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Error Analysis of Finite Difference
Schemes Applied to Hyperbolic
Initial Boundary Value Problems*

By Gunilla Skollermo

Abstract. A technique for the complete error analysis of finite difference schemes
for hyperbolic initial boundary value problems is developed. The error analysis is
split into subproblems so that different boundary approximations or different initial
approximations easily can be compared for a given interior scheme. The steps of the
theoretical analysis are demonstrated on the leapfrog scheme for a simple model
equation. The technique is applied to several choices of initial approximations and
boundary conditions for leapfrog with second and fourth order accuracy in space. A
comparison with two implicit schemes is also made. The theoretical error estimates
are shown to agree very well with computational results.

1. Introduction. We will study finite difference methods for the numerical solu-
tion of mixed initial boundary value problems for hyperbolic equations. The purpose
of this paper is to develop a technique for the total error analysis of a finite difference
scheme taking initial approximations as well as boundary conditions and the interior
approximation into account. The influence of the different sources of error is clearly
exhibited, and the analysis makes it possible to compare different choices of initial
approximations or boundary conditions for a given scheme in the interior.

The comparison of different methods for the numerical solution of partial differ-
ential equations is a challenging but difficult task. The methods may be applied to
some set of test examples which is thought to be representative. The outcome of such
tests may depend heavily on the chosen examples and the implementation of the
methods. Another approach is to analyze the properties of the different methods in
detail on a simple example. Such a study will need the complement of some more
complicated test-runs to be complete, but a careful analysis should give valuable guide-
lines also for more general problems. The behavior of the error is also more easily under-
stood and illustrated on simple examples and good model problems are of great value
in the study of numerical phenomena.

We will formulate our problem as follows. Consider the equation u, = cu,,,
¢ > 0 constant, in a strip 0 < x < 1, ¢ > 0 with initial values given on the x-axis and
boundary values given at the right boundary. We examine each Fourier component of
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12 GUNILLA SKOLLERMO

the solution. The efficiency is measured as the number of meshpoints per wavelength
which is needed to obtain some preassigned accuracy. This information should also be
relevant in more complicated situations, since the model problem can be used to
describe the local behavior in most cases. First, we study the pure Cauchy problem
and describe the influence of the initial approximation and the interior scheme.
Secondly, we consider the influence of the boundary approximations separated from
the other errors. Finally, we take into account how the error from the Cauchy prob-
lem is reflected in the boundaries. The general technique is illustrated throughout the

paper on a simple example with leapfrog. Several examples and comparisons are made
in the last sections.

A similar analysis for the Cauchy problem has been undertaken by Kreiss and
Oliger [4] and by Swartz and Wendroff [7]. Kreiss and Oliger discuss only the dis-
cretization in time. In both papers the main interest is on the interior approximation.
Here the boundary conditions and the initial approximations are also included in the
analysis.

Acknowledgement. Many inspiring discussions with Professor H. O. Kreiss are
gratefully acknowledged. I would also like to thank Dr. A. Sundstrom and Professor
J. Oliger for valuable criticism and suggestions. This work was completed during a
visit to Stanford University and many thanks are due to Professor G. H. Golub and
Professor J. Oliger for their kind hospitality.

2. Background and Notations. We consider the model equation
2.1 u, = cu 0<x<1,t>0,

for a positive constant c. Initial values are given as u(x, 0) = F(x), and we assume that
F(x) can be defined for every x such that [*_ | F(x)|? dx < . Boundary values are
given as u(1, £) = F(1 + ct) and the solution is u(x, £) = F(x + c£). We want to solve
this problem by a finite difference approximation, which we apply at discrete mesh-
points, x,, = mh, h = 1/N for some integer N, and at discrete time levels t, = nk.

The ratio k/h = X is kept constant and m and n are integer numbers. Let Uy, denote
the approximation to u,,, = u(mh, nk). The differential equation (2.1) is approximat-
edform=rr+1,..., N-—g,n=ss+1,...by a consistent multistep method

(2.2) Qv,,, = 0.
The difference operator @ = 2§ __| Q_E; °, where Q, = =4 Ao (h)E,’;,, E°vy =

j=—r n“mn

x?

v Elv = Uy, 4+j,n> depend smoothly on the stepsize 4. For the first few

m,n+o°’ “"m-“mn
steps the scheme is modified to

2.3) SV, =S m=r,r+1,..., N-q,n=0,1,...,s.

mn?

Here §,, are smooth operators of the same kind as Q and s,,,,, are given initial values.
Usually, S, = I and s,, , = F(mh) for example. We must also define special approxi-
mations near the boundaries.

24 B,v,,=b,,, m=0,1,...,r=1,N-q+1,...,N,n>s,

and
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@25 SmaVmn =bpms mM=0,1,...,r=LN-q+1,...,N,
n=0,1,...,s
Here B,, = X{__| B,,E,° with B, ==L C,(h)E} and similarly for S,,,,,.

We make the following assumptions on the schemes.
Assumption 1. The equations (2.2)—(2.5) can be solved boundedly for v,,,,, 1

i.e. there exists a constant K; > 0 such that for every G there exists a unique solution
w to

o_,w,, =G, m=rr+1,...,N—g,

B_lmwm=gm, m=0,1,...,r—-1,n—q+1,..., N,
with

r—1 n
||w||§<1<,<|0u§+h<}:|gm|2+ > |gm|2>>.

m=0 m=N-q+1

The discrete norms are defined as

N oo N
o2 = 3 lv,?h and 2, =3 3 v,k

m=0 n=0 m=0

Assumption 2. The scheme defined by (2.2)—(2.5) is strongly stable in the sense
of Kreiss, see Gustafsson, Kreiss and Sundstrom [3].

Consider the case with homogeneous initial values. It has been shown that the
scheme is strongly stable if and only if the resolvent equation connected with (2.2) and
boundary condition (2.4) has a unique solution, which can be bounded in terms of the
boundary values [3]. More precisely, if v,,, is replaced by the test-solution v,,, =
0,,2", the corresponding equation for 8, should have a unique bounded solution for
all |z] > 1; and there should exist a constant K, such that

r—1 N r—1 N 2
I+ X BLP<K( X+ X 1g2), l24>1L
u=0 M=N—q+1 \L=0 u=N—q+1

Here, §M is related to g, via g, = £,2".

The main interest in this paper lies on the error analysis and especially on how
the initial approximations and boundary conditions shall be taken into account. The
mn- 1t satisfies a set of
difference equations where the right-hand sides represent the different truncation errors.

