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Free Subgroups of the Free Product of Cyclic Groups

By W. W. Stothers

Abstract. Two kinds of recurrence relation for the number of subgroups of finite
index in a free product of finitely many cyclic groups are given. An asymptotic

formula is obtained from the first of these relations.

We consider nontrivial free products of finite and infinite cyclic groups. This
class comprises Fuchsian groups of genus zero which have parabolic elements, and
the special case C, * C,. It is known that such a group has free subgroups (i.e. sub-
groups which are free products of copies of C.); see [2]. When the group itself is
free, all subgroups are free, and Hall, [3], has given a formula in the general case.
We obtain the formula for the other cases, obtaining an asymptotic estimate in each
case. Finally, we consider (formal) generating functions, and indicate the existence of
another recurrence relation. For the simplest cases, we give the relations explicitly.

To avoid complicated notation, we consider a fixed group G = Cp1 * sz *

-k Cl’m’ with m > 2, and each p; is an integer (=2) or is .. We assume that

Py - - - » Dy are finite, and the rest infinite. Unless m =p, =p, =2,G is Fuchsian,
and has hyperbolic measure (proportional to)

s

(1) H=m-s—1+Y (1-p;").
i=1

This appears in our calculations.

1. The Recurrence Relation. To obtain all the subgroups, we use coset dia-
grams, defined in the following manner. We pick m distinct colors, ¢;, ..., c,,. A
diagram of order n consists of n labelled vertices, together with colored, directed
edges (including loops) such that:

(a) each vertex has one edge of color c; entering and one leaving (i = 1, . . .,
m),

(b) for 1 <i<s, the edges of color ¢; form polygons whose sizes each divide p,,

(c) the entire diagram is connected.

For 1 <i <, a polygon with less than p; sides is degenerate. We select one label
(vertex) of a diagram as special. There is an equivalence relation among diagrams of
order n obtained by permuting the nonspecial labels on the vertices. We have an ob-
vious result:

PROPOSITION 1.1. An equivalence class of diagrams of order n has (n — 1)!
members.

By considering the effect of the generators of G on cosets of a subgroup of
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FREE SUBGROUPS 1275

index n, and observing that an element of finite order in a subgroup will be the conju-
gate of a power of a generator.

THEOREM 1.2.(i) There is a 1-1 correspondence between subgroups of index n
in G and equivalence classes of diagrams of order n.

(i) The free subgroups of index n correspond to the diagrams of order n with
no degenerate polygons of any color.

It is easy to refine the technique to describe all subgroups in more detail. In-
deed, by using another color, we can include an account of the hyperbolic measure
of the subgroup in the Fuchsian cases; see [7].

Ifs>1,let d be the lLem. of py, . . ., pg, and put e; = d/p;. When s = 0, we
putd = 1.

CoROLLARY 1.3. If G has a free subgroup of index n, then d|n.

Proor. There is no problem if s = 0. If s > 1, the diagram must consist of
complete p;-gons, so that p;|d. This holds for 1 <i<s.

Let M(n) be the number of free subgroups of index n in G.

We make the following definitions:

akd) = (kd)\lp; “i(ke)!, i=1,...,s,
and
afkd) = (kd)!, i>s.

For 1 <i <, a/kd) gives the number of ways of joining kd vertices into nondegen-
erate p;-gons. We also put

A(kd) = 3ﬁai(kd)f (kd)!

i=1

and
m
B(kd) = []a/kd).
i=2
THEOREM 1.4. Fork > 1,

Mkd) = kdAGked) — S AGDMCk ~ j)d).
i=1

Proof. Suppose that s > 1. We use the first kd integers as labels, with 1 as the
special label. For a given set of ke, labelled, directed p, -gons, let T(kd) be the num-
ber of diagrams of order kd which include these as the polygons of color ¢,. It is
clear that

(2) (kd ~ 1)!M(kd) = a,(kd)T(kd).

If we take a fixed collection of p,-gons as above, then we can add polygons of the
other colors in B(kd) ways, respecting conditions (a) and (b) and with no degenerate
polygons. The connected component which includes the vertex ‘1’ will be a diagram
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of order jd, with 1 <j <k. A simple count now yields
Kl ke, — 1 . ]
3 T(kd) = Bkd) ~ 3" ( ' >B(]d)T((k - ).
=1\ /&

The result follows at once. If s = 0, the proof is similar but easier.

Note that the sum is void when k = 1, so that we have

COROLLARY 1.5. G has a free subgroup of index d.

Also, kdA(kd) is an upper bound for M(kd). By using this estimate in the sum
on the left in 1.4, we obtain

COROLLARY 1.6.

KL AGDA(k - j)d)
kdA(kd) = M(kd) = kdA(kd){1 - % —
(k> Mk > kaa(rad) 1 - 3 AL

We note that the relation in 1.4 was obtained in a different way by Dey. It is
referred to in [1], though not stated there.

