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Energy Conserving Norms for the Solution
of Hyperbolic Systems of
Partial Differential Equations

By Max D. Gunzburger* and Robert J. Plemmons**

Abstract. The problem of finding an energy conserving norm for the solution of the
hyperbolic system of partial differential equations du/d¢t = Adu/dx, subject to bound-
ary conditions, is reduced to the problem of characterizing those matrices appearing
in the boundary conditions which satisfy two specific matrix equations. Necessary
and sufficient conditions on the coefficient matrix 4 and the matrices appearing in
boundary conditions are derived for an energy conserving norm to exist. Thus, these
conditions serve as tests on a given system which determine whether or not the solu-
tion will have its energy conserved in some norm. In addition, some examples of

specific systems and boundary conditions are provided.

I. Motivation. Consider the hyperbolic system of partial differential equations

u u
1.1 —=A — <x<1,
(1.n sy = A, fort>0and0<x
where A is a real constant square # x n matrix. The hyperbolicity of the system (1.1)
implies there exists a nonsingular real (constant) matrix 7 which diagonalizes 4, i.e.

(1.2) TAT™! = A = diag{\,, ..., \,},

where the )\j’s, which are the eigenvalues of A, are real. Then the system (1.1) can be
transformed into the diagonal system

ow _ , ow
(1.3) at_Aax fort>0and 0 <x <1,

where w = Tu. Without any loss of generality we may order the eigenvalues Ajina
nonincreasing sequence, i.e. \; = -+ > A,- Suppose that p of these eigenvalues are
positive and g are negative and that p + ¢ = n (we, therefore, exclude the possibility
of vanishing eigenvalues); then, we may perform the partitions

(1.4) Ay 0 W1

A= and w =
0 "A2 W2
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where A; and A, are positive p x p and q x q diagonal matrices, respectively, and w,
and w, are p and q vectors, respectively. Well-posed linear homogeneous boundary
conditions for the systems (1.1) or (1.3) can always be written in the form (see Kreiss
and Oliger [5])

(1.5) wy(t, 0) = S,w,(t, 0) and w(t, 1) =8, w,(, 1),

where S, and S, are p x q and g x p matrices, respectively.
Given a symmetric positive definite matrix E, the E-energy is defined to be

(1.6) E@r) = % f (1) W'Eu) dx.

The availability of @ priori estimates for E is important in the analysis of both analytical
and numerical solutions of the system (1.1), e.g. see Gunzburger [3]. If u is a solution

of the system (1.1), then
dt 1 1
(1.7) =3 fo ' A'Eu + u'FAu.) dx.

In order to make the integrand in (1.7) an exact differential, we require that £ sym-
metrizes 4, i.e.

(1.8) EA = A'E
so that
(19) %E- - % [W'(t, )EAu(t, 1) - u'(t, 0)EAu(t, 0)] .

The existence of a positive definite symmetrizer £ for a matrix A has been established
by Taussky [6] for exactly those matrices A4 for which the system (1.1) is hyperbolic
i.e., those matrices A similar to a real symmetric matrix. Then combining (1.2) and
(1.8) yields

(1.10) (TH ET~'A = A(TH™ET !,

so that (7))~ !ET~! commutes with a diagonal matrix. If the eigenvalues A; of 4 are
distinct (the case of repeated eigenvalues is considered later), this implies that

where D is a positive diagonal matrix. Equation (1.11) relates the symmetrizing matrix
E to the diagonalizing matrix 7. Substitution of (1.11) into (1.6) yields

Lot .
EO=5 [ | (wDw)dx;
and if we partition D as A was in (1.4), i.e.
D, O
D= ,
0 D,

'1.2), (1.4), (1.5), (1.9) and (1.11) yield
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-~ dE/dt = B{wi(t, DISID,A,S, — DyA,]w, (e 1)

+wi(t, 0)[S5D,A,S, =D A, 1w, (¢, 0)]}.

