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binomial in these tables is the multiplicative order of the companion matrix of B(x).
The tables correspond, respectively, to the following sets of values of g, d, and

d:

q=2%,d=16,d, =15 q=5,d=21,d, =11

q=2%d=28 g=5%d=10

gq=2%d=6 q=7,d=10=d,

g=25d=14 q=11,d=10,d, =8

q=3,d=26,d,=15 ¢q=13,d=10

q=3%4d=9 qg=17,d =10
qg=19,d=10.

The representation for GF(p®), @ = 1, is that discussed in [1] and used previous-
ly in [2], [3], and [4]. In the introduction to the present tables the authors prove
that a prime binomial of degree n = 2 is not primitive of the first, second, or third
kind [1].

JLW. W,

1. J. T. B. BEARD, JR., “Computing in GF (q),”” Math. Comp., v. 28, 1974, pp. 1159—1166.

2. J. T. B. BEARD, JR. & K. I. WEST, “Some primitive polynomials of the third kind,”
Math. Comp., v, 28, 1974, pp. 1166—1167.

3. J. T. B. BEARD, JR. & K. 1. WEST, “Factorization tables for x* — 1 over GF(q),” Math.
Comp., v. 28, 1974, pp. 1167—1168.

4. J. T. B. BEARD, JR. & K. I. WEST, “Factorization tables for trinomials over GF(q),”
Math, Comp., v. 30, 1976, pp. 179—-183.
26 [2.05, 2.10, 3.00, 4.00, 5.00, 6.15].—D. A. H. Jacoss, Editor, The State of the

Art in Numerical Analysis, Academic Press, London, 1977, xix + 978 pp., 23 cm.

Price $39.00.

This volume is based on material presented at a conference held at the University
of York in the spring of 1976. The topics surveyed are: linear algebra, error analysis,
optimization and non-linear systems, ordinary differential equations and quadrature,
approximation theory, parabolic and hyperbolic problems, elliptic problems, and
integral equations. In all there are twenty-three authors each contributing a section of

one of the above-mentioned chapters.
J. B.

27 [2.00].—J. DEscLouX & J. MARTI, Editors, Numerical Analysis, Proceedings of the
Colloquium on Numerical Analysis, International Series of Numerical Mathematics,
Birkhduser Verlag, Basel, Switzerland, 1977, 248 pp., 24 cm. Price approximately
$22.00.

This volume contains papers presented at a meeting organized by the editors.
This meeting took place at Lausanne, Switzerland, October 11—-13, 1976.
J. B.

28 [10.35].—~D AN ZWILLINGER, Magic Labellings, Massachusetts Institute of Technol-
ogy, Cambridge, Massachusetts, 1977, iii + 81 pages of computer output filed in
stiff covers and deposited in the UMT file.
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These are not the B-valuations of Rosa [4] (graceful numberings of Golomb [1])
nor the magic configurations of Murty [3]. They are closer to, but not identical with,
the magic labellings of Stanley [5], [6], [7].

Page i defines a magic labelling as an assignment of integers to the edges of a tree,
so that the sum of the labels on edges incident with a given node is at most [“is equal
to” in Stanley] N. The number of such labellings is a polynomial in V. Associated
with each polynomial is the generating function

g = (1 =) HaesU ] T fy,
J=0

Pages ii and iii are unacknowledged copies of [2].
Pages 1—81 list all trees on at most 10 points, with the polynomial and generat-
ing function for each. The computations were done by MACSYMA at M.I.T.
RicHARD K. Guy
University of Calgary,
Calgary, Alberta, Canada, T2N 1N4
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29 [9].—ROBERT BAILLIE, Solutions of y(n) = o(n + 1) for Euler’s Function, Univer-

sity of Illinois, Urbana, Illinois, 1978, eleven computer output sheets deposited in

the UMT file.

This is an extension of Baillie’s earlier table [1] of the 306 solutions of

6] @n) = ¢n + 1)

that have n < 108, Here he gives all 85 additional solutions that satisfy 108 < n <
2-108. See [1] for more detail. There is now sufficient data here to encourage
practitioners of heuristic to attempt a conjecture for the asymptotic number of solu-
tions of (1), having n <N, as N —> oo,

No additional example of ¢(n) = ¢(n + 1) = ¢(n + 2) was found. Only one of
these 85 solutions has the property that multiplication (mod #) is isomorphic to multi-
plication (mod n + 1) for the ¢(n) = ¢(n + 1) residue classes prime to the modulus.
This occurs for n = 184611375 where both Abelian groups equal C(2) x ((2) x C(60)
x ((378300). Such isomorphic multiplication is becoming increasingly rare; frequently,
even the 2-ranks of the two groups are unequal. There are only 24 examples for n <
2 - 108, (see [1]).
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