2. The Asymptotic Formula. After Corollary 1.6, it is evident that we must
find an upper bound for the sum

k—1 k—1
S(k) = 3" AGDA((k - Nd)/A(kd) = 3" b(j, k), say.
/=1 =1

LEMMA 2.1. For j < %(k — 1), b(j, k) = b(j + 1, k).
Proof. From the definitions,

bG, k) _)(k=j-Dd+1) - ((k=pd) (™"
@ bG + 1, k) Gd+1) -G+ Dd)

I

i=1

3 Ge; + 1) -+ - (G + Dey)
((k=j—=De;+ 1) - (k- e) |\

Considerable simplification is possible since, for r < e;,

(k—f—l)d+p,-r_ je; tr >
jd + p;r k-=j-e;+r =

Thus, the left-hand side of (4) is greater than one if m >s. When m = §, we can
pair m — 2 factors from the first product on the right with the last m — 2 from the
second product. Thus, it is enough to consider m = s = 2.

In this case, we can cancel all the e, terms as above. For the rest, either an e,
term cancels or we can use the inequality,

(k—j—-1)d+p,r-1 je, tr
jd + p,r—1 (k—j—De, +r

=1,

which holds since j < %(k — 1). This always works since a term in the product involv-
ing d cannot cancel if it is adjacent to another which does cancel (recall that p, and
p, are at least 2).
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LEMMA 22. Fora=1,2,and k > a, b(a, k) = 0(k™*9H).
Proof. Applying (4) with j = 0, we get an upper bound for b(1, k) by replac-
ing (k — 1)d + r by (k — 1)d, and (k — 1)e; + r by ke;. Thus, there are constants K,
K' with
Xe;

b(l, k) < Kk“'_ <K1k—(d(m—-1)—z:ei) =K/k—dH,
(k — 1)dm—1)

Another application gives the result for a = 2.

We observe that, as p,|d for each i, dH will be a positive integer unless G = C,
* C,. We treat this case separately below.

THEOREM 2.3.If G # C, * C,, then there is a constant C such that

kdA(kd) > M(kd) > kdA(kd){1 — Ck~9H}.
Proof. By 2.1,

S(k) < 2b(1, k) + (k — 3)b(2, k).
By 2.2 and the observation immediately before the theorem,

(k — 3)b(2, k) = O(k'~29H) = O(k9F).

The result follows.

All of the factorials which appear in the definition of A(kd) involve integers at
least as large as k. Hence, we can apply Stirling’s formula to obtain an asymptotic
formula in more familiar terms, viz.

1/2
1)@, - - - p)Qrkay™™* (kdH)!
® M(kd) ~ﬂ - H deH'

As an example, we consider the classical modular group, C, * C;. Here,m =s = 2,
p; =2,p, =3,s0thatd = 6 and H = 1/6. Now, (5) is

M(6k) = % 6%k1{1 + Ok~ H}

It requires a little thought to see that (5) is equivalent to the result for a free group
obtained in [5]. As a comparison, the total number of subgroups in the nonfree
cases (denoted by M,)), is rather greater. For the modular group, we have

1
nellt

Mg, = ] 6¥klexp((6k)'/2 + (6k)'/3) {1 + Ok 1/9)}.
The principal term is given in [5], the error term is implicit in [4].

Now assume that G = C, * C,. The diagram for a free subgroup of index 2k
in G will have 2k vertices and k distinct 2-gons of each of the two colors. If we re-
place each 2-gon by an uncolored edge, we obtain a figure in which each vertex has
degree 2 (by (a)). It will be connected (by (c)), and so consists of a single cycle.
The original diagram must have 2-gons of alternate colors (again by (a)), so that there



1278 W. W. STOTHERS

is precisely one unlabelled diagram. As all vertices are similarly situated, there is one
equivalence class of diagrams of order 2k for each integer k, i.e. M(2k) = 1. In this
case, A(2j) = (2)!/2%(j")?, so that Theorem 1.4 yields the identity:

k

> DY2HGN? = 2k + 1)1/22K(k!)2.

=0

3. The Second Relation. For the modular group, diagrams were used in [6] to
obtain a different recurrence relation connecting the M(6k) (see Proposition 1.8).

Proceeding in a formal way, we shall show that there is an analogue of this result
for each G, but that the result is a lot less elegant except in some special cases.

We put

flx) = iA(kd)e"d", gx) = ij(kd)ekdx.

k=0 k=1

Theorem 1.4 can be restated as

(6) f'ex) = f(x)glx).

Directly from the definition,

prfi(ke,. +1) - ((k + De)bA(x + Dd)
Q) =
={(kd + 1) - - - (k + DD)Y" 1 A(kd).

