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On the Class Number of Relative Quadratic Fields

By Charles J. Parry

Abstract. We describe class number relations between certain pairs of algebraic num-
ber fields, both of the same degree over the rational numbers. This relationship is
discussed in great detail when the common degree is equal to 4. Some numerical results

are given in this case.

1. Introduction. We shall describe pairs of algebraic number fields K, and K,
which satisfy the following properties:

(1) Both K| and K, are quadratic extensions of a field L.

(2) K, is totally real.

(3) K, is totally imaginary.

(4) There exists an odd prime / such that / divides the class number of K, when-
ever [ divides the class number of K.

(5) If I divides the class number of K, then / divides the class number of K ;
or there exists a unit of K, which satisfies a certain congruence condition.

The results obtained here are extensions of earlier works of Herz [4] and
Parry [7].

2. Notation.
I: odd prime number.
¢ =e2mill,

Q: the field of rational numbers.

h( ): class number of the field ().

L: a totally real algebraic number field.

K, a totally imaginary extension of L of degree 2 which contains {. We as-
sume / does not divide A(K ).

K,: a totally imaginary quadratic extension of L with K, # K.

K = K,({): bicyclic biquadratic extension of L.

K, : maximal real subfield of K.

§ = (__1)(1—1)/2.

ky = Q(\/ZS—I): a quadratic subfield of K.

m: a square free rational integer with m > 0 if / = 3 (mod 4).

k, = Q(v/m).

k, = Q(+/3Im).

E_: unit group of the field _.
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1262 CHARLES J. PARRY

W_: the group of roots of unity of the field _
G( / ): Galois group of the extension ( /).

3. The Main Result. Our primary goal is to prove the following theorem which
establishes a relation between the congruences 4(K,) = 0 (mod /) and h(K,)=0
(mod /).

THEOREM 1. The prime number | divides h(K,) if and only if I divides h(K »)
or

x'=e mod(1 - ¢)

is solvable in K for some unit e of K, which is not an Ith power.

Taking I = 3 and L = Q gives Theorem 6 of Herz [4]. Letting /=5, =
Q(\/g) and K| = L(x/m) gives Theorem 5 of Parry [7].

We now begin the proof of the main theorem.

Proof of Theorem 1. If I divides h(K 1), then there exists an abelian unramified
extension M of K| of degree I. We first show that M/L is normal.

Since (K, L) = 2, either M/L is normal or there exists M O M with M/L nor-
mal and M/K1 is an unramified bicyclic extension of degree /2. Let H = G(M/M) and
let 7 € G(M/L) with 7 & G(M/K )- If 0 € H, then there exists a prime ideal } of K,
with (M/K /P) = 0. Now ro7! (M/Kl/r(p)) and 7(b)b =¥ is an ideal of L. Smce
I does not divide A(L) (otherwise I|h(K 3) contrary to assumption), 9 is principal for
some integer @ with (g, /) = 1. Thus

(%) -5 () v

Hence (r077')* = ¢7%, and so 7077 ! = 0™, because (z, /) = 1. Thus, H is a normal
subgroup of G(M/L), and so MJL is a normal extension.

Now M($)/K, is cyclic of degree 2/, and a generator o of the Galois group
G(M/K ) can be extended to an element of G(M($)/K ) by setting {7 = ¢. Hilbert’s
Theorem 90 gives an element o € M({) satisfying a°~ ! = ¢. Moreover, « is uniquely
determined up to multiplication by g € K.

