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A Sum of Binomial Coefficients

By Lajos Takacs

Abstract. An explicit expression is derived for the sum of the (k¥ + 1)st binomial
coefficients in the nth, (n — m)th, (n — 2m)th, . . . row of the arithmetic triangle.

In combinatorial analysis and in probability theory we occasionally encounter
the problem of calculating the sum

anim=_5 (")
o<j<n/m\ Kk

forn =0, 1, 2, ... where k and m are given positive integers. If n is large, the sum-

mation in (1) is time-consuming and it is desirable to derive some simple formulas for

QO(n, k, m) which make it possible to determine Q(n, k, m) for any n in an easy way.

For m = 1 and m = 2 such formulas are

n+1
€)) on. k. 1)=<k+1>
and
B n+2\ (1 [1-c0f]Enk
(3) Q(n’k’z)_]§)<k+l—]> 2i+1 _[ 2 :|2k+1

Our aim is to derive analogous expressions for any m.

We shall prove that if n = r (mod m) where 0 <r < m, then Q(n, k, m) is a
polynomial of degree k + 1 in the variable n. In this polynomial every term is inde-
pendent of r except the constant term which does depend on .

More specifically, we have the following result.

THEOREM. If n =r (mod m) where 0 <r <m, then

@) O, k, m) =P(n +m, k, m) — P(r, k, m)

forn =0, k>=1,m =1 where

1 k+1/x
%) P(x, k, m) = — ( >A(m, k+1-)
m =\
=1
and A(m,j) G = 0,1, ...,k + 1) are determined by the generating function
(I+x)" -1 j=o0
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which is convergent if |x| < 2 sin(n/m). In another form we have
k [ xlm\ J AT\ (mi
7 x, k, m) = . > (—1)’_'<.>( )
@) Px, k, m) ]:z()<]+li§0 )0,
Note.  We define ({) = 1 for any x and (;.‘) =x(x—-1)...x—-j+ D!
forany x andj =1, 2, ...
Proof. We observe that Q(n, k, m) is the coefficient of x¥**1 in the polynomi-

al
[(A+xy +Q+x)tP™ +- -+ (1 +x)]x
®) Ja+rm -y [—2 .
- m a+x)y" -1
Consequently, (4) is true if P(x, k, m) is defined by (5). It remains to determine
A(m, j) forj=0,1,2,... . By expanding (6) into partial fractions, we get
m-—1 €X
© =y T,
(1+x)" -1 s tloe
where €, = ¢2"™/™ for | <r<m — 1. Therefore, A(m, 0) = 1 and
. m—1 € m—1 . .
(10) A(m, ) = (- 1) > o > cos((2rj -Itm] 4r).7r/2m)
r=1 (1- er)] =1 2 sin(rn/m))’
forj=1,2,... . Formula (10) is an explicit expression for A(m, j); however, it
is more convenient to determine A(m, j) forj =1, 2, ... by the recurrence formula
j+l m . -
an E<i>A(m,]+l—z)=0,
i=1

starting from the initial condition A(m, 0) = 1. To prove (11) we multiply both
sides of (6) by (1 + x)™ — 1 and form the coefficient of x/*!.

For m < 12 and j < 10 the following table contains the numbers
A(m, ]')lemp”/(”"l)] where p = 2, 3, 5, 7, ... are prime numbers. A Texas
SR 52 calculator was programmed to obtain the entries of this table.

j o 1 2 3 4 5 6 7 8 9 10
A(1, ) 1 0] o0 0 0 0 0 0 0 0 0
A2, 2! 1] -1 1| -1 1 -1 1 -1 1 -1 1
A3, j)3l172) 1| -1 2| -1 1 0 -1 1 -2 1 -1
A4, )2 1| -3] 5| -5 1 -15 15 1 -33 65
A(5, p)5l174) 1 =21] 2] -1 -1 4 -3 0 11 —11 3
A6, D23012) | 1| -5 |35 | =35| —119| 567 |-1765 | -3355| 41041 | -41041 -249613
A(7, j)711161 1 -3 4| -2 -2 4 -8 -29 39 0 -52
A8, )2 1| -7 21| -21| -63| 231 | -15] -1521 | 3073 4319 -29631
A(9, j)311/2] 1| -4]2|-10] -62 108 80 -755 1699 3160 -20332
A(10, p2sl/4V |1 | —9 | 33 | =33 | —891 | 3003 | 3333 | —37125 | 188441 | 1568743 | —5091303
A(LL, prunel s 0| -5 | -17 28 25 -110 29 317 - 4467
A(12, 230720 | f—11 143 |-143 | 3575 | 11583 87659 |-673387 | 41041 |29982095 |- 180388429
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Now we are going to prove (7). Let us denote the right-hand side of (7) by
R(x, k, m). By Newton expansion we obtain

o () EEOO)

for any x. If we add (12) forx =0, 1,...,s, we get

oo TN LT\ (i
(13) Q(ms +r, ’m)_,;ofﬂ igb( A I

for 0 <r <m. If, in particular, » = 0 (mod m), that is, r = 0, then by (13) we have
O, k, m) = R(n +m, k, m). We have demonstrated that Q(n, k, m) is a polynomial
in the variable n and only the constant term depends on r. Accordingly, for any n =
r (mod m), Q(n, k, m) differs from R(n + m, k, m) by a constant. If we put first

r = 0 and then x = r/m in (12), then we obtain that Q(r, k, m) = R(r + m, k, m) —
R(r, k, m). This implies that if n =7 (mod m) and 0 < r <m, then

(14) Qn, k, m) = R(n + m, k, m) — R(r, k, m),

where R(x, k, m) is the right-hand side of (7). Since both A0, k, m) and R(0, k, m)
are 0, therefore R(x, k, m) = P(x, k, m) for all x. This completes the proof of the
theorem.

We note that formulas (4) and (7) are more advantageous than (13) because in
(7) the second sum does not depend on r. If we use (13), the second sum should be
calculated for every r =0, 1, . .., m — 1. Actually, in (7) the second sum is A"(";cx)
taken at x = 0. This can be determined from the sequence {(7;*),x =0, 1,2,...}
by forming repeated differences.

By using (7) we can derive another formula for A(m, j). By (5) we have

(15) A(m, j) = mP(1, ], m),
where the right-hand side is given by (7).
We remark also that from (4) and (7) it follows that

(16) lim Q(n, m, k)[n**1 = 1/(k + 1)!m.

n—>oo
Finally, I would like to thank the referee for calling my attention to the paper
of L. Carlitz [1]. In this paper Carlitz introduced the polynomials 8,,(\) defined by

- x
1+ )t —1
A comparison with (6) shows that

as) At i = (2
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1. L. CARLITZ, “A degenerate Staudt-Clausen theorem,” Arch. Math., v. 7, 1956, pp. 28-33.