(@ Qe,,=0u,, m=rr+l,...,N-q,n=>s,

discrete error function e,,, is defined by e,,,, = u,,, —v

®) S.emn =Splpp —Spyps m=r,r+1,... ,N-q,n=0,1,...,s,
(26) (©) B,emn =Bulhmn —bmn» m=0,1,...,r=1,N—q+1,... N,
nzs,

@ S_e =S _u__—b m=0,1,...,r—1,N—-q+1,...,N,

n=0,1,...,s.
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Gustafsson [2] has shown that if the right-hand side of (2.6a) is O(#* ') and the
other three right-hand sides are O(h”), then the solution e,,,, can be estimated by
||e||x’t = O(K”). This means that the boundary approximation and initial approxima-
tion may be one order of accuracy lower than the interior approximation without de-
creasing the overall accuracy. Here we are interested in more precise error estimates
so that different schemes and different choices of initial or boundary approximations
may be compared.

To facilitate the analysis we make a partition of the error corresponding to the
different sources of error.

(i) Consider the pure Cauchy problem with a suitable extension of the initial
values. Let the corresponding error function, e!, satisfy (2.6a) and (2.6b) for every m.
Using Fourier analysis in space, we can easily obtain estimates of el. This error shows
the influence of the starting procedure and the interior truncation error.

(ii) Consider (2.6a) with right-hand side zero and the boundary conditions (2.6¢).
After a suitable extension of the region of definition we can use Fourier analysis with
respect to time and obtain an estimate of the corresponding error function, e!!, which
describes the influence of the boundary approximation.

(i) In general, €' fails to satisfy the homogeneous boundary approximation and
e'! fails to satisfy the homogeneous initial approximation. To account for what hap-
pens as e! is reflected in the boundaries efc we will introduce a third error function
e!!! which is designed so that ! + eI + !IT satisfy all the equations of (2.6).

In this way the different sources of error can be discussed more or less separately.
This technique makes it possible to compare different choices of initial approximations
or different choices of boundary approximations for a given interior scheme.

3. The Cauchy Problem and the Initial Approximation. Let us consider the pure

initial value problem
u,=cu,, —*<x<oot=0,

where c is a positive constant. The initial values are u(x, 0) = F(x) and the solution
for 0<x <1, ¢t > 0 is exactly the same as for the problem in a strip. Let us use
the finite difference scheme (2.2) with the initial approximations (2.3) to compute an
approximation to u,,, = u(mh, nk) for all m and n > 0. We denote the discrete error
by e}n n- The error must satisfy the following equations
Qe =0u,, almn>s,

(3.1)

I — — —
Snemn - Snumn Sun almn=0,1,...,s.

The functions s,,,, are extended smoothly for m <0, m > N such that the functions
belong to I, (—e<m < ). We can interpret (3.1) to be valid for any x = mh, so
that ei,(x) is defined by the equations above for all x. The initial data are chosen to
be square integrable and the scheme is assumed to be stable for the Cauchy problem.
Therefore, we can define the Fourier transform of el(x) with respect to x,

elw) = f j el(x)exp(- 2miwx) dx and el(x) = f:; él(w)exp(2 miwx) dw.
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Multiplying (3.1) by exp(—2miwx) and integrating, we obtain

084 w) = Qi (w), n>s,

(3.2) 1 R
Spep(w)=8,id,(w)-5,, n=01,...,s.

The notation @ is the Fourier transform of the operator Q, i.e. é = exp(— 2miwmh)Qr,
T = exp(2miwmh). Since u(x, 1) = F(x + ct), the Fourier transform &, (w) is re-
lated to #1y(w) through i1, (w) = exp(2miwnck)iy(w).

We want to determine how small the stepsize # must be in order to ensure that
the relative error éf,(w)/ it,(w) is smaller than some predetermined tolerance. More pre-
cisely, we will determine the number of points per wavelength, M = 1/wh, that are needed
to obtain a certain accuracy.

So let us solve (3.2). The homogeneous equation an = 0 has s + 1 character-
istic roots zy, . . ., z,. The scheme is stable and, therefore, lzl <1,1=0,1,...,s5
and there are no multiple roots on the unit circle. Furthermore, the scheme is consis-
tent; and therefore, one root, say z, = exp [2miwck + wckO(hw)”], for some v > 1.
The interior scheme is of order v. '

The other roots z,, . . ., z give rise to spurious solutions which cannot be in-
terpreted as discretizations of any continuous functions. The initial conditions determin¢
how'much influence these extraneous roots will have on the computed solution.

One particular solution to (3.2) is given by #,(w). Let us assume that there are
no multiple roots z;, / =0, . . ., 5, to avoid cumbersome notations. Then the general
solution to (3.2) can be written

s
elw) =3 Gz +i,(w).
=0
The coefficients C; are determined by the initial conditions
N
Y GP(z)=-§,(w), n=01...,s
1=0

where P, (z) = S‘n {z"} are polynomials in z. The typical solution to this system of
equations is

Co = (- 1+ 0((hw)* + (hw)” ) itg(w),

C =0((hw)* + (hw)’), I=1,...,s5,

where v is the global order of the interior approximation and « is the local order of the
initial approximation. Thus, we get with exp(2miwck) = z,

€p(w) = ig(w)z"(1 — 28/2") + O((hw)®) + O((hw)?).

For small values of wh the upper bound for the relative error ép = é},(w)/ i, (w) for
t =nkis

égr = wet + (wh)’const; + (wh)”const, + (wh)*const .

We can insert &(c) into the Fourier transform for el(x). The part dy(w)z"(1 — z/2")



16 GUNILLA SKOLLERMO
+ O((hw)®) z{y corresponds to a smooth function

tFY D + cHOR”) + 0% - FO(x + cf).
The spurious roots give nonsmooth solutions. We will use é}e to compare different
nitial approximations. Let p be the number of periods we want to compute in time,
i.e. wet <p. To keep ek < e we must choose M = 1/wh such that

p * const;/M” + const,/M” + const,/M* < e.

The choice of the stepsize & is also determined by how many of the leading frequencies
we wish to represent accurately. We must, therefore, also consider how fast it (w)
decay with increasing w. If u(x, 0) has ¢ — 1 continuous derivatives in L, (— o <x
< ), then i1y(w) decay as 1/(1 + w?). Thus, we need only consider the first few
frequencies if the initial data are smooth.

Example 1. Let us analyze leapfrog
Umn+1 ~ Ymn-1 "~ Ac(vm+1n - vm—ln) =0

with initial approximations
VUmo = Up,0»
V1 ~ Vo ~ 2NV 415 ~ Vm_1n) = 0.

Fourier transformation with respect to x gives an inhomogeneous difference equation
for é},(w). The corresponding characteristic equation is

2% = 2ike sin(Qawh)z — 1 = 0.

