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Eigenvalue Approximation
by the Finite Element Method:
The Method of Lagrange Multipliers

By William G. Kolata

Abstract. The purpose of this paper is to investigate the application of the finite ele-
ment method of Lagrange multipliers to the problem of approximating the eigenvalues
of a selfadjoint elliptic operator satisfying Dirichlet boundary conditions. Although
the Lagrange multiplier method is not a Rayleigh-Ritz-Galerkin approximation scheme,
it is shown that at least asymptotically the Lagrange multiplier method has some of
the properties of such a scheme. In particular, the approximate eigenvalues are
greater than or equal to the exact eigenvalues and can be computed from a nonnega-
tive definite matrix problem. It is also shown that the known estimates for the eigen-

value error are optimal.

Introduction. The application of a conventional finite element method to el-
liptic boundary value problems with essential boundary conditions is impractical, es-
pecially in a domain that does not have simple shape. This is due to the difficulty
of constructing suitable spaces of test and trial functions that satisfy the required
boundary conditions. Several techniques have been devised to bypass this difficulty,
such as the least squares method of Bramble and Schatz [4], the methods of Nitsche
[11], [12], and the Lagrange multiplier method of Babuska [1]. The purpose of
this paper is to investigate the application of Babuska’s method to the problem of
approximating the eigenvalues of a selfadjoint elliptic operator satisfying Dirichlet
boundary conditions.

As is common in finite element methods, the original eigenvalue problem is
recast into an equivalent problem that is posed in terms of sesquilinear forms. When
the original problem is selfadjoint, these forms are Hermitian. However, in the La-
grange multiplier method, these forms are not definite and so do not yield a standard
Rayleigh-Ritz-Galerkin approximation scheme. Nevertheless, the Lagrange multiplier
method possesses, at least asymptotically, some of the properties of a Rayleigh-Ritz-
Galerkin scheme. In this paper it is shown that the approximate eigenvalues generated
by the Lagrange multiplier method are greater than or equal to the original eigen-
values to which they are converging, provided that a convergence parameter A is
small enough. This is proved under certain assumptions on the rate of convergence
of members of the finite element subspaces to the eigenfunctions. The proof depends
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upon the construction of a lower bound for the error in the eigenvalue approximation.
As a result of this lower bound, it also follows that the already known bound for the
eigenvalue error, [1], [3], [13], [6], [8], is optimal. This result may be loosely
stated as follows: If the rate of convergence of the finite element subspaces to the
eigenfunctions is optimal, then the rate of convergence of the approximate eigenvalues
to the original eigenvalues is optimal.

At first glance, the finite dimensional eigenvalue problem associated with the La-
grange multiplier approximation presents some difficulties. The corresponding matrices
are not definite. Assuming comparable accuracy, these matrices are larger ((n + m)

x (n + m)) than the matrices (n x n) that would be associated with a conventional
finite element method, were such a method practical. For these reasons, a direct at-
tack on the finite dimensional eigenvalue problem associated with the Lagrange multi-
plier approximation may incur unacceptable computation and storage costs. In Sec-
tion 3 of this paper an alternate approach to the solution of the finite dimensional
problem is outlined. In this approach the approximate eigenvalues and eigenvectors

of the Lagrange multiplier method are computed using an associated » x n nonnegative
definite matrix. A scheme for constructing this matrix is presented.

1. Eigenvalue Approximation by the Lagrange Multiplier Method. The focus of
this paper is on the approximation of the eigenvalues of the following selfadjoint el-
liptic eigenvalue problem:

(1.1 —Au+cu=cwu in Q,
1.2) u=0 onl,

where Q is a bounded region in the plane with smooth boundary T, w is the eigen-
value parameter, ¢ is a smooth, real valued function on £, and, without loss of gener-
ality, ¢y = sup,.cgle(x)| > 0. The results that follow can easily be extended to more
general 2nd order elliptic operators in more general bounded domains.

The method of Lagrange multipliers is based on a formulation of (1.1), (1.2) in
terms of sesquilinear forms [1], [2], [7]. Let H be the complex Hilbert space H'(Q)
® H~'/2(I') with norm 1112 = |-1? + 12, ,,, where H'(Q) and H™'/%(T") are the
standard Sobolev spaces [10]. For any u, v in H(Q), set

a(u, v) = fﬂ (Vu - Vv + cuv)dx.