The purpose of this work is to determine what conditions the matrices 4, §; and
S, must satisfy in order that a matrix E, or equivalently D, exists such that the E-
energy is conserved, i.e.

(1.13) dE/dt = 0,

for arbitrary initial conditions, or equivalently, for arbitrary values of w, (¢, 0) and
w,(z, 1). Then comparison of (1.12) and (1.13) yields that in order for the E-energy
to be conserved, we must have

(1.14) SiD\AS, ~D,A, =0 and SiD,A,S, -D,A, = 0.

Clearly, these conditions are also sufficient.

We collect the main results of this section in the following lemmas:

LEMMA 1. Let A have distinct real eigenvalues and have the decomposition (1.2).
Then E symmetrizes A if and only if (1.11) holds for some positive diagonal matrix D.

LEMMA 2. If E symmetrizes A and if the E-energy is defined by (1.6), then the
E-energy of the system (1.1) subject to the boundary conditions (1.5) is conserved if
and only if (1.14) holds.

II. Characterizations of Coefficient and Boundary Matrices. Since D,,D,, A,
and A, are all positive diagonal matrices, we may define the positive diagonal matrices
B? and B? by
2.1 B} =D/A, and B2 =D,A,.

Substituting into (1.14) yields
(22) S'B%S, =B% and S3B2S, = B?

as necessary and sufficient conditions for the conservation of E-energy.

In order to characterize 4, S, and S, we shall make use of the following lemma:

LEMMA 3. Let Uand V be p x q and q x p matrices, respectively, and suppose
U'FU = G and V'GV = F, where F and G are nonsingular. Then, p = q and U and
V are nonsingular.

Proof. First, note that Gis ¢ x g and F is p x p. Since the rank of the product
of matrices is less than or equal to the rank of each factor, from U’FU = G it follows
that rank U = q and ¢ < p; and from V'GV = F it follows that rank ¥ = p and
p < gq. Therefore p = q and U and V are nonsingular. O

We begin the characterization of 4, §; and S, by:

THEOREM 1. If S| and S, satisfy (1.14), or equivalently (2.2), then they are
square of the same size and nonsingular. As a result, if A has distinct real eigenvalues,
then necessary conditions for the conservation of the E-energy (where E symmetrizes
A) of the solution u(x, t) to (1.1) and (1.5) are:



4 MAX D. GUNZBURGER AND ROBERT J. PLEMMONS

(1) A must have an even order n and the same number of positive and negative
eigenvalues; and

(2) The boundary condition matrices in (1.5) must be square of order n/2 and
nonsingular.

Proof. This theorem is an immediate consequence of Lemmas 1, 2, and 3, and
the nonsingularity of Bf and Bg. O

Now that the necessity of S, and S, being nonsingular is established, definite
conditions on S, and S, such that the E-energy is conserved are given in:

THEOREM 2. Let A have distinct real eigenvalues. Then the E-energy (Where E
symmetrizes A) of the solution u(x, t) to (1.1) and (1.5) is conserved if and only if
S, and S5 L can be simultaneously positive diagonally scaled to orthogonal matrices,
that is, there exist positive diagonal matrices C, and C, such that C\S,C, and
C, S2_1C2 are orthogonal matrices.

Proof. Necessary and sufficient conditions for the conservation of E-energy are
that (2.2) holds. Clearly, (2.2) may be written as

(B,S,B;")'(B,S,B;')=1 and (B,S;'B;')'(B,S;'B;")=1
Then the choice
C, =B, =(D,A)” and C,=B;!=D,A)""

yields that C,S,C, and C, S5 1C2 are orthogonal matrices.
On the other hand, suppose that positive diagonal matrices C; and C, exist such
that C,S,C, and C;S5 lC2 are orthogonal matrices. Then the choice

(2:3) D, =C3A7' and D, = C32A;!

will yield (2.2) and, therefore, the E-energy will be conserved. O

We summarize the above results in the following characterizations:

COROLLARY 2.1. Let the coefficient matrix A of the hyperbolic system (1.1)
have nonvanishing distinct real eigenvalues. Further, let A have an equal number of
positive and negative eigenvalues. Then, the E-energy of the solution u(x, t) of (1.1)
and (1.5) is conserved if and only if the matrices S, and S, appearing in (1.5) belong
to the class of nonsingular matrices for which S, and S5 L can be simultaneously posi-
tive diagonally scaled to orthogonal matrices.

