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Finite Differences of the Partition Function

By Hansraj Gupta

Abstract. From the Hardy-Ramanujan-Rademacher formula for p(n)—the number
of unrestricted partitions of n, it is not difficult to deduce that there exists a least
positive integer ngy(r) such that Vrp(n) > 0 for each n > ng(r), where Vp(n) =
p(n) — p(n — 1) and Vrp(n) =v{ Vr-lp(n) } In this note, we give values of
ng(r) for each r < 10 and conjecture that no(r)/r3 ~ 1.

1. Notation. In the following,

small letters denote positive integers unless stated otherwise;

p(n) denotes the number of unrestricted partitions of n;

p(n, m) is the number of partitions of # into exactly m summands, when m <
n; and we take as usual

p0) =1, pCn)=0;

p(n,m)=0 forn<m; p@,m)=0=p(—n, m).
For any arithmetic function f(n), the operator V is defined by

Vi) = f(n) —f(n —1) and V'f(n) = V{V"'f(n)}.
2. Differences of p(n). We have [1]

1) p()—p(n—1)= > p(m—m, m) foreachn>1;
mz21

so that Vp(n) =0 forn > 1. Forn =0, Vp(n) = 1. Again,

V2p(n) = p(n) — 2p(n — 1) + p(n — 2)
2)
=3 {pn-mmy-pr—1-mm)}, n>2.

m>1
Hence, we have the known result
V2p(n) =0 forn > 2.
For n = 1, however, ¥2p(n) = —1. Forn =0, V2p(n) = 1.

Using the well-known Hardy-Ramanujan-Rademacher series for p(n), it is not
difficult to show that

3 V'p(n) = Cp()1 + O(i™*)),
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where C, = (m//6)"/4+/3. Hence, there exists a least positive integer no(r) such that
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V'p(n) =0 for each n = ny(r).

More explicitly, on the basis of our calculations, we can say that
for each odd n <ny(r), V'p(n) is negative;
for each odd n = ny(r), V'p(n) is > 0; while
for each even n = 0, V'p(n) = 0.

r| ng n V'p(n) r| ng| n V'p(n)

3126 21 -4 7 |352| 349 —1780 36820
23 =2 351 —424 37469
25 -4 352 17748 68363
26 32 353 8 65716
27 1 355 522 81173
28 38 359 1841 78679
29 5

4 | 68| 65 —-871 8 |510( 509 —57339 70174
67 - 64 510 33 48946 29181
68 1497 511 12505 02420
69 17 513 93196 02052
71 152

5 |134] 129 —8840 1| 9 [704| 703 —45 72279 29371
133 —3143 704 7839 27672 53289
134 112115 705 99 97628 46394
135 951 709 451 37612 23991

6 |228] 223 | —7 8959310 |934| 933| —14518 50404 20380
225 | —5 59660 934 | 20 81467 28166 39740
227 | —2 47781 935 19110 28378 57344
228 | 123 79258 937 56641 87086 56258
229 125723
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3. The Table. In the table above, we give the values of ny(r) for 3 <r <
10. We give also values of ¥'p(n) for some values of 7 in the neighborhood of n,(r)
to bring out clearly how the change takes place. The Royal Society Tables of Parti-
tions [2] were freely used in preparing this table.

It is noteworthy that within the limits of our table

no(r)/r® is about 1.
We conjecture that
no(r)/r3 ~1.

We might here mention that the problem discussed in this note was raised by George
E. Andrews.
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