Forany U= (4, N), V = (v, w) in H, set AU, V) = a(u, v) — [ (\v + pu)ds,
and B(U, V) = [ uvdx. Then A(:, ) and B(:, *) are bounded, Hermitian, sesqui-
linear forms on H x H. Neither A(:, *) nor B(:, -) are definite, but A(:, *) satisfies

inf sup AU, NI =a>0, [2].
(1.3) UEH VEH
lui=1 lvi=1

Problem (1.1), (1.2) can be formulated as:

14 AU, V) = wB(U, V) forallvE€H, U+ 0.
By (1.3), there is a bounded linear operator T on H such that A(TU, V) = B(U, V)
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for all ¥ in H. The operator T is also a bounded map from H into H3(Q) & H3/2(I")
and so by Rellich’s theorem is compact on H. In fact, if TU = (p, N), then ¢ is a
weak solution of —Ayp + cp = u; ¢ = 0 on I'. Moreover, A = d¢/on, [1]. By regular-
ity theorems, y is in H3(2) and \ = dy/on is in H3/2(T"), [10]. It is easily seen that
the eigenvalues of (1.4) are the reciprocals of the eigenvalues of the operator 7" and
the associated eigenvectors are identical. Since A(U, U) > 0 for any eigenvector U, T’
has no generalized eigenvectors. Furthermore, again by regularity, the eigenvalues and
eigenvectors of (1.1), (1.2) are the same as those of (1.4).

Let S, (Q0) CH'(Q) and Sy, (T) € H'/*(T") be finite dimensional subspaces.
Set S), = Spg(Q) ® Sy (1), where i, k', and K2 =k} + k' denote the dimen-
sions of the corresponding subspaces. To simplify notation set S, (2) = S, (£2) and
S, () = Sy (). With the aid of these subspaces, a Galerkin approximation for the
eigenvalue problem (1.4) can be constructed:

(1.5) AU, V) = w,BU,, V) forall ¥V, €8,, U, #0.
This reduces to a matrix eigenvalue problem when a basis (¢, (x), 0), . . . , (9,(x), 0),
©, ¥,), . . ., (0, ¥,,(s)) is chosen for S, and Uj, is set equal to ©p, \y) =

(Ze; uppix), T2 Nyy(s)), where n = K} and m = hy'. Problem (1.5) is then
equivalent to:

o [l

where K is the n x n matrix with ki]- = a(y;, npj), M is the n x m matrix with m; , =
— Jp 91V ds, B is the n x n matrix with b;; = fo ;0 dx, and u = (ul-)T, =07
are, respectively, n- and m-dimensional column vectors. The solutions of (1.6) will be
discussed in Section 3.

How closely the eigenvalues and eigenvectors of (1.6) approximate those of
(1.4) depends on how closely the members of the subspace S, approximates the eigen-
vectors of (1.4). Suppose then that there is a number k£ > 1 and a positive constant
Cg,, independent of &g, such that for any v € H5(R) there is a v, € §,(R) with

1.7 lv = v, ll, SCqhglvlly for0<q<s<k

Similarly, suppose there is a number m > 1/2 and a constant C., independent of Ay,
such that for any u € HY(T) there is a y,, € S,,(I') with

(1.8) Iu—uhlp<CFhiTplult for-%<p<h<t<m
Assume also that S, (I") satisfies the “inverse assumption”
(1.9) luy ly, < CHE? iy 1y,

where C is a positive constant independent of A.. For a discussion of properties
(1.7)—(1.9) and some examples, see [2], [3].
LEMMA 1. If hg/hy is small enough, then for h sufficiently small there is a
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positive constant «, independent of h such that

inf sup 14U, V)| = 0.
1.10
- e
Proof. See [2], [7].
Lemma 1 ensures the existence of the projection P, of H onto S, defined by the
relation A(P,U, V) = A(U, V},) for all ¥, €S,,. Suppose C, is the constant given
by 14(U, M)I < CIUIVI. Then, 1P, I < C, /oy and

C
(1.11) lw-pul<(1+=) inf IlU-U,I, [2].