The characteristic roots are

Zq = €xp [Zﬂiwck —% ickm3w3n2(1 — \2c?) + 0((wh)4)] .z =1z,
The general solution is
el(w) = Cozg + Cyz] + iiy(w) * exp2miwenk).
The initial conditions give
Cy + C, =~ iy(w), CoP(zy) + C P (z,) =0,
where P (z) = z — 1 — \ci sin(2nwh). Thus,
Co = —ug(w)/(1 =P, (z5)/P,(z))), C, =— CyP(zo)IP,(z,).

For wh small Pi(zy) = — 2miw?N2e?h? + O((wh)?) and P,(z;) = =2 + O(wh).
Thus,

é;(w) =dg(w) * 2"(1 — z3/2") + iig(w)(z] — 2§)P,(z4)/P,(z,) + O((wh)?),
where z = exp(2miwck). For wh small an upper bound on the relative error is given by

& =% wet + W2 - 11 = W2c?) + 20 hANC?
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with ¢ = nk. Here we have used the triangle inequality and disregarded the fact that
|27 — zg| = 12 cos(2mwcet)| for n even and |z] — zj| = |2 sin(2mwct)| for n odd. This
oscillatory behavior is clearly seen in Figure 1,where the theoretical estimate of the
error and the exact error are shown for u, = u,, u(x, ) = sin(2n(x + £)) with periodic
boundary conditions. In Section 5 several other initial approximations are compared.
Inserting é},(w) in the Fourier transform, we obtain

e},(x) = %cthz(l = N2 FO(x + ¢r)

+ % A2e2R2 [(-1) FO(x — cf) - FO(x + ¢f)] + 0.

For wet > 1.5 A2¢2/(1 — N2¢?) the error from the interior approximation dominates
the error from the initial approximation.

MAX ERROR « 0.01
b1

—— THEORY
- - TRUE

3.

2

].

- TIME

’ T T T
FIGURE 1

The theoretical error estimate and the true error for the model problem

u, = u,, u(x, 0) = sin(2mx), u(0, t) = u(1, t) are shown for two periods of
time. The interior scheme is second order leapfrog and the initial approxi-
mation is centered Euler. The value of Ac is 0.75 and we have used 30
points per wavelength in space.

4. The Influence of the Boundary Approximations. In the previous section we
discussed how the interior truncation error and the errors in the initial approximations
propagate in space and time. We will now study how the truncation error in the
boundary approximation is propaged into the interior.

4.1. The Homogenous Problem in an Infinite Strip with Inhomogeneous Bound-
ary Data. Let us for a moment disregard e; and the presence of the initial level. Con-
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sider the problem defined by
nm _
Qemn =0,

n o _ _
B, emn =By, —b

“4.1)
m=0,1,...,r—1,N-q+1,...,N,n=0.

mn?>

Let us extend the region of definition for u b, and ef,‘m to include negative values

mn>
of n. Iffu€ L, (0 <t <), this extension can be done so that the functions belong to
I,(e<n< o). If we wish to allow solutions u(x, ¢) that grow with time, such that
ue ' € L, (0<r <) for some positive constant a, we introduce new variables
w = e %'y and similarly for e before the extension is made. All the conclusions that
we will draw in the following discussion are valid also in that case.

We interpret (4.1) to be valid for every time ¢ so that ef,ll(t) is defined for all ¢

by the relations above. We apply the Fourier transform with respect to time and obtain

g;lnl(y) =f_°° eg(t) « exp(—2mivy?) dt,

ey = [ Ty - exp@rivd)dy.
Multiplying (4.1) by exp(—2miy?) and integrating, we obtain

0cl () =0, r<m<N-gq,
2) Qe,, (1) q

B oMy =B, u,(»~b, m=01,...,r—1,N-q+1,...,N.
Here (5 and §m are the Fourier transforms of the operators Q and B,, with respect to
time, a = exp(—2niynk)Qr,, r, = exp(2miynk). Furthermore, Tlm('y) =
exp(2niy/cmh) + ?4'0(7). The difference equation (4.2) is the resolvent equation with
z = exp(2mivk). The corresponding characteristic equation has r + g characteristic
roots I(j(’)’), j=1,...,r+gq If none of these are of multiplicity greater than one,
the general solution is

~ r+q
em) =2 AK"()-
j=1

The boundary conditions B~m?,£,1 = Nm'fim - 3,,1 give a system of equations for the
coefficients A;,j=1,...,7 +q, Z2§ AR, (k) =y * Rpy(K) = Bppym =0, ...,
r-1,N-gq+1,...,N, where R, (x) are polynomials in x and x~1 that corre-
spond to the difference operators B,, and k = exp(2miyh/c). This system has a unique
solution.

In general, we get ?,L‘(y) =Uy(7) - O((yh) ®) for some exponent B, which is the
local truncation error for the boundary approximations. We use the relative error
2}3‘(7) = N,Ll(v)/'ﬁ,l,f(v) as a convenient measure of the influence of the boundary
approximations when comparing different schemes.

Example 2. Let us demonstrate the technique on leapfrog with boundary conditions

Von+1 ~Von ~ AW, ~Vo) =0, vy, = uy,.
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The resolvent equation for leapfrog is
-z HeM —ne(ell,, -l y=o.
The characteristic equation
-z =Ack® -1)=0
has the roots k, = exp(2miy/ch + O((vh)?)), k, = — 1/k, for z = exp(2mivk). We

obtain eif = A, k"™ + A,k7. The polynomials corresponding to the boundary oper-
ators are

Ro)=z—=1=ne(k — 1), Ry(x) = «".
Thus,

ARo(ky) + A,Ry(k,) = ;o *Ro(k), A} + Ay =0,
where k = exp(2miyh/c) and h = 1/N.

~ K, \N
g;g =uy - <K;"<K_> — K’2"> . Ro(K)/Ro("z) + higher order terms.
1

With z = exp(2mivk) we get Ry(k) = 2Ac(1 — Ae)ny?h2/c? + O(y3h3) and Ry(ky) =
2Xc¢ + O(yh). Thus,
enl = uy(w) + (1 = \r2y2h?/c? [(—1)N exp(2miv/e(=2 + mh)) — (—1)™ exp(—2miymh/c)
+ 0(y*n3).
The magnitude of the relative error is estimated by
epl = 2(1 = No)m2y*h%/c? = 2(1 - Ne)n? /M2,
where M = ¢/yh = 1/wh is ;the number of points per wavelength in space. Inserting
E;Inl(w) into the Fourier transform, we get
e(mh, 1) = %1 = Ne)R2(~DVFO(mh + ¢t — 2) — (~D"F®(ct — mh)) + O13).

