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These are not the B-valuations of Rosa [4] (graceful numberings of Golomb [1])
nor the magic configurations of Murty [3]. They are closer to, but not identical with,
the magic labellings of Stanley [5], [6], [7].

Page i defines a magic labelling as an assignment of integers to the edges of a tree,
so that the sum of the labels on edges incident with a given node is at most [“is equal
to” in Stanley] N. The number of such labellings is a polynomial in V. Associated
with each polynomial is the generating function
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Pages ii and iii are unacknowledged copies of [2].
Pages 1—81 list all trees on at most 10 points, with the polynomial and generat-
ing function for each. The computations were done by MACSYMA at M.I.T.
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This is an extension of Baillie’s earlier table [1] of the 306 solutions of
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that have n < 108, Here he gives all 85 additional solutions that satisfy 108 < n <
2-108. See [1] for more detail. There is now sufficient data here to encourage
practitioners of heuristic to attempt a conjecture for the asymptotic number of solu-
tions of (1), having n <N, as N —> oo,

No additional example of ¢(n) = ¢(n + 1) = ¢(n + 2) was found. Only one of
these 85 solutions has the property that multiplication (mod #) is isomorphic to multi-
plication (mod n + 1) for the ¢(n) = ¢(n + 1) residue classes prime to the modulus.
This occurs for n = 184611375 where both Abelian groups equal C(2) x ((2) x C(60)
x ((378300). Such isomorphic multiplication is becoming increasingly rare; frequently,
even the 2-ranks of the two groups are unequal. There are only 24 examples for n <
2 - 108, (see [1]).

D.S.
1. ROBERT BAILLIE, UMT 6, Math. Comp., v. 30, 1976, pp. 189—190.