Q | U,ESs,
Set T), = P, T. Then, T, is a bounded operator on H with range in S, and satisfies
A(T,U, V) = A(TU, V,) = B(U, V) forall ¥, €S,. Thus,

(1.12) AT -T)U, V,)=0 forall ¥, €S8,.

The eigenvalues of T), are the reciprocals of the eigenvalues of (1.5) (or (1.6)) and the
eigenvectors are identical. It will be shown in Section 3 that the eigenvalues of (1.6)
are positive real numbers and each has ascent 1, i.e., there are no generalized eigen-
vectors. The same then must hold for the eigenvalues of T),. Let C; denote the norm
of T as a map from H into H3(2) ® H3/3(I"). Then, by (1.7), (1.8), and (1.11),

(1.13) IT-1T,I < (1 + %)Q(Céh?{’“z + CEhZat1y”
0
where p = min(k, 3) and ¢ = min(m, 3/2). Thus, T), — T in norm.

Since T is compact and T;,, — T in norm, the eigenvalues and corresponding
eigenvectors of T, converge to eigenvalues and corresponding eigenvectors of 7. In
fact, suppose £ is an eigenvalue of T with multiplicity m. Let C be a circle centered
at ¢ contained in the resolvent set, p(7), of T and enclosing no other eigenvalue of T.
Then, E = E(¢) = (1/2m) o (z — T) ' dz is a bounded projection with range R(E) =
space of eigenvectors of T associated with £. For h sufficiently small, C C o(T)), £,
=E,(¢) = (1/2m) fo (z = T),Y ' dz is a projection onto its range R(E},), and |E — E,, |
—> 0 ash — 0. The dimension of R(E),) is m, the same as that of R(E), and R(E})
is the direct sum of the spaces of eigenvectors of T}, corresponding to eigenvalues en-
closed by C. Thus, counting according to multiplicity, there are m such eigenvalues,
denoted £, (h), . . ., §,,(h). These eigenvalues converge to ¢ as h — 0, and the sub-
spaces R(E), R(E,) approach one another. These facts may be found in [5].

To end this section, a few results that will be needed later are listed. For & suf-
ficiently small, the restriction of £}, to R(E), Ey 5 (£ is a surjection of R(E) onto
R(E,). Thus, E, R(E) has an inverse, denoted £, °, which maps R(E),) onto R(E).

It follows that L, = Eh"lEh is the identity on R(E) and is a projection of H onto
R(E) along the null space of £, N(E,). The norms IE, |l and £, ' |l are bounded
independently of A Let f"h be the operator on R(F) defined by f:h =E,'T,E, IR (E)
Because R(E)) is an invariant subspace for T}, the eigenvalues of 7}, are &,(h), . . .,



FINITE ELEMENT METHOD OF LAGRANGE MULTIPLIERS 67

£,,(h), and the multiplicity of &; (h) as an eigenvalue of T equals the multlpllclty of
£,(n) as an eigenvalue of T),. Let T be the restriction of T to R(E). Then T has £
as its only eigenvalue and ¢ has multiplicity m. Because L, is the identity on R(E),
for any ® € R(E),

(1.14) (F- T,)® = L, (T - T,)®.

These results can be found in [13].

Given any bounded operator R on H, by (1.3), there exists a unique bounded
operator R, such that A(RU, V) = A(U, R,V). Because in this case A( -, -) are her-
mitian, it follows that T, = T and P,, = P, and 50 (T},)sx = (P,T)sx = TP,. In addi-
tion, for any U € H

c
(115) I (Ty - T, )Ul = T - TPYUI <N T~-T,I inf IU-U,I.
a UyESy,

These results can be found in [8].

2. Estimates for the Error in the Eigenvalue Approximation. Let £ be an eigen-
value of T with R(E) the associated space of eigenvectors. Assume & has multiplicity
m and so dim R(E) = m. Then w = 1/£ is an eigenvalue of (1.1), (1.2) and ¢ is an
associated eigenvector if and only if ® = (o, d¢/0n) is in R(E). For the remainder of
this section £ and R(E) will be fixed.