COROLLARY 2.2. Let the matrices S, and S, which appear in the boundary
conditions (1.5) be square, nonsingular, and have the property that S, and S5 ! can
be simultaneously positive diagonally scaled to orthogonal matrices. Then the E-energy
of the solution u(x, t) of (1.1) and (1.5) is conserved for any coefficient matrix A with
nonvanishing real eigenvalues which has an equal number of positive and negative
eigenvalues.

Proofs. The first corollary is a restatement of Theorems 1 and 2. The second
corollary is a consequence of (2.3) from which, given the scalings C; and C,, the pos-
itive diagonal matrices A, and A, may be chosen arbitrarily due to the arbitrariness of
D, and D,. Then, choosing arbitrary nonsingular matrices T, we may, by the use of
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(1.2) and (1.4), construct any matrix A4 having the properties noted in the
corollary. O

Remark. The matrix 4 constructed by the process described in the proof of
Corollary (2.2) need not have distinct eigenvalues since the positive diagonal matrices
A, and A, can be arbitrarily chosen. O

A final consequence of the results obtained above is the following construction:

CoROLLARY 2.3. Given the matrices A, S, and S, with the necessary proper-
ties for the conservation of E-energy (these properties are given in the hypotheses of
the preceding corollaries) and given the positive diagonal matrices C, and C, which
simultaneously scale S, and S to orthogonal matrices; then a matrix E for which
the E-energy is conserved is given by

D, 0
2.4) E=T'("" T,
0 D,

where T is a diagonalizing matrix for A which groups the positive and negative eigen-
values of A together in the matrix A given in (1.2) and where D, and D, are given by
(2.3).

Proof. The result (2.4) is an immediate consequence of Lemma 1 and Theorem
2. O

Remark. For given A4, S| and S,, the matrix E will not be unique since the
positive diagonal scalings cannot be unique and furthermore the diagonalizing matrix
T is not unique. 0O

In view of Theorem 2 and its corollaries, there is interest in investigating pairs of
matrices §; and S, that can be scaled as in Theorem 2. Conditions on S , and §, such
that this is possible are given in the following theorem:

THEOREM 3. Let S| and S, be square nonsingular matrices. Then C,S,C, and
C, Sy lC2 are orthogonal matrices for positive diagonal matrices C,and C, if and
only if
(2.5) STl =C381C and Syt = CrS5C; .

Moreover, in this case C,S,S,CT Y and (o lS2S1C2 are orthogonal matrices so that
the eigenvalues of S|S, and S,S, are on the unit circle and

det(S,) = £1/det(S,).

Proof. Let Q) = C,S,C, and Q, = C,S5'C, be orthogonal matrices. It follow
that
ST = G0IC, = GGSIC ) - GSiCE
and

S0 = C10,G 1 = (G,056) 7 = 28565

On the other hand, suppose that (2.5) holds. Then, (CISICZ)‘1 = (C,8,C,)" and
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(C,8;'C))7 ! =(C,551C,) so that C,S,C, and C,S; 'C, are orthogonal matrices.
The remainder of the proof then follows from the identities

CISISZCI-I = C1S1C2C2_1S2C1_1 = QIQ;

and
C2‘1S2S1C2 = C2‘1S2C1‘1C1S1C2 = QQQI. O

Matrices S, and S, satisfying (2.5) with C, an arbitrary nonsingular matrix and
C, = C} have been studied and characterized by DePrima and Johnson [2] and Fan [3].
However, we have found no studies in the literature involving pairs of matrices that can
be simultaneously positive diagonally scaled to orthogonal matrices. As a result, we
give below a complete resolution to the 1 x 1 and 2 x 2 cases. In so doing the con-
servation of E-energy problem is solved for the cases where A4 in (1.1) is of order 4 or
less. (In most applications, such as acoustics, the matrix 4 in (1.1) is indeed of order
4 or less.)