Since I1h(L), M/L must be dihedral. Thus, the nontrivial automorphism of K, /L
can be extended to an automorphism 7 of M({)/L satisfying the following properties:

$T=¢71 =1, ta=0"17, pr=r1p,
where p is the unique element of GM($)/K ) of order 2. If = a""!, then

o _ (aT—l)O — ao_l'r—a — (§_‘a)7/(§‘a)
={a"fa=a""! =,
so that § € K. Replace a with (1 + f)aif B# —1 and with ({ — ¢ Daif = —1. This
gnves a = o sothat al € K,, and « is uniquely determined up to a factor 7y of K,.
If o is a unit of K,, then Theorem 1 of Parry [8] shows that a?! = cwu, where w €
K, is a root of unity and u € L is a unit. Since K, # K, w” =1 where (n, =1.
Replacing o with «2”, u with u” and ¢ with {27 gives that o’ = y, a unit of L and
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hence of K. This means that M = K (&) = Kl({/;t_) and so M/K, is a nonnormal
extension, contrary to hypothesis. Thus, &/ is not a unit of K,.

Because M({) = L(\’/c? ) is an unramified extension of K, a prime ideal 8 of K
can divide (') if and only if B/ divides (a’). Since o' € K,, a prime ideal b of K,

! is not divisible

will divide (o) if and only if P’ divides (f). Since we may assume o
by an I/th power of any integer of K, (except units), it follows that @) =

(py - bt)l where p, --- D, is a nonprincipal ideal of K, whose /th power is princi-
pal. Thus, / divides A(K,).

Assume now that / divides A(K,). By reversing the roles of K, and K, in the
first part of the proof we have that M/K, is an abelian unramified extension of degree
I and M(¢) = K(a) with o’ € K, . If o! is not a unit of K, then it follows as above
that / divides (K ). Assume o) = e is a unit of K 1> and let £ in K be a prime divisor

of (1 ~¢). If 4(1 —¢), then Satz 119 of Hecke [3] shows that

x'=e (mod %)

has a solution x € K. Since £ was an arbitrary prime divisor of (1 — {), it follows by
use of the Chinese Remainder Theorem that

x=e mod(l-¢)

has a solution x € K.

The final portion of Thedrem 1 will be proved as a corollary to the following
theorem.

THEOREM 2. For some integer t with —1 <t < 3,

2'h(K)R(L)? = Qoh(K Dh(K,)h(K ),

where Qo = (Ex: Wy E KlE K2E Ks)' Moreover, Q, divides 2" where n = (L:Q). If
\/:i & K, then t = 2 or t = 1 according as there exist positive units €, and €, of L,
such that K, = L(\/e_l) and K, = L(\/re—;) or not.

Before proving this theorem, we need some technical results. For more details
and definitions, we refer the reader to Walter [9], [10]. Let Fy C F, CF, be a
tower of algebraic number fields. Define

U;o = {e eEF2|e” €Ep, for some n € Z, n # 0}

and
I(F\[Fy) = (Ep, N Ug: Wg Eg ).

LEMMA A. I(F,/F,) = I(F,/F,)I(F,/F,) and I(F,/F,) divides (F,F,).

Proof. See Section 4 of [10].

In the proof of Theorem 2 we need the value of M = I(K/L)/T2_  I(K;/L).

LEMMAB. M =2°with-2<c< 1. IfV=1¢K, thenc=—1or 0, according
as there exist units €, > 0 and €, > 0 of L such that K| = L(\/El_) and K, =

L(v/—€,) or not.
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Proof. The first assertion is immediate from Lemma A. We divide the proof of
the second assertion into three cases.

Case 1: I(K;/L) = 2 for exactly one , i = 1, 2 or 3. It follows from Lemma A
that I(K/L) = 2 and so M = 1.

Case 2: I(K;/L) = 2 for two or more i’s. Say I(K,/L) = I(K,/L) = 2. Lem-
ma 4.2 of [10] tells us that this can happen if and only if there exist positive units
€, and €, of L such that K, = L(\/-ej) and K, = L(\/;e_z). Thus, K3 = L(v/—€,¢€,);
and the same lemma tells us that /(K,;/L) = 2. Sete, = \/e_l and e, = \/-_-—e; , and
suppose that e e, = +/—€,€, € Wi E;. Then eje, = we with w € Wy and e €E}.
Now —w? = 6162/62 is a positive root of unity of L. Thus, w? = —1, contradicting
the hypothesis that V~-1€K. Hence, ee, € WeE; and so e; and e, determine dis-
tinct cosets of Wy E; in Ul"f. Thus, 4 < I(K/L) < 4, and so M = % as desired.