Suppose &,(h), . . ., &,,(h) are the eigenvalues of T, converging to §&. Then
w,(h), ..., w, (h), where wh) = Si(h)_l, are the eigenvalues of (1.5) (or (1.6))
converging to w. The eigenvectors of T}, associated with &, (h), . . ., ,,(h) are also
the eigenvectors of (1.5) or (1.6) associated with w,(h), . . . , w,,(h). The estimates
for the eigenvalue and eigenvector error can be expressed in terms of the quantity
2.1) €, = €(w)=sup inf lI®—@,l,

PER(E) ©,ES,
IT®l=1

which measures how well the elements of R(F) can be approximated by elements from
Sy,. The following two theorems give estimates for the eigenvalue and eigenvector
approximation.

THEOREM 1. For h sufficiently small, there is a positive constant K |, depending
on R(E) but not on h, such that foreachi=1,...,m

|
i(h)_
(2.2) Ig—g,.(h)|=| %)%fi, <K,e.

Proof. See [1], [3], [13], [6], and [8].

THEOREM 2. For each h, let Uy(h) be an eigenvector corresponding to £,(h) =
w(h)™! such that | U h)Il = 1. Then there is an eigenvector ®,(h) in R(E) and a
constant K ,, depending on R(E) but not on h, such that

23) 1®,(h) — Ul < Kje,,.

Proof. See [1], [3], [13], [6], and [8].
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The remainder of this section is devoted to constructing a lower bound for ¢ —

£,(h) and discussing some of the consequences of this lower bound.
LEMMA 3. For each £(h) there is a ®,(h) in R(E) such that A(P,(h), P;(h)) = 1
and

(2.4) £~ £(h) = A(T ~ T,)®h), O,(h)).

Proof. Recall that £(h) is also an eigenvalue of f"h. Let
_ dy;
tIDi(h) = ‘P,'(h), E hy )= (‘Pi(h), )\i(h)) ER(E)

be a corresponding eigenvector normalized so that a(y,(h), ¢;(h)) = 1. Then,

A@,0), ©,0) = alo ), o) ~ [ Yg ) + N(ye () ds = 1,
since ¢;(h) is an eigenvector of (1.1), (1.2) associated with w = £ and so g (h) =
OonT.

Now

£ = Eh) = A((E — E(W)D,(h), DR))
= A({£ = &) — (¢ - D)}0,(h), D,(h))
= A((T ~ £(h)®,(h), @(h)) = A(T - T,))®,(h), D,(h)),

since T = T zy and T, &,(h) = £,(W)D,(h).
LEMMA 4. Suppose ® = (¢, 0p/on) € R(E) and A(®, @) = a(y, v) = 1. Then,

(1 + CH%c
i

where , = min(1, c,), éT is the trace constant for the map d'[on : H3(Q) —
H3!2(T), [9], and C} is a positive constant that does not depend on w.

Proof. Let S be the map from H°(2) into Hy () defined by a(Sf, v) = (f, v)
for all v in H}(§2). The map S is well defined since a(u, u) = B, lull?; moreover by
results on regularity [10], S is a bounded map from H!(Q) into H3(Q) N Hé Q).
Let Cy be the norm of S as map from H'(Q) into H3(2). Again by regularity, w
is an eigenvalue of (1.1), (1.2) if and only if £ = 1/w is an eigenvalue of S considered
as an operator on H%(Q), and ¢ is an associated eigenvector if and only if it is an
eigenvector of S. Thus,

(29 Il SKow =

'

oy |2

< lol?2 +
on

2 <1+ lpl?

3/2

oy 2
@12 = llel? +l—
v 1 an 1

Yo

A2 ||Scp||§ A2y, 2 2 A2y, 200" )2 2
=(1 +CT)—§2——= (1 + CHW ISpl 5 < (1 + CHW(C3)* llpl}

e (A S (o) (Y it
= Y, ‘p) - .
Bo 50
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Estimate (2.5) follows.