The case where S| and S, are 1 x 1 is especially simple. There, if §; = (s,) and
S, =(s,), then S| and S5 ! can be simultaneously positive diagonally scaled to orthog-
onal matrices Q = (1) if and only if

(2.6) s; 70 and s, = £1/s,.
Note that with s, and s, satisfying (2.6), the positive diagonal matrices C = (c,) and
C, = (c,) must satisfy
2.7) c,cy = 1/ls,1
but are otherwise arbitrary. Choosing C; and C, to satisfy (2.7), the matrix E for
which the E-energy is conserved can then be constructed by using (2.4).

The 2 x 2 case is settled by the following theorem:

THEOREM 4. Real 2 x 2 matrices S, and S; v can be simultaneously positive
diagonally scaled to orthogonal matrices if and only if they have the representations

ac - cos *ad - sin 6,
2.8) S, = s
be - sin 0, Fbd * cos 0,

cos 0, . sin 6,

(2.9) S, = ac bc
sin f, 908 0,
ad bd

for some scalars 0,,0,, and a, b, ¢, d > 0.
Proof. 1t is known (see Cullen [1, p. 103]) that every 2 x 2 orthogonal matrix
Q has the form

cos 0 isin0>

sinf Fcos @

(2.10) ) = <
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Thus, for positive diagonal matrices
(2.11) Cy! = diag{a, b} and C;! = diag{c, d},

S, and S, have the form
S, =Cr'00)C;" and S, = C,0(0,)C,

for some 6, and 6,. The representations (2.8) and (2.9) follow. U

Remark. The 3 x 3 case can be similarly handled since every 3 x 3 orthogonal
matrix has a representation in terms of two angles analogous to the 2 x 2 representa-
tion (2.10). O

In the next section we present some illustrative examples. Before doing so, we
briefly discuss the case of the coefficient matrix 4 having repeated eigenvalues. Due tc
the ordering of the eigenvalues of 4 preceding the partitioning (1.4), repeated eigen-
values are clustered together in A. Then (1.10) implies that D is a block diagonal
matrix. The diagonal blocks are all to be symmetric and positive definite so that £
is likewise symmetric and positive definite. The size and position of the blocks are
determined in an obvious manner from the multiplicity of the eigenvalues of 4. For
example, if A = diag{3, 2, 2, 1, —1, —1, -2}, then D is allowed to have the
structure

O

(2.12)

O 3

where the numbers indicate the block sizes. The lemmas, theorems and corollaries
presented above are all still valid with the proviso that positive diagonal matrices are
now thought of as positive definite block diagonal matrices. The validity of these re-
sults is a direct consequence of the fact that the matrices D and A continue to com-
mute. We emphasize that the block diagonal structure exemplified by (2.12) is the
most general structure that D may possess if the E-energy is to be conserved. On the
other hand, in specific situations, the matrix D may be of simpler form and still the
E-energy would be conserved. (See the remark following Corollary 2.2.)

III. Examples. The first example, though admittedly simple, illustrates many of
the points discussed in the previous section. Let

</¢ l> u,
(3.1) A= and u = < >,
1 u u,,

where 0 < pu < 1 and let the boundary conditions be given by
(3.2) u, (t,0)=u,(@ 1)=0.
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Obviously, 4 is of even order and the eigenvalues of 4 are given by
A =p+1>0 and A, =p-1<0.
The diagonalizing matrix for A may be taken to be
(3.3) T=—1_ <1 1> =T"1=77°
V2 \1 -1

so that w = Tu and the boundary conditions (3.2) yield
34 wo(2,0) ==w (#, 0) and w,(f, 1) = —w,(z 1).
Therefore, §; = §, = (- 1) so that (2.6) is satisfied. Then, according to (2.7) we may
choose C; = C, = (1). Since A; = (1 + ) and A, = (1 — ), (2.3) yields that
D, =1/(1 +u) and D, =1/1-p).
Then, with T given by (3.3), (2.4) yields that