4.2. The Reflection of Errors in the Boundaries. We must now consider how the
result from the Cauchy problem and from the pure boundary value problem must be
patched together to describe the error propagation for the mixed initial boundary value
problem. The sum of e and e'! satisfies (2.6a) and almost satisfies (2.6b) and (2.6¢).
We need to estimate the remaining error e!'! = e — €' — e!l, which is defined by the
equations

Qe},1,1n=0, r<sm<N-q,n=s

Belll =—B

mCmn 'mCmn> m=0,1,...,r=1,N —qg+1,...,N,n=>s,

Spemn ==S,ell . r<m<N-¢n=01,...,s

Smnegln = Smnumn _bmn - Smn(einn + egn 4
m=0,1,...,r=1,N-q+1,...,N,n=0,1, , 8
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There is one source of error from the reflection of el in the boundaries, another from
the reflection of e!! in the initial level; and finally, we have to take into account the
special boundary approximations that may be needed at the first few levels.

We will discuss the error e'!! in terms of our example with leapfrog and then
generalize from this example. We use S, as in Example 1, B,, as in Example 2, and
the initial boundary conditions are Sy = Syo =1, byo = u(0, 0), bpo = u(1, 0)
while S, = By, byy = 0and Sy, =1, by, = U, k). Recall that

el(s, 1) = h2tF,(x + ct) + h2(Fy(x + ct) — (- D*F (x — ct)) + O(3),

e'l(x, 1) = RA((-1)NFy(x + ct = 2) — (F1)*/"Fy(ct — x)) + O(%),
for some functions F;, F, and Fj;.

Let us consider the function ¢F;(x + cf). We introduce a discrete function d,,
which shall satisfy

Qd,,=0 1<m<N-1l,n>1,

n

B,d,,=—B[tF(x+ct)], m=0,Nn>1,

m-mn

Sd,,=0 1<m<N-1,n=0,1,

n-"mn

S d =0, m=0,N,n=0,1.

mn-mn

In our example
By [tF (x + ct)] = (t + K)F,(c(t + k)) — tF,(ct) + ’—;-c (Fy(h + ct) = F(ct)) = O(k)

and By [tF(x + ct)] = tF,;(x + ct). Thus, the difference equation above is a stable
and consistent approximation to d, = cd,, d(x, 0) = 0, d(1, t) = tF,(ct). Therefore,
d,,, = d(mh, nk) + O(h) and

nkF,(mh + cnk) + O(h), mh + cnk <1,
nkF,(mh + cnk) +d,,, =
1 — mh

« F,(mh + cnk) + O(h), mh + cnk > 1.

This means that the error does not continue to grow with time indefinitely but rather
depends on the distance from the closest boundary with given boundary values. This
is a general conclusion that pertains also for schemes other than leapfrog. If the oper-
ators B,, are extrapolation formulas or if they are derived from the differential equa-
tions, we get

o(h), m=0,...,r—1,N-qg+1,... N-1,

B, [tF (x + ct)] =
tF,(ct) + O(h), m=N.

If we overspecify the boundary values, this may no longer be true. In that case we

would have to consider the equation for d,,, with specially chosen values for the

n
overspecified equations to obtain the same result as above. The influence of the over-

specification must then be treated separately.
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Let us try to account for all the other errors by introducing a discrete function
&mn Satisfying
28, =0,
B, &mn = 7B, [Fy(mh + cnk) — (-1)"F,(mh — cnk)],
Sp8mn = —S,[(=DNFy(mh + cnk — 2) - (=1))"Fy(~mh + cnk)],
= SypynF(mh + cnk) - b, — S, (F,(mh + cnk) — (—D)"Fy(mh — cnk))

= Spun(CONFy(mh + cnk — 2) = (-1)"F{~mh + cnk)).

S

mngmn

We will express the leading part of g, as a test solution of the form
&mn = Gy(mh + cnk) + (-1)"G,(mh — cnk) + (-1)Y"G4(-mh + cnk)
+ (-1)"G,(mh + cnk) + O(h).
We get Qg,,,, = O(h?). The boundary conditions give
—2(=1)"G(—cnk) + 2NcGy(enk) — 2(—1)"G,(cnk)
= =2(=1)"Fy(—cnk) + O(h) for cnk > 0.
G (1 + cnk) + (-1)"G,(1 — cnk) + (—I)NG3(—1 + cnk) + (-1)"G,(1 + cnk)
= —F,(1 + cnk) + (-1Y"F,(1 — cnk) + O(h), cnk > 0.
—2G,(mh) — 2G,(mh) = O(h), O0<mh<1.
G,(mh) + G,(mh) + ()" G5(—mh) + G,(mh)
== (D)VFy(mh = 2) + (F1)"Fy(-mh) + O(h), 0<mh<]1.

Let G3(—x) = F3(—x),0<x < 1,and G3(x) =0,x>0. Let

~(-1)VFyx - 2), 0<x<1,
G (x)={—-F,(x) - -D"Fy(x -2), 1<x<2,
—F,(x), x =2
Let G,(x) = F,(x) + H(x); then we get
0, —2k<x<—2k+1,k=0,1,2,...,
H(x) =
F,(—2k - x), =2k —-1<x<-2k,
~Fy(x —2k), 2k<x<2k+1,k=0,1,2,...,
G4(x) =

0, 2k+1<x<2k+2,

and
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Fy(x +ct), 0<x+ct<l,
G (x +ct) + Fyx + ) + (CDVFy(x +ct—-2)= {0, 1<x+ct<2,
EDNFy(x +ct=2), x +et>2,

G,(x — c) = F,(x —ct) = H(x — ct),

0, 0<-x+ec<l,
Gy(—x +ct) —F3(-x +ct) =
—Fy(-x +ct), ct=x

We can write egln = h2(dmn +g,,) t O(h®), and the total error is e = e! + el +
eI, If we only consider the 0(h2)-terms, we find that the error from the boundary
approximation is not present close to the initial level and that the smooth part of the
initial error disappears for x + ¢ >1. That part of the initial error which is not smooth
is trapped between the two boundaries and bounces back and forth, neither increasing
nor decreasing in magnitude. For a dissipative scheme this error would quickly decrease.
For an implicit scheme it is not as obvious that the boundary errors will only propagate
gradually into the interior but the same kind of analysis undertaken, e.g. for Crank-Nicol-
son’s scheme with a suitable boundary approximation shows the same characteristic
features. In general, we use a test solution which contains solutions corresponding to
the different characteristic roots in space and time. The general pattern is the same; parts
of the initial error and the boundary error are annihilated in certain regions, and certain
solutions travel back and forth between the boundaries. For the quarterplane problem

0 <t¢, 0 <x the pattern is somewhat simpler since we need never take any reflection in the
right boundary into account.