LEMMA 5. Let ® = (p, dp/on) € R(E) with A(®, ®) = a(p, ) = 1. Then, for
h sufficiently small, there is a constant C;, depending on R(E) but not on h, such
that

(2.6) 1L, +® - @I <C T ~T,lle,.
Moreover,
2.7 (T - T,)®l < Ko(l + Cilag)ey.

Proof. Estimate (2.6) follows from Lemmas 4 and 5 of [8], which in turn fol-
low from lemmas of [13]. The constant C; is equal to kywC,; Cy /e, and C; is a
constant depending on IEl, sup,c Iz = 7Y~ I, sup, 2ecl@ = Tys) ™' I and the
length of C where C is the contour about ¢ defining E.

To prove (2.7) set 3= @/ ®ll and note that

(T - T,)@l = I - PYT®I = £ld — P)@I = £l @l I — P,

c, ~
Stkgwll+— | inf 10—l

& / @,€85,

by (1.11) and (2.5). Estimate (2.7) follows immediately from the definition of €.

LEMMA 6. Let £;(h) be one of the eigenvalues converging to £ and let @,(h) =
® = (¢, d9/on) = (¢, N) be the eigenvector associated with £,(h) as in Lemma 3. (The
indices i and h on ® are suppressed and should be understood.) Suppose there is a
positive function w(h) such that w(h) — 0 as h — 0 and

2.8) inf  \-nl_, 12 < wh)llo =@, 1,
nEeS, ()

for h sufficiently small, where (g, \;,) = P,® = ®,. Then there are positive func-
tions B, (h) and B, (h), with By(h) — B, and B,(h) — 0 as h — 0, such that, for h
sufficiently small,

29 £ - £ > EHB Wl — @, 17 = 8,()er}.
Proof. By Lemma 3 and (1.14),
£— £(0) = A(T - T,)®, ®) = AL,(T - T,)®, ®)

=A(T - T,)®, ®) + A(T — T,)®, L;® — ®).
Now, by (1.12),

AT = Ty, @) = AT ~ T,)®, T®) = AT - T,)%, (T - T,))
= £A(U - P,)®, (I - P,)®)
= a0 - 9 0~ 0)— 2Re [ O - N)@= 7y ds (.

By the definition of P,, A(® — ®,, V;,) = 0 for any V,, = (v,, &) in S,,.
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Choose ¥, = (0, ) for any n € §,(I'). It follows that f (¢ — ¢, )nds = 0. In parti-
cular, since A, € S, (I"),

[Loa-nE=ends=[. a-mn@=wds = [ AG=a) s

any n € S, (I'). Thus, replacing A, in the last expression of the previous paragraph by
an arbitrary n € §,(I') yields

Sga(«p ~ ¢ 9~ ¥,) ~ 2 Re fr A —me —¢p) dss for any n € S, ().

This expression in turn can be estimated below as follows.

Egd(«;"‘kph, o=o)~2Re [ A -n)@= %)) ds%
> By llp — 9,13 — 2|7\—n|_./2|‘p_‘ph|%}
=By llo = ¢, 12 = 2C, IN—nl_, lo—g,l,},

where C, is the bound for the trace map u € HY(Q) Vo> U € H'/?(TI"). Because n
is arbitrary, it can be chosen so that by (2.8) this last term can be bounded below by
E{By — 2C,w(h) o — ¢, 3. Consequently, A(T — T,)P, ) > £8,(h)llp — ¢, 113,
where 8,(h) = 8, — 2C,w(h) — B, as h — 0.
On the other hand,
AT~ TP, Lys® - )< C, (T - T)@I L, @ - 2l

S C Crro(l + Cilag)IT — Ty lle?

by Lemma 5. Set B, (h) = £ 1C,Cpxo(1 + C, Jag)I T — T, I. With B,(k) and B, (k)
so defined, (2.9) follows.
THEOREM 3. Suppose that for any ® = (¢, \) € R(F),

inf o= xl, = Cohl el
(2.10) XESp(S2)

inf =7l > ChRt%IN,
neSs,(T)

where éﬂ ér are positive constants depending perhaps on R(E) but independent of h.
Suppose also that there is an s > 0 and a positive constant Cg independent of h such
that

(2.11) holhp = Cts..