)
FE = .
Q- \-p 1

We now check to see if indeed E satisfies all our requirements. It is obvious that E is
symmetric and since its eigenvalues are 1 = u, E is positive definite. Furthermore,

01
EA =
10
so that E symmetrizes 4. Finally, the E-energy is conserved since from (1.9) and
(3.2) we see that

dt/dt = Ya{u,(t, Duy(t, 1) —u,(z, O)uy(z, 0)} = 0.

If the boundary conditions (3.4) are replaced by the conditions w,(z, 0) =
vw, (¢, 0) and w,(, 1) = ow,(¢, 1), then |vo| = 1 is necessary and sufficient for the
conservation of E-energy. Furthermore, the scalars D, and D, must be chosen so that

D,A; =V*D,A,.

This simple example is of special interest since its E-energy can be related to a
physical energy. With 4 given by (3.1) the system (1.1) is an equivalent to Galilean
transformation of the wave equation, and the E-energy of the solution of (1.1) is
equivalent to the physical energy measured in the transformed space-time coordinates
(see Gunzburger [4] for details).

Less trivial examples may be built by choosing boundary matrices of the form
(2.8) and (2.9) and also choosing a matrix A. Then coefficient matrices A may be
constructed from (1.2) by choosing any nonsingular matrix 7. Furthermore, using
(2.3), (2.4) and (2.11), the E matrix may be constructed. For illustration purposes,
let the parameters in (2.8) and (2.9) be given by 8, = n/2,0, = 7/3,a=d =1, and
b=c=2. Then
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<0 tl> 1/4 +/3/8
S1= and S2 =< >
4 0 V312 t1/4

are boundary matrices such that S, and S5 ! can be simultaneously positive diagonally
scaled to orthogonal matrices. In fact, from (2.11) we see that if Cl_l = diag{1, 2}
and C2"l = diag{2, 1}, then

<o 11> 1 1<1 \/§>
C.S.C, = and C.S;'C, ==
1°1%2 1 0 192 ~2 7 5 NS

are indeed orthogonal. If A = diag{\, \,, =3, =74}, where all the ?\j’s are positive,
then from (2.3) we may choose

D = diag{1/x,, 1/4\,, 4/7,. 17, }.

Then, from (1.12), it can easily be verified that the E-energy is conserved.
As further illustrations we list some zero patterns of matrices S, and S, satisfy-
ing Theorem 4. Matrices

514 0 t,, O
0 s, 0, 1,

satisfy Theorem 4 if and only if s,,s,, #0and ¢,, =*1/s;, and ¢,, = £1/s,,.

Matrices
0 S 0 t
s, = < 12>, s, = < 12
s,;, O t,by O

satisfy Theorem 4 if and only if s, ,5,; #0and ¢,, =*1/s,, and t,, = £1/s,,.
Moreover, combining these two situations, it can be shown more generally that

s 0 0 t
0 s,, t,, O
satisfy Theorem 4 if and only if

(3.5 S11522012021 = £ 1.

For by Theorem 3, (3.5) is necessary and a simple analysis shows that if (3.5) holds
then S, and S, satisfy (2.8) and (2.9), respectively, with say 8, = km, k even if

$11 >0,k oddif s;; <0, with 0, = (2k + 1)7/2, k even if 1,; > 0, k odd if £,, <
0, and with say @ > 0 arbitrary and

b=afls; | lty,l, c=lsy,l/a, d=1alt ,I

Other pattern pairs can be characterized in a similar manner.
We conclude with the remark that if 4 is symmetric then the /,-energy (u, u),

lt
fuudx,
0

is conserved if and only if £ =D =1, S{A;S; = A, and S]A,S, = A,.
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