5. Numerical Examples.

5.1. Comparison of Initial Approximations for Leapfrog with Second and Fourth
Order Approximation in Space. Let us consider the second order leapfrog scheme which
we have used for illustration in the previous examples. We will investigate a few differ-
ent initial approximations and demonstrate their influence on the total error for the
Cauchy or the periodic problem. The following schemes may be used as initial approxi-
mations.

(a) vml = uml
(®) V1 =Vpo T 05Ny 41 0 " Vpm—1 o) Al M,

©) V1 =V, F0SAC@pi1 0 " VUmo10) T 0.57\2c2(vm_,_1 0~ 2V0 T V0n_1 o)

The list is by no means exhaustive, but we think that these schemes are representative
of common choices. Let us call them exact, centered Euler and Lax-Wendroff, respec-
tively. After Fourier transformation with respect to x the error can be written (cf.
Example 1)

eX(w) = o(w) (exp(2micsenk) — z) + P‘(( °)) Uo(w)(? — 21
1

+ O((Py (29)/P, (2,))?),
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where

Zy = exp <2m‘wck - % ickmw3h%(1 — \2c?) + 0((<0h)4)>

and z, = —1/z,. The function P,(2) is defined from the initial condition after Fourier
transformation. In case (a) we get

Py(z9)/P\(z)) = (zy — expmicock))/(z; — z¢),
while for the other two cases we obtain (b) P,(z) =z — 1 — Aci sin(2mwh) and
(©) P,(z) =z — 1 — Xci sin(2mwh) + 202¢2sin?(mwh). An upper bound for the relative
error is given by

ol = f3‘- wetm3(1 = \2e2)/M? + 2|P,(z)/P, ),

where M = 1/(wh) is the number of points per wavelength. In Table 1 the leading
term of P, (z,)/P, (z,) is listed together with an estimate of how large M must be
chosen to make eg less than 10% or less than 1% after one period in time. The figures
are given for Ac = 0.75.

Scheme P (z)IP,(zy) 10% 1%
Exact %Tr3?\c(l )M 14 M
Centered Euler m2\2c2/M? 18 55

Lax-Wendroff  27*A\2c2(1 — \2c?)/M* 14 43

TABLE 1

The leading term of P, (z,)/P,(z,) for different initial
approximations and the second order leapfrog scheme is
given in column 1 while columns 2 and 3 contain the num-
ber of points per wavelength that are needed to obtain a
relative error of less than 10% or less than 1% respectively.
The value of Ac is 0.75.

In practice the exact values are seldom known, but we see that the Lax-Wendroff
scheme gives at least the same accuracy. For complicated problems in several space di-
mensions Lax-Wendroff may be difficult to implement, and we may have to use centered
Euler. However, the interior error dominates the initial error after a very short period
of time, for Lax-Wendroff already at the first step and for centered Euler the two errors
are of the same size for wet = 3A2c?/(2n(1 — A\%¢?)), (e.g. wet = 0.614 for Ac = 0.75).
From the expression for ?,f(w) we expect the error to oscillate with time. The true
error and the estimate 2}% are plotted in Figure 1 (p. 17) over two periods of time using
M = 30, Ac = 0.75 and centered Euler. To avoid mixture with the influence of the
boundary conditions we have chosen the periodic problem u, = u,, u(x, 0) = sin(2mx)
and (0, t) = u(1, t). The oscillations are clearly seen, and the theory is seen to give
only a very small overestimate of the true error.

We will also consider an approximation which is fourth order in space and second
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order in time, namely
- +20ef2 - -1 -
Umn+1 = Vmn—1 c%‘j(vm+ln vm—ln) ﬁ(vm+2n vm—2n) s

which is stable for Ac < 0.7287. The local truncation error is (1 /6)k3um +

(1/30)kh*u,, .., + O(k®). The characteristic roots corresponding to the Cauchy problem
are
_ : 4.3 .33,3_16..,4.5 54 oS
2o = exp (2micck + 7 im W e’k — s ickh mw (k)
and z;, = - 1/20. We will also include a scheme which is fourth order accurate in space

@ Um1 =Vmo T 7w(%(vmﬂ 0 " VUm_10) " 1_12'("m+2 0 Um-2 o)
with the corresponding function

P(2)=z-1- Aci(g sin(2nwh) — —é— sin(47rwh)) .
The relative error is given by

=2 w2k - %—g— nSwth®

wet + 2|Py(zo)/P,(z))l.

Due to the minus sign in the expression of the interior error there are certain choices of
Ac and M, which are more favorable than others, and for which the error emanating
from the initial approximation has an important influence on the total error for quite

a long time. The interior error after one period in time is plotted as a function of the
number of points per wavelength in Figure 2 with Ac = 0.2. We see that for M = 14
the error is less than 10~%, while for M in the interval 15—32 the interior error is
greater than 10~ 3. The initial error for centered Euler and the theoretical estimate

of the total error as well as the true total error after one period in time are also plotted
in Figure 2. We have used the same periodic problem as above. In Table 2 we give the
expression for the leading term of P, (z,)/P;(z,) and an estimate of how large M must be
chosen to obtain errors less than 1% or less than 0.1% after one period in time. The
results are given both for A¢ = 0.2 and Ac = 0.02.

These results show that if we are satisfied with an error of about 1% we should
not choose Ac too small, since nothing is gained from the increase in work. If we re-
quire an error of about 0.1%, smaller Ac seems to be favorable. However, the compu-
tational work is proportional to the total number of points. For Ac = 0.2 the work
is proportional to 482 + 5 in one space dimension or 483 « 5 or 48% - 5 in two or three
space dimensions. These figures should be compared to 242 « 50,243 « 50 and 24* - 50
for Ac = 0.02, respectively. Thus, Ac = 0.2 gives a more efficient scheme unless we
require even better accuracy or work with a three-dimensional problem. The choice of
initial approximation is not very important, but for high accuracy and not so small Ac
the Lax-Wendroff scheme seems to be preferable, whereas for high accuracy and small
Ac the fourth order approximation should be recommended.
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FIGURE 2
The interior error, the initial error P,(z,)/P,(z,) and the total theoretical
error estimates are shown together with the true error for the model prob-
lem u, = u,, u(x, 0) = sin(2nx), u(0, ) = u(1, ). The interior scheme is
leapfrog with fourth order approximation in space and the initial approxi-
mation is centered Euler. The value of Ac is 0.2 and the error is shown
after one period in time for different numbers of points per wavelength.