Then if k + 1/22>m >k — 3/2 + s(k — 1), there is a positive constant 5, depending
on R(E) but not h, such that for h sufficiently small

g _wW-w_

2.12) > B2,
£ wilh) 3
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Proof. The first step in the proof is to show that (2.10) and (2.11) imply (2.8).
Suppose then that ® = ®,(h) = (¢, A) is chosen as in Lemma 3 and set P, ® =
P, d,(h) = (g, N,). Then, by (1.8) and (2.10),

Crh T %1

’”}énh’;;l lpl,

inf  IN~-nl_y, <CpRmT%AINN =<+
N N

nES,(T)

<w(h) inf  lo—xl,
XES, ()

where w(h) = CLRE T 121N, ICohS gl By (2.11)
hm+‘/z hP
T r

ES ’

hslgz'—l (Cs)k—l

where p = m — k + 3/2 = s(k — 1) > 0. To estimate INI, /llpll,, recall that ¢ is an
eigenvector associated with the eigenvalue ¢ of the operator § introduced in Lemma
4. The operator S is a bounded map from H¥*(2) into H**2(2) N I-l(} (), thus
Eloly 1 p = ISoll, ., < Cllel,. Since X = dp/on, and k + 1/2 > m

Oy
on| ,,

oy
on

Il

m =

<Clgl,,, < &.clel,
K £

a/an

where C, is the trace constant for the trace map H* +2(Q) = HF 2T, [10].

Therefore, I\, /loll, < wC,C, and so

It follows that w(h) — 0 as # — 0 and (2.8) holds, in fact

inf IN-nl_, <w() inf lg- xly Sw@®m)llp—o,l,.
n&S, () XESy,(22)

The proof of (2.12) will follow from (2.9) and a suitable lower bound for
o=, ||f in terms of 6,21. By (2.10),

log—g,I3 > inf lo—xI3 >C’?2h§lk‘2llgplli.

XES(2)
Recall that @ = (p, ) is chosen so that A(®, D) = a(p, ¢) = 1, thus 1 = a(y, ¢) <
Collpll%, where Co = max(1, ¢). Consequently, llpl? > lpl2 > = 1/C, and

lo =g, 12 > C? h”‘ 2/C,. On the other hand, by (1.7) and (1.8),

67 < sup  {CHRE T2l + CAR2MHIINR } < C(w)hEF2,
h Qo k rer m Q
PER (E)
l®ol=1

where
Cw)= sup {Chlgl} + CLC>2%p2PINI2 ).
DER (E)
ITol=1
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It follows that llp— ¢, 12 > C3e2/CoC(w).

Finally, by (2.9)

. 62
E=E() > EBy )0 — ¢, 12 = B, (e } > £46,(h) ——— - By (M) €.
CoC(w)

Since B, (h) — B, and B, (h) — 0, there is, for & sufficiently small, a positive constant
B5 such that & — £,(h) > £B,¢7.

COROLLARY 1. Let w be an eigenvalue of (1.1), (1.2) of multiplicity m, and
let w(h) be any one of the m eigenvalues (counted according to multiplicity) of (1.5)
(or (1.6)) converging to w. Then for h sufficiently small, w;(h) = w and the estimate

(2.13) wih) — w = wih)Ber = wPyer

holds.

Remark 1. The restriction k + 1/2 = m in Theorem 3 is not really necessary.
It just provides a convenient way to estimate Al /lol,. If k + 27 + 1/2 > m, for
some nonnegative integer j, then INl /llol, < ET - C(j)o/ T, where the constant
((j) on the bounds for S as a map from Hy  ,(2) into Hy |,y 1,(€2) N Hy ().

Remark 2. The constant C(w) in the proof of Theorem 3 decreases to
SUPpeR (E);I® 1=1C3 o2 as h — 0. This latter term can be estimated above by
Cég2(r)w2’, where r = min{/:2/ + 1 > k} and 5(r) is the product of the bounds
for S as a map from H2*¥~1(Q) into H2'*1(Q) N Hé(ﬂ) forl=1,...,r

3. The Finite Dimensional Problem. In this section the matrix eigenvalue prob-
lem (1.6) is analyzed. It is shown that, despite the fact that the matrices in (1.6) are
(n + m) x (n + m), the eigenvalues can be computed using an n x n nonnegative
definite eigenvalue problem u = wF,u. This problem yields n — m positive eigenvalues
w and m infinite eigenvalues corresponding to the null space of the matrix ;. A
scheme is presented for constructing the n x n matrix F; from the given matrices K,
M, and B.