Case 3: I(K;/L)=1fori=1,2,3. If e € U}, then e*/Ny ;(e) € Wy so that
et e Wy E; . Suppose e* = we with w € Wy and € € E; . By hypothesis, we can
choose w to have odd order, say w” = 1 with r odd. Choose s so that 45 = —1
(mod 7). Now (ew®)* =€ €E . Thus, L(ew®) is a subfield of K which is not K, be-
cause K/L is a normal extension of degree 4 and V-1 K. Moreover, L(ew®) # K,
fori =1, 2 or 3, because I(K;/L) = 1. Thus, L(ew®) = L, and so e € Wy E; . Thus,
IK/L)y=1=M

Proof of Theorem 2. Since G(K/L) is bicyclic of order 4, it follows from Theo-
rem 5.5.1 of [9] that

h(K)R(LY? [R(K )R, R(K5) = 2571 QoM,
where b = Q unlessn/—1 € K. If\/—-1€K, then b =0 or 1. Thus

Y'R(KYL)? = Qoh(K,)h(K,)h(K )

with t = 1 — (b + ¢) where M = 2¢. The restrictions on ¢ are now immediate from
Lemmas A and B. The bounds on Q, are immediate from Lemma 5.4.1 of [9].

CoROLLARY 1. Ifl divides h(K ) or x! = e mod(1 — ¢) is solvable in K for
some unit e of K, which is not an Ith power, then | divides h(K,).

Proof. 1f I divides h(K ), then Theorem 1 applies to give the desired result. As-
sume / does not divide #(K,) and that x! = e mod(1 — ¢) is solvable for some unit e
of K, which is not an /th power in K. Satz 119 of Hecke [3] shows that K(\’/z) is
an abelian unramified extension of K of degree I Thus, /|A(K). By assumption /
divides neither (K ) nor A(K;). Theorem 2 shows I|h(K}).

From now on we shall take K, = Q({) where [ is a regular prime. If /=3
(mod 4), set K, = L(v/m) and K, = L(~/~Im).

COROLLARY 2. Let I =3 (mod 4) be a regular prime. If I divides h(k ), then
divides h(K,). If 1 divides h(k,), either | divides h(K 1) or the congruence

x*=e mod(l-¢)

has a solution for some unit e of K 1 (e not an Ith power in K ).
Proof. 1f 1 divides h(k;) (i = 1 or 2), then class field theory shows / divides h(K)
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(i =1 or 2); because K,/k; is an extension of degree (/ — 1)/2. The desired results are
now immediate from Theorem 1.

If / =1 (mod 4), there are two cases to consider according as m is positive or
negative. First, assume m > 0 and set K|, = L(x/m) and K, =L((§~ ¢TH/m).

CoROLLARY 3. If I divides h(k,) or h(k,), then [ divides h(K,).

Proof. Here both k, and k, are subfields of K, of index (/ — 1)/2. The result
follows as in Corollary 2.

Next if m < 0, set K, = L(x/m) and K| = L((¢ - ¢"1)v/m).

COROLLARY 4. If I divides h(k,) or h(k,), then either | divides h(K ) or the
congruence

x*=e mod(1-¢)

has a solution for some unit e of K, which is not an Ith power.
Remark. If I =5 (mod 8), then

L(E = £ vm) = L(V-eVIm),

where € is the fundamental unit of k,.

4. ] =5. When m > 0, this case has been discussed in great detail by Parry [7]:
Here we shall only consider the case m < 0. It will be convenient to replace m with
—m so that m > 0. Thus, k, = Q(\/—_m) and k, = Q(v/—5m). Without loss of gen-
erality, we shall assume (5, m) = 1.

Here K, = Q(+/5,v/~m) and K, = Q(v/ex/5m), where € = (1 +/5)/2. Set
G = m or 4m according as m = 3 (mod 4) or not.