1% 0.1%

Scheme Pi(z4)/Py(zy)
02 002 02 0.02

Exact 0.5Ne/M|3 T3\2c2/M? — Lasme 11 14 38 24
Centered M2\ /M2 + i % Nem® /M3 12 14 48 28
Euler

Lax-Wendroff §ﬂ4)\2c2 /M* + i % Aemd /M 12 14 41 28
Fourth order  72A\2c2/M? 12 14 48 24

TABLE 2
The leading term of P, (z,)/P,(z,) is listed for different initial approximations
and the fourth order leapfrog scheme in column 1. In columns 2 and 3 theo-
retical estimates are given of the number of points per wavelength which are
needed to obtain a relative error of less than 1% for Ac = 0.2 and 0.02, re-
spectively. In columns 4 and 5 the corresponding estimates are given for 0.1%
relative error.
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5.2. Comparison of Boundary Conditions for Second Order Leapfrog. Let us
consider the usual leapfrog scheme with the following boundary approximations at the
outflow boundary:

(a) U0n+l = vOn + )\c(vln - UOn)’
(®) Vou41 =Von_1 2Ny, ~ %Wou41 T Von_1))

(©)  Vont1 FVins1 ~ACQipt1 ~Von+1) = Von V1, T Ay, ~Vp,)-

We call these approximations explicit, weighted in time and the box scheme. They
have all been shown to give stable total schemes, (a) and (c) in Gustafsson et al. [3]
and (b) in Elvius and Sundstrom [1]. The relative error :’gl, which was introduced in
Section 4.1, can be expressed as (k7 (k,/k; )Y — k') * Ro(k)/Ro(k,), where k =
exp(2mivyh/c). The interior root k, approaches — 1 as k and k go to zero. We obtain
the following expressions for Ry(k):

(@) Ro(k)=z—1—Nrc(k — 1),

(b) Ro(k)=z -z~ = 2he(k — %(z + z71y),

(©) Ry(k) =(z— DA + k)= Az + 1)(x — 1),
where z = exp(2mivk). The total error for the problem in a strip 0 < x < 1 is given by

er = (x = 1) 3 101 = NcA)M? + 2P, (56)/Py (2,) + 2Ro(k)/Ro(cy).
If we choose the Lax-Wendroff scheme for the initial approximation, the term
P (zo)/P,(z,) is O(1/M 4) and, therefore, negligible in comparison with the other terms.
In Table 3 the leading term of Ry(k)/Ry(k,) is listed together with estimates of how
many points per wavelength that are needed to obtain a relative error ep of less than
10% or less than 1%. For comparison we also give the true error for the problem u, =
u,, u(x, 0) = sin(2nx), u(1, 1) = sin(2nt) using meshes with 16 or 48 points per wave-
length.

Boundary

R 1 . 48 pts.
approximation o()/Rokz) 10% % 16 pts pis
Explicit (1 = \c)/M? 16 48 9.00E-2  9.90E-3
Weighted 721 = \2c?)/M? 19 60 1.04E-1  1.16E-2
Box Scheme 1/3)73(1 = \2c?)/m3 14 43 7.30E2  7.90E-3

TABLE 3

The leading term of the boundary error is listed for different boundary conditions

for second order leapfrog in column 1. In columns 2 and 3 the theoretical estimates of
the number of points needed to obtain an error of less than 10% or less than 1% are
given. In columns 4 and 5 the true maximum error for the model problem are given
for 16 and 48 points, respectively. The value of Ac is 0.75, and we have computed for
5 periods of time.

The figures in the table show that the theory agrees very well with the computational
results. This is also seen in Figure 3, where the true error and the theoretical estimate
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are plotted as a function of time for the weighted approximation. The same model
problem as above was used.

5 T MAX ERROR- 0.01
——— THEORY
4 -+ - TRUE
3 |
2 i
] 4
0 s ' ' ' . ‘ . lTIME‘
1 2
FIGURE 3

The theoretical error estimate and the true error for the model problem u, =
u,, u(x, 0) = sin(27x), u(1, t) = sin(2wz) are shown for two periods of time.
The interior scheme is second order leapfrog, the initial approximation is
Lax-Wendroff and the boundary approximation is weighted in time. The value
of Acis 0.75 and we have used 30 points per wavelength in space.

In this example the box scheme is of “unnecessarily” high order—we only need
a scheme with the local second order accuracy to ensure the overall second order
accuracy. As we see from the table, however, there is certainly a substantial gain of
accuracy in using the box scheme instead of the weighted scheme.

Let us briefly discuss two different boundary approximations for the leapfrog
scheme with a fourth order accurate difference operator in space. The box scheme
applied twice at the left boundary and once at the right boundary can be shown to give
a stable approximation for both the right and the left quarter plane problems. The
“correct” boundary scheme should be such that the function values are approximated
with second order accuracy in time and fourth order accuracy in space. Such a scheme
was proposed and shown to be stable by Oliger in [5]. The box scheme on the other
hand gives only third order accurate function values (in both time and space). The error
constants for the box scheme are much smaller than those for the extrapolation scheme.
Therefore, the results using the box scheme are actually somewhat better, when the num-
ber of points per wavelength is relatively small although the box scheme is of lower order
of accuracy. This is true even for a very small timestep, Ac = 0.02. Theoretically, we can
see this by computing the solution to the relevant boundary value problem for the resol-
vent equation and compare the resulting coefficients for the two schemes. In Table 4 we
show the results of applying the two schemes to our test problem for different choices
of Ac.
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Ae =02 Ac = 0.02
Boundary Approximation -
No. of points No. of points
8 16 32 8 16
Box Scheme 5.1E-2 1.6E-2 3.2E3 5.1E-2 8.2E-3
Oliger’s scheme 1.4E-1 9.7E-3 1.3E-3 1.4E-1 1.1E-2
TaBLE 4

The maximum error obtained in computations using the leapfrog scheme with fourth
order approximation in space and exact initial approximation.

We have included this result to demonstrate the importance of having some knowledge of
the error constant when we compare different schemes. For a fixed stepsize the limiting
order of the scheme does not provide sufficient information for us to make the proper choice.

In the final choice of difference approximation we must also include an estimate
of the work and storage requirements. This is discussed in more detail in Section 5.4.
We only want to point out here that in several dimensions the box scheme is usually
not a good choice together with an explicit scheme. It will connect all the points
along one boundary. Therefore, we will need to solve a system of equations at each
step, which may increase the operation count drastically. On the other hand the box
scheme is a very good choice together with some implicit schemes as we will see below.