Consider then the eigenvalue problem

PN AN

where K and B are positive definite Hermitian matrices of order n x n, and M is an

n x m matrix. Thus, (3.1) is of order (n + m) x (n + m). Since B is positive definite
and Hermitian, it can be factored in the form LL¥ where L is lower triangular and
has positive elements on its diagonal. Thus, if (3.1) is multiplied on the left by

L™t o
L 0 I
and on the right by
L™ 0
Lo 1]
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the equivalent eigenvalue problem

L JE L]

results, where G = L™1KL™H J = LM, and

SN

It follows from Lemma 1, (1.10), that the matrix

K M
ME 0

is nonsingular and so

is also nonsingular. Let
F, F,
Fi F;l
denote the inverse of the latter matrix, where F'; is a Hermitian #n x n matrix, F, is

an n x m matrix, and F; is a Hermitian m x m matrix. Multiplying (3.2) through by
this inverse yields the equivalent eigenvalue problem

I 0 v Fy 0 v
= W .
3.3) 0 ! ” F’; ollu

In component form (3.3) becomes v = wF,v and u = wFfv. Thus, w < o is an eigen-
value of (3.3) with eigenvector [v, u] 7 if and only if w is an eigenvalue of

34 v=wFv

with eigenvector v, where u = wFfu.

There is also an “infinite” eigenvalue to keep track of in (3.3) and (3.4). Set
w = 1/£ in (3.3), multiply by £, and consider the resulting eigenvalue problems in &.
It is easily seen that O is an eigenvalue of this problem with multiplicity 2m. In fact,
the m-dimensional subspace { [0, \] 7, A arbitrary } forms the space of eigenvectors
corresponding to 0; and the m-dimensional subspace { [u, 0]7, u € N(F,)} forms the
space of generalized eigenvectors of order 2, where N(F,) is the null space of F; and
has dimension m (Lemma 9). Note that the eigenvalues and eigenvectors of (3.3)
transformed in this way are the eigenvalues and eigenvectors of the operator T},. If

(3.4) is transformed in a similar way, O is an eigenvalue of multiplicity m corresponding
to the null space of F.
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Since the characteristic polynomial corresponding to (3.3) has order n + m and
that corresponding to (3.4) has order n, it follows that (3.3) and (3.4) have n — m
finite eigenvalues counted according to multiplicity. These n — m eigenvalues as well
as their multiplicities are the same for (3.3) and (3.4). Moreover, since F, is nonnega-
tive definite (Lemma 8) these eigenvalues are positive. Finally, it follows that none of
these n — m eigenvalues can have ascent greater than one when considered as eigenval-
ues of (3.3), i.e., there are no generalized eigenvectors associated with them.

Despite the fact that the original problem (1.6) was of order n + m, it suffices
to consider the order n nonnegative definite problem (3.4). If the component u of an
eigenvector is wanted, all that is necessary is to set 4 = wF f v, where v is an eigenvec-
tor of (3.4) corresponding to w. The remainder of this section is devoted to investigat-
ing the properties of F, and Ff and outlining a scheme for computing these matrices.

For any matrix 4, N(4) will denote the null space of 4 and R(A4) the range or
equivalently the column space of A. The symbol 1 will denote orthogonal complemen-
tation in the standard inner product, xHy, on C*. Finally, let { e;} be the standard
basis for C*,¢; = (0, ...,0,1,0,...,0)7 with 1 in the ith position.

By definition the matrices F,, F,, F; satisfy the relations

(@ FiG+FJ" =1, () GF, +JF =1,

(3.5) (®) FyJ=0; ®©) JIF, = 0;
(0) FSG +Fy/% =0; (c") GF, +JF, = 0;

@ Fir=r, @) JF, =1

For simplicity the order of the matrices is left implicit. For example in (d) F fJ is
m x m.