We imagine that all possible cancellation has been carried out, except that, when m >
s, we leave a factor k + 1 on each side, we have

(®) e~ 9*P(D) - Df(x) = Q(D)f(x),

where D is the operator d/dx, and P(X), Q(X) € Z[X]. It is to avoid problems at the
origin that we make the change for m >s. Using (6), f™(x) is equal to f(x) multi-
plied by a polynomial in g(x), g'(x), . . . , 8" "D(x). Thus, (8) yields a relation involv-
ing g(x) and its derivatives. On expanding in powers of ¢*, we obtain a relation in-
volving the M(kd). In general, there does not seem to be a nice form for the relation, a
direct approach involves partial Bell polynomials and Stirling numbers of the second
kind.

To get an idea of the nature of the relation, we must consider the amount of
cancellation in (7). If m = s, there are more (k + 1) factors on the left than on the
right, so complete cancellation is never possible. If m > s, then we must leave a factor
(k + 1) on each side. Thus, in either case, Q(X) has degree at least d(m — 1) — Ze; +
1 = dH + 1. If Q(X) has degree n, then the right-hand side of (8) will involve f™)(x),
but no higher derivatives. A simple argument shows that the equation obtained in de-
rivatives of g(x) will involve a term in g”(x), so that the relation contains an (n — 1)-
fold sum.

We will obtain a relatively simple relation only when dH = 1. We note that dH =
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d(m — 1) — Ze;, and that e; < %d, with equality only if p, = 2. Thus, fors =0,d =
1, and the only interesting case is m = 2,i.e. C, * C,. Form>s>0,dH >
d(m — 1 — %s), so we have only C, * C_, to consider. Form =s, dH>d(%m — 1),
so we must have m < 3. If m = 3, we must also have d = 2, so each p; is 2,ie. C, *
C,*Cy. Ifm=2,dH=d—-e; —e, =e,(p, — 1) —e,. We might as well assume that
e, =e,, so we must have p;, <3. If p; =3, then e¢; = 1, so we have C; * C5. If
p, =2,dd =e, —e, andd = 2e; = p,e,, so that p, <4, and we have the cases
C,*C, C, *C;, C, *C,.

Except for C, * C,, the relation is of the following form

k—2
) M(kd) = a(k)M((k — 1)d) — 3~ MGd)M((k —j = 1)d),
j=1

with a(k) = k + 1 for C,, * C,,, 2k + 1 for C, * C,,, and dk for the other cases.

As usual, the situation for C, * C, is simpler. We have f(x) = (1 - ) G
and g(x) = e**(1 — e?>*)~1. The analogue of (9) is, of course, M(2k) = M(2(k — 1))
=1.

As in [6], there are combinatorial arguments leading to (9). For example, for G
= C, * C,, we can get a relation for the T(kd) by considering the number of diagrams
with one square having a distinguished pair of vertices. The square can be removed,
and the attached 2-gons repaired in an obvious way. From the relation with the T(kd),
we obtain one for the M(kd) by using (2).

It seems reasonable to expect that there will be similar arguments for all groups,
even when the result is more complicated than (9).

4. The Group C, * C,. For k > 0, and p positive or infinite, let Tp(k) be the
number of homomorphisms from C,, to Sy, the symmetric group on k symbols. It is
easy to adapt the proof of Theorem 1.4 to obtain a recurrence relation involving M,,
and the relevant Tpi(k), see [5, (1), (12)]. For C, * C,, we put ofk) = (1'2(k))2/k!.
The relation is

k-1
(10) kolk) = _ZO o )My ;-
]=

In [5], the relations were used to estimate M, , except in the present case. For C, *
C,, an appeal to the diagrams is effective:
PROPOSITION 4.1. For k > 1,

k, k odd,

M, =
k+ 1, keven.

Proof. As at the end of §2, a diagram for C, * C,, which may now have de-
generate polygons, i.e. loops, leads to a connected, 2-colorable graph of order k with
each vertex of degree at most 2.

Ignoring colorability, such a graph must consist of a single cycle, or a single un-
branched chain. For 2-colorability, the former arises only for k even. In this case,



1280 W. W. STOTHERS

exactly as before, we have one subgroup. In the case of a chain, there is one coloring
if k is odd, and two if k is even. In the latter case, there is an obvious symmetry of
order two. Thus, in either case, we get k subgroups from the chain graph. The result

follows.
We put
F(x) = 2 a(k)e’™, G(x) = 2 Mye*™.
k=0 k>1
By 4.1,
2x
G(x) = sl + £ .

(1-€92  (1-e*>)

By (10), F'(x) = F(x)G(x), so that
(1) F(x) = (1 — e**)"/2exp e
1-¢*

Now, (11) can be used to obtain recurrence relations for the a(k). The most straight-
forward seems to be

n-—2
n

(12) a(n)=a(n—l)+a(n—2)—( )oz(n—3).

There do not appear to be relations for the “a(n)” for other groups, though there are
more complex ones involving mth powers.

Finally, we note that, while we should expect a combinatorial argument for (12),
none appears obvious.
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