5.3. Comparison of Boundary Conditions for Two Implicit Schemes. In this
section we will discuss the choice of boundary conditions for Crank-Nicolson and a
modified version which is of fourth order in space. The interior scheme is defined by

1
U n+1 "Z)\C("mﬂ n+1 " VUm—1 n+1) TBOmit w1 =2V ni1 T Vm 1 ni1)

_ 1
= Vmn +Z)\c(vm+l n~ Ym-1 n) +ﬁ(vm+l n -2vmn +vm—l n)

with § = 0 for Crank-Nicolson and 8 = 1/6 for the modified scheme. The local trun-
cation errors for these schemes are

-1
12

1

Koy — g kR uy, + OO

and

1 1
12 ksuttt +kh* 180 Uy xxxt + 0(k4 + h2k3)’

The relative error for the pure initial value problem is thus given by

eL = wct%(l + %k2c2>7r3/M2

A1 21322 87°
ep = wct 3 + ral R
M 45M

and

respectively, where M is the number of points per wavelength.
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The schemes are unconditionally stable for the Cauchy problem. They both need
one additional boundary approximation. This boundary condition must be chosen with
care since it may affect both the stability and the accuracy of the scheme. In
Skollermo [6] a few different choices of boundary conditions are shown to give un-
conditionally stable schemes, but there is also one example of an explicit boundary ap-
proximation which makes the total scheme only conditionally stable.

We will consider the following boundary approximations and study their influence
on the accuracy of the schemes:

(@ (Dy)vy pe1 =0, j=1,2,3, where D v, =, ~V,)h,

(®) Vg pi1 ~ACWy pt1 " V0 pt1) = Von

() Vg py1 ANV piy Vo p41) = Von T BN, T Von);

(@) Vo pi1 TV g1 “NCWy py1 "V nt1) =Vo n F V1, F AR, TV p)-

We will call these schemes extrapolation of order j, fully implicit, half implicit and the
box scheme. They give unconditionally stable schemes, which was shown in [6] for

(a), (b) and (d), and which is easy to show also for (c). In Section 4.1 we showed that
the influence of the boundary approximation on the error is described by a quotient
Ry(k)/Ry(k,), where z = exp(2mivk), k = exp(2mivh/c) and k, corresponds to the
interior root to the resolvent equation. This root approaches — 1 as 4 and k go to zero

both for Crank-Nicolson and for the modified scheme. The functions R (k) are de-
fined by

(a) Rok) = (k- 1),

(b) Ro(k) =z—1-zXe(k - 1),

(©) Ry(x) =2(1 =% Nc(k — 1)) = (1 + %he(x — 1)),

(d) Ryk)=12(1 +k—Ne(k —1)) = (1 +k + Xe(k — 1)).

The leading terms of the quotients are tabulated in Table 5 together with estimates of
how many points per wavelength are needed to obtain a relative error of less than 10%
or less than 1%. The true maximum error is also given for 16 and 48 points per wave-
length. We have used the same model problem as was used previously.

From this table we can see that the first order boundary approximation indeed de-
stroys the total accuracy while the box scheme and the third order extrapolation are
equivalent. The box scheme is preferable, however, since it is somewhat easier to im-
plement efficiently.

The same boundary conditions can be used together with the modified scheme.
Since k, = —1 for & = 0 also in this case, the leading term of the boundary error is the
same as above. In Table 6 we list the number of points per wavelength that are needed
to obtain a relative error of less than 1% or less than 0.1%. We also give the true maxi-
mum error for the model problem with 8, 16 and 32 points per wavelength in Table 7.
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Boundary Ry (K)/Ro(k4) 10% 1% 16 48
Approximation
Extrapolation
i=1 /M 71 637  59E- 1.5E-1
i=2 /M2 27 8  24El 2.6E-2
i=3 w3 /M3 24 74 22E-1 2.3E-2
Fully implicit 721 + \c)/M? 30 94  3.3El 3.0E-2
Half implicit /M ? 27 8  2.8E-l 2.6E-2
Box scheme _13 (1 - N2c)M3 24 73 2.3E-1 2.3E-2
TABLE 5

The leading term of the boundary error is tabulated in column 1. Columns 2 and 3
contain the number of points per wavelength that are needed to obtain a relative error
of less than 10% or less than 1% according to the theory. In columns 4 and 5 the
true maximum error has been listed for the model problem. The value of Ac is 0.75.

Boundary 1% 0.1%
Approximation 0.2 0.02 0.2 0.02

Extrapolation
=2 46 45 144 141
j=3 21 19 47 40
Box scheme 16 14 38 29

TABLE 6

The estimated number of points per wavelength needed to obtain a relative

error less than 1% or less than 0.1% for Ac = 0.2 and Ac = 0.02.
The box scheme is seen to be the best choice in all cases. Its superiority is more pro-
nounced for the fourth order scheme than it was for the second order scheme. Extra-
polation of order 2 was chosen as representative for the second order schemes. We see
that the boundary approximation plays a dominant role in the error in this case. The
theoretical estimates of Table 6 are seen to agree very well with the figures of Table 7.

5.4. Discussion. In this section we will make an attempt to compare the schemes
which we have considered in the previous sections.

Let us discuss the pure initial value problem. We have considered four schemes,
namely leapfrog and Crank-Nicolson of second order in both time and space and two
versions which are of fourth order in space. We compare the number of points per

wavelength which are needed to obtain a relative error of less than 10% or less than 1%
in Table 8.
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Ac =0.2 Ac = 0.02
Boundary No. of points No. of points
Approximation 8 16 32 8 16
Extrapolation
j=2 2.61E-1  740E-2 191E2 2.74E-1 7.87E-2
j=3 1.03E-1 1.92E-2  292E-3 1.05E-1 2.37E-2

Box scheme 531E2 6.59E-3  1.14E-3  4.10E-2 4.75E-3

TABLE 7

The true maximum error for the modified scheme with different boundary
approximations and for different numbers of points.

Scheme 10% 1%
Leapfrog with 18 56
Lax-Wendroff
4th order leapfrog 10 33

with Lax-Wendroff
Crank-Nicolson 21 68
Modified Crank-Nicolson 7 23

TABLE 8

The number of points per wavelength which are needed to obtain a relative
error of less than 10% or less than 1% are listed for Ac = 0.50.

We have chosen Ac = 0.5 so that all four schemes can be compared. The leapfrog
scheme is stable for Ac < 1 but the fourth order explicit scheme is stable only for

Ac < 0.7287. The ordinary leapfrog scheme involves four gridpoints and the fourth
order approximation six gridpoints to determine a new point. The increase in work is
thus about 50% for the fourth order scheme and the corresponding figures in Table 8
should be multiplied by 1.5 before they are compared to those for the second order
leapfrog scheme. We then find that the fourth order scheme is more efficient even for
this relatively large value of Ac. The choice between the second and fourth order ver-
sions of the Crank-Nicolson scheme is easily made in favor of the higher order scheme,
which requires very little extra work since exactly the same gridpoints are involved in
both schemes.