LemMMA 7. P, =GF, and P, = JF f are projections on C". P, is a projection
onto RYG™'J) along R(J), and P,=1-P,.

Proof. Multiply (3.5a) on the right by F, and use (3.5b"). This gives F \GF, =
F, or (GF1)2 = GF, and so P, = GF, is a projection. Multiply (3.5d) on the left by
J and on the right by Ff. This gives (JFf)2 = JFf]; and thus, P, = JF? is a projec-
tion. Moreover, by (3.52"), P, + P, = 1.

By (3.5b) P,J = GF,J = 0, and so N(P,) D R(J). On the other hand, suppose,
u € RY(J) = NU*). Then P¥u = F)JHu = 0. Thus, u € NPL) = R(PF) = N*(,).
It follows that R*(J) C Nl(Pl), and so N(P,) = R()).

Since P; = GF|, and G is nonsingular, it follows that N(F 1) =N@,) = R(),
and R(P,) = N{PF) = N'(F,G) = RYG™)).

LEMMA 8. The matrix F| is nonnegative definite.

Proof. u"Fiu=u"G™'Piu = (PLuy'G™'Pu + Pu)?G 'Pyu. But
(PG Pyu = (G Pyuw)Pu = (G 'JFHu)HP u, and by Lemma 7 this term is
zero. Consequently, u”’F U= (Plu)H G_lPlu > 0 unless P,u = 0 or equivalently u €
NP,) = N(F).

LEMMA 9. dim N(F,) = dim R(J) = m.

Proof. Suppose there is an m x 1 vector u such that Ju = 0. Since
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it follows that u = 0. This implies that the m columns of J are linearly independent
and so dim R(J) = m, but from Lemma 7 we have N(F,) = R(J).
The matrix F; can be constructed from the matrices G and J. From Lemma 7

is nonsingular and

F, = G—lPl, so what is needed is a representation for the projection P, in terms of
G and J. As will be shown below, P, =1 —JY, where Y is an m x n matrix gotten by
solving n problems involving the m x m positive definite matrix J7G~1J. Thus, the
major portion of the computation in constructing F; involves inverting G and solving
the n problems to construct Y. It is possible that F| need not be fully constructed in
order to compute its eigenvalues and eigenvectors.

Letg; = G_lei denote the ith column of G™!. Suppose y; is the solution of the
m x m problem: JHG—Iin = JHgi. Note that by Lemma 9, JAG™1J is positive defi-
nite. Finally, set w; = g; — G—lJyl.. Equivalently, Gw; = e; —Jy;. Let W= [w,,

swpland Y= [y;,...,y,]. Then GW=1-JY.
Lemma 10. F, =W, P, =1-JY, P, =JY,and Ff =Y.
Proof. Gw; = Gg; —Jy; = ¢; —Jy;. Thus, by (3.5b),
Fe; = F,Gw; + F,Jy; = F,Gw; = Plw,.

But W,HJ = (ng —yf'JHG_l)J = g{’J —y;.HJHG—IJ = 0. Since P‘IH is a projection onto
R(J) by Lemma 7, it follows that F 18 = P‘lei = w; and so F; = W. Consequently,
P, =GF, =GW=I-JYandso P, =1—P, =JY. Finally,JY = P, = JF¥; thus
JY-F=0andso ¥ =FI.

Remark 3. Although it is not needed for the eigenvalue problem, the matrix Fy

can also be computed using the approach given here. By (3.5¢"), GF, +JF; = 0.
Thus,

JFy =-GF, = -GY? = -G(UHG ')y G WY = — jyHG 17y

and so Fy = —@HG™1Jy"!. This approach also yields an alternate scheme for solving

the source problem
K M u f
i ol BN RGP
M 0 A g

COROLLARY 2. The eigenvalues and eigenvectors of (3.3) can be computed
from the n x n nonnegative definite problem

(3.6) v=wG (- JY)p,

(3.7) H=wly,
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where Y = (JAGTY))VJHG™. This problem produces n — m positive eigenvalues
and m infinite eigenvalues corresponding to N(G1(I = JY)) = R(J).
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