THEOREM 3. If 5 divides h(K ), then 5 divides h(k ) or h(k,). Conversely, if
5 divides h(k,) or h(k,), then either S divides h(K ) or the congruence

x>=e mod(l-¢)°

has a solution for some unit e of K, which is not a fifth power.

Proof. If 5 divides A(K), then Theorem 1 gives S divides A(K,). Satz 1 of
Kubota [6] shows h(K,) = %Q*A(k,)h(k,) where Q* = 1 or 2. Thus, 5 divides h(k,)
or h(k,). The converse is immediate from Corollary 4.

Our primary goal of this section is to characterize those units e of K, for which
the congruence of Theorem 3 has a solution. Since K, /Q is cyclic (see Kaplansky [5,
Exercise 4, p. 53]), K, has three fundamental units. It follows from Hasse [1] that
there exists a relative fundamental unit £ of K| with relative norm equal to * 1, such
that either — 1, E, E' and e generate the whole group of units of K , or they generate
a subgroup of index 2 in the whole group of units of K,. Here E " is obtained by ap-
plying an automorphism of order 4 to E. Since the unit e of Theorem 3 may be re-
placed by e?, we may always assume that e is in the subgroup generated by E, E' and
€. (In all of our examples, this set of units is actually fundamental) Set Q =
VeV5G and Q' = \/—¢e'\/5G, where ¢’ = (1 =+/5)/2. Also, let ps = (5, Q)
be the prime divisor of 5in K. Let E=a + b\/5 + cQ + dQ' mod(5y).

THEOREM 4. There exists a unit e of K, (e not a fifth power in K ) such that
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x>=e mod(l-¢)°

has a solution x € K if and only if E satisfies one of the following conditions:
(1) b=c=d =0 (mod 5).
(2) a=+1,+7 (mod 25) and b =0, 2c = d (mod 5).
(3) G=+=1 (mod 5) and

E=+a(l +/5+gQ") or

E=za(1 —+/5 % g?) mod (5p5),

where a = 6 or 8 (mod 25) and g = 1 or 2 according as G = 1 or —1 (mod 5).

G = +2 (mod 5) and

E=z2a(l +23/5£g(Q + Q) or

E=#a(1-2/5%g(Q - Q') mod (Sps)

with a = 3 or 4 (mod 25) and g = 1 or 2 according as G =2 or —2 (mod 5).
Proof. Assume the congruence

®) x>=e mod(l-¢)°

has a solution in K. By applying the relative norm function for K/K, it is seen that
(5) has a solution if and only if

6) x5 =e (mod 5ps)

has a solution in K. Suppose e = E'E"¢’.

we see

Applying the norm function for K, /&5,

x5 =2t (mod 5v/5)

must have a solution in k5. This is only possible if =0 (mod 5). Hence, we may
take t = 0. First, suppose that exactly one of r or s is congruent to 0 modulo 5. By
taking conjugates, we may assume s = 0; and by replacing e with ¢/ (i = 1, 2, 3 or 4),
we may assume r = 1. Thus

@) x5 =E (mod Syg)

has a solution. Since the only fifth powers (mod Sh,) are + 1, £7, it follows that
b=c¢=d=0(mod 5). This gives condition (1) of the theorem. Conversely, if (1)
holds, then taking the relative norms, we get

a2 =NE)=+1 (mod 25)

so that ¢ = £ 1, £7 (mod 25), and hence (7) has a solution. Suppose now that rs # 0
(mod 5). By replacing e with e’ where i = 1, 2, 3 or 4, we may assume 7 = 1 and
s = *1 or £2. First, suppose that s = *1. Since

x5 = EE'S (mod 5p;)
is solvable, so is

xS =E'E" =+EE' (mod 5Y;).
Thus
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x5 =E'SE''S (mod 5y)

is solvable. Since s = * 1, this leads us back to (7). Finally, assume s = =2 or equiv-
alently s = 2 or s = 3. A computer analysis shows that EE'3 = =1 or +7 (mod Shs)
exactly when condition (2) is satisfied and that EE'> =+ 1 or +7 (mod 5%5) exactly
when conditions (3) or (4) are satisfied.