The explicit schemes are clearly preferable unless the problem is very stiff which
we discuss below. The fourth order schemes show the same result both for the pure
initial value problem and for the problem in a strip when they are compared for smaller
values of Ac and for better accuracy. In Table 9 we list the number of meshpoints per
wavelength that are needed for the Cauchy problem.
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1% 0.1%
Scheme
0.2 0.02 0.2 0.02
4th order leapfrog 12 14 41 28
with Lax-Wendroff
Modified Crank-Nicolson 7 90 28 16
TABLE 9

The number of points per wavelength which are needed to obtain a relative
error of less than 1% or less than 0.1% are listed for Ac = 0.02.

The importance of the implicit schemes lies, however, in the fact that they are
unconditionally stable. When we work with stiff problems with widely varying values
of the constant Ac the conditional stability of the explicit schemes may force us to use
unnecessarily small timesteps, while for the implicit schemes we can choose Ac such that
the important part of the solution is accurately described. Let us try to estimate how
stiff a problem should be for the implicit schemes to be competitive.

We consider the one-dimensional Cauchy problem for a system of equations where
the moduli of the eigenvalues range from c,;, max- Let ¢;p; be the largest value
for which we are interested in an accurate solution. Let A\; denote the ratio k/h for

toc

the implicit scheme and let A be the ratio k/h for an explicit scheme. Similarly, we
let M; and My, denote the number of points per wavelength for the implicit and ex-
plicit schemes, respectively.

The relative error for Crank-Nicolson second order implicit scheme is

4 3 2,2 2
wcmtt'"ﬂ )‘I mt M

and the error for the second order explicit leapfrog scheme is
=N MR
WCint t ™ ( E mt)

The number of operations required to advance the solution from the initial time O to
time ¢ are

14aM?/N; and 4aMF/\g

for Crank-Nicolson’s scheme and the leapfrog scheme, respectively, where « is a certain
constant depending on ¢ and 14 and 4 reflect the number of operations per point
needed to advance the solution one step in time.

Suppose we choose M| and My, so that the relative errors are equal. At which
ratio ¢, /. is the Crank-Nicolson scheme more efficient than the leapfrog scheme?
If we decide to pick Agcp, . = 1 to ensure stability for the explicit leapfrog scheme,

we get the following table for different choices of A\; * ¢;p ;.
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>\Icint C‘int/cmax

0.99 0.18

0.75 0.21

0.50 0.23
TaBLE 10

The stiffness ratio ¢;;,/c,, tabulated against different values of A\jc;p .

The implicit scheme is second order Crank-Nicolson and the explicit scheme
is second order leapfrog in time and space.

The conclusion is that the usual Crank-Nicolson scheme is more efficient than the
second order leapfrog scheme if the stiffness ratio ¢;,/c_ . is less than approximately
1/5. If the problem at hand involves much overhead common to both methods this
ratio may be increased.

We can compare the second and fourth order schemes in a similar way but the
expressions get more complicated so we need not only to pick Aj¢;,, but also a cer-
tain error level. The modified fourth order Crank-Nicolson scheme and the second order

leapfrog scheme give the same error but the implicit scheme requires less work if

)\12 C‘iznt 411'2 Cint 8 C‘iznt
14( 3 + 45MI2 .Cmax < § 1 —C2 * )\Icint'

\ max

We list M, the error level e, and the ratio ¢;,/c, ., for some combinations of
AiCin¢ and M} in Table 11.

ALCint My Mg €R Cint/Cmax
0.5 10 21 2.86-2 0.62
0.5 15 32 1.20-2 0.64
0.2 10 37 6.85-3 0.75
0.2 15 56 2.37-3 0.79

TaBLE 11

Comparison of the fourth order Crank-Nicolson scheme and the second
order leapfrog scheme for different choices of Ai¢;,, and M.

Thus, the fourth order implicit scheme is more efficient than the second order explicit
scheme if the stiffness ratio is less than 0.6 to 0.8 and if we require an error level of
less than 3%. The smaller error we require the larger the stiffness ratio can be.
Finally, the leapfrog scheme with fourth order accuracy in space can be com-
pared to the modified Crank-Nicolson scheme which is also fourth order accurate in
space. If we, e.g., choose Ajc;; = 0.2 and pick M; = My = 10 we get the same

int



34 GUNILLA SKOLLERMO

error, 6.85E-3, if ¢;, /e, . = 0.31, in which case the implicit scheme requires less
work. The nonlinear relation between Mé and MI2 makes a strict analysis very com-
plicated without adding any substantial new knowledge.

For problems in several space dimensions the implicit schemes can compare
favorably to the explicit ones only for much smaller stiffness ratios, except maybe in
special cases where the resulting block-tridiagonal systems can be solved very efficiently.

6. Summary. We have developed a technique for the error analysis of finite
difference approximations to hyperbolic mixed initial boundary value problems. The
errors emanating from the interior scheme, the initial approximation and the boundary
conditions can be discussed more or less separately.

We know that the initial approximation should have a local truncation error at
least of the same order as the global error for the interior scheme to keep the overall
accuracy at the desired level. From Table 1 we see that it may be quite profitable to
use higher order schemes if possible. In our example centered Euler needs about 30%
more points per wavelength than Lax-Wendroff to guarantee a relative error of less
than 1%. Formally, the local truncation error in the boundary approximation should
also be of the same order as the global error of the interior scheme. A small error
constant may, however, make a scheme competitive which is formally not of the “right”
order—at least for a small number of points. However, we also notice, in Tables 5 and
6, how a boundary condition of too low accuracy dominates the total error (extrapola-
tion of order one and two, respectively). Neither the box scheme nor the third order
extrapolation are formally of the “right” order to use together with the fourth order
implicit scheme, but we see from Table 7 that at least the box scheme works very well.
As was pointed out in Section 5.4, the implicit schemes are not competitive unless the
problem is fairly stiff.

The information in the tables in Section 5 should give some insight into how
different choices of initial or boundary approximations can be expected to influence
the accuracy of the total scheme. The relative merits of the different schemes should
hold also in more complicated situations, although the number of points needed to ob-
tain a certain accuracy can only be used as a guideline. The technique of the analysis
has been demonstrated in the examples of Sections 3 and 4 and its usefulness and
applications should be evident from Section 5. It is our hope that this paper will be
useful in the comparison and choice of difference approximations in various situations.
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