table

$$n_0(r)/r^3$$
 is about 1.

We conjecture that

$$n_0(r)/r^3 \sim 1.$$

We might here mention that the problem discussed in this note was raised by George E. Andrews.

Panjab University Chandigarh 160014, India

402 Mumfordganj Allahabad 211002, India

- 1. H. GUPTA, "Two theorems in partitions," Indian J. Math., v. 14, 1972, pp. 7-8. MR 48 # 5995.
- 2. H. GUPTA, C. E. GWYTHER & J. C. P. MILLER, Tables of Partitions, University Press, Cambridge, 1958.