COROLLARY 1. If condition (1) of Theorem 4 is satisfied, then 25 divides the
class number of K,. Moreover, the 5-class group of K, is noncyclic.

Proof. From the proof of Theorem 4 it follows that the congruence x> = E
(mod 5%,) (where E is the relative fundamental unit of K ) has a solution if and only
if condition (1) holds. But then x> = E' (mod 5}) also has a solution. It follows
from Satz 119 of Hecke [3] that K(\/E) and K(\/E") are unramified abelian exten-
sions of K. Since E and E' are independent, they must be distinct. There exist cor-
responding unramified abelian extensions M/K, and M'/K, of degree 5 with M C
K(YE) and M' C K(YE"). Note that M = M' implies K(VE) = K(E"). Thus,
M, =MM " is an abelian unramified extension of K, of degree 25 with noncyclic
Galois group. Thus, 25|A(K,) and the S-class group of K, is noncyclic.

COROLLARY 2. Suppose 25 divides h(K,) and the 5-class group of K, is non-
cyclic. Then either 5 divides h(K ) or condition (1) of Theorem 4 is satisfied.

Proof. Using the method of proof of Theorem 1, there exist distinct unramified
abelian extensions M/K, and M'/K, of degree 5 such that M({) = K(¥a) and M'(§) =
K(é/z) for some a, b € K,. If one of 4 or b is not a unit, then, as in the proof of
Theorem 1, 5 divides /(K ). If @ = e, and b = e, are units, as in the proof of Theo-
rem 4, we may suppose ¢, = EE"" and e, = EE'S. Note that r # s (mod 5) since
otherwise M = M'. Hence, K(We, /e, ) = K(VE') C MM'(5), and so K(E")/K is an
abelian unramified extension of K of degree 5. As seen in the proof of Theorem 4,
this can happen if and only if (1) holds.

We now obtain a simpler criterion for conditions (1)—(4) of Theorem 4 to hold.

THEOREM 5.

(i) If (1) holds, then (2) also holds.

(ii) If b =0 (mod 5), then (2) holds.

(iii) If b #0,G =21 (mod 5) and a = + 6 or £8 (mod 25), then (3) holds.

(iv) Ifb#£0,G =12 (mod 5) and a = +3 or +4 (mod 25), then (4) holds.

Proof. If (1) holds, then a®> = +1 (mod 25) since E has relative norm * 1. Thus,
(2) holds. If E=a + b\/5 + ¢Q + dQ' (mod 5p,), then

E"=(a+ byv/5) — (cQ +dQ") (mod Spy),
where E” is obtained from E by applying the automorphism of K , of order 2. Now
+1=EE" = (a + bV/5)? - (cQ + dQ')?
= g% + 562 + 10(c? + d?)G + 2(ab — (2c — d)*G)\/5 (mod 5p).
Thus, we obtain

®) ab = (2c — d)®*G (mod 5)
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and
©) 2% + 5p% + 10(c2 + d2)G=+1 (mod 25).
If b = 0 (mod 5), then 2¢ = d (mod 5) and
+1 =42 4+ 10(c? + 4¢*)G =4? (mod 25).

Thus, a =+ 1, 27 (mod 25) and (2) holds. If ¢ = 0 (mod 5), then (1) also holds.
The remaining parts of Theorem 5 follow from an easy, but lengthy, analysis
of congruences. The proofs will be omitted.

5. Numerical Results. We employ methods developed by Hasse [1], [2] to
compute the units and class number of K, = Q(v/v/5em) where € = (1 + 1/5)/2.
Using the notation of the previous section, Satz 24 of [1] shows that u? + v? is min-
imal when E = % [(s + tv/5)/2 + ©2 + vQ")] is a relative fundamental unit of K -
As the amount of time required to compute E increases with the magnitude of u? +
v?, we only compute E when |ul, [v]| < 50. If ¢ is not divisible by G then E, E' and ¢
form a system of fundamental units for K, (see p. 49 of [1]). In this case the regu-
lator R of K is given by

logle] —logle| log | el
R =abs|log|E| log |E'| —log |E]
log|E'l -log|E| —log|E'|
= log |e|(log?|E| + log?|E'])
=RR,,

where R, = log|e, | is the regulator of Q(\/g). If E, E' and e are not a fundamental
set of units for K|, then Satz 16 of [1] shows that R is half of the above value. It
follows from Hasse [2, p. 11], that # = h(K,) is determined by

Ry =| T xe)loglt - ¢5|
x (mod F/2)
where F' = 5G is the conductor of K, the summation is over all integers x with 0 <
x < F[2, ¢ = e2™/F and y is a character of K , of order 4. More precisely, x(x) = 0
if (¢, F) # 1 and x(x) = x5(x)x,(x)(x/m) if (x, F) = 1. Here x5(x) is a character
modulo 5 determined by x5(2) = V-1 ,

(-1/x) ifm =1 (mod 4),
x;(x) = {(@2/x) if m =2 (mod 4),
1 if m =3 (mod 4)

and (x/m) is the Jacobi symbol for the modulus m. Certainly,

x(-1)=1 and > xx)=o0.
x (mod F)
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G m s t u v N(E) h(kl) h(k2) R2 h(Kl) Type
47 47 47 5 1 2 -1 5 2 39.42142184 1 2
79 79 79 95 8 1 1 5 8 84.,91554464 1 2
83 83 913 401 38 23 -1 3 10 101.63678751 1 4
103 103 103 55 4 3 -1 5 6 55.38387745 1 2
119 119 203 85 7 4 -1 10 4 62.91774917 2 2
127 127 1397 475 45 20 -1 5 10 153.67144889 1 1
143 143 121 65 4 3 1 10 4 60.27872559 2 2
159 159 597 265 18 11 -1 10 4 83.45120140 2 2
179 179 179 155 6 7 1 5 16 101.29863674 1 2
232 58 116 32 2 2 1 2 20 60.44869988 4 4
303 303 303 145 7 4 -1 10 12 77.32653170 4 2
319 319 29 55 1 2 1 10 16 67.14327939 4 2
344 86 172 440 17 -1 -1 10 12 152.38387745 1 2
347 347 347 145 7 4 -1 5 26 79.55760924 5 2
488 122 2728 1220 47 29 -1 10 12 125.17811780 4 2
664 166 332 152 5 3 -1 10 20 71.76579538 10 3
724 181 2896 1180 38 26 1 10 24 172.82304130 4 2
836 209 304 220 6 2 1 20 16 112.94781541 8 2
872 218 872 380 11 7 -1 10 12 103.04348388 8 2
1604 401 1604 820 17 9 1 20 32 155.97863984 8 2
Thus, Z, (104 F/2)x(x) = 0. Now
2
—_— — X
hR, = 2 x(x)logll = g%l
x (mod F/2)
1 2
—_— — X — — & X
=3 X x)logll = E+ x(-x) log1 - {¥|
x (mod F/2)
1 2
-2 —(&X —x
=3 2 x()logl2 — (% + ¢
x (mod F/2)
1 2
=3 > x(x) log [2(1 = cos 2mx/F)|
x (mod F/2)
1] 2
=5 > x(x)log |4 sin?nx/F|
Ix (mod F/2)

2
x(x) log [sin 7x/F]|

log 4 >

x (mod F/[2)

xx) +2 2

x (mod F/2)

N =

2
> x(x) log [sin mx/F|| .
x (mod F/2)
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Using this procedure, we have computed E, R, and A(K,) for some small values of m
where 5 divides h(k,) or h(k,). The results of our computations appear in the table
above. In the table E is determined by

E=%[(s + tv5)2 + uf2 + vQ']

and N(F) gives the relative norm of E. The “type” refers to the statement number of
Theorem 4 which is satisfied by the particular field.
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