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A Collocation-Galerkin Method for
Poisson’s Equation on Rectangular Regions

By Julio César Diaz

Abstract. A collocation-Galerkin method is defined for Poisson’s equation on the unit
square, using tensor products of continuous piecewise polynomials. Optimal L2 and
Hé orders of convergence are established. This procedure requires fewer quadratures
than the corresponding Galerkin procedure.

Introduction. The collocation-Galerkin method was first introduced by Diaz [2], [3
for the two-point boundary value problems and optimal Z?-rates of convergence were es-
tablished for a particular choice of the collocation points; namely, the affine images of
the roots of a Jacobi polynomial. In [6] Wheeler derived optimal LP-estimates and ap
plied this method to a one space dimensional parabolic problem. In [4] Dunn and
Wheeler analyzed some collocation-H ~!-Galerkin methods and established optimal L?-
estimates for any choice of the collocation points. Archer and Diaz [1] have applied
similar ideas to a one-dimensional first order hyperbolic problem and derived optimal
L?-estimates. Here, a collocation-Galerkin method is defined for Poisson’s equation on
the unit square, using tensor products of continuous piecewise polynomials and the col
location points are based on the roots of a Jacobi polynomial. Optimal L2- and H(l)-es-
timates are established. On the basis of computational complexity the collocation-Gal
kin method is intermediate between the Galerkin method and the collocation method.
It has an advantage over the Galerkin procedure for the same space in that the integral
involve the product of the approximate solution and a piecewise linear function, thus
the integrals are simpler and, of course, there are fewer of them. Also, the continuity
conditions on the approximate solution are weaker than those required of the colloca-
tion approximation defined by Prenter and Russell [5].

In the following section, the collocation-Galerkin method is defined and ex-
istence and uniqueness are shown using some semidiscrete bilinear forms. In the last
section, the error analysis is presented. The analysis consists of reducing the problem
to some one-dimensional problems for which the results of [3] can be applied.

The Collocation-Galerkin Method. Consider the boundary value problem
—Au=f, onQ,
u=0, onoad,

M

where 2 = (0, 1) x (0, 1). We shall assume that there exists a unique u and that it is
sufficiently smooth.
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For a partition § = {x}N *1 of the unit interval I = [0, 1] satisfying,

O=xy<x; <" <xpyy1 =1,

let

y=x, I1=0,..,N+1,

L= 1Ix;, %411, Bi=x;4y—%, i=0,...,N,

= max h;.
0<i<N

If r > 1 is an integer, let P,(E) denote the class of polynomials of degree at
most r on the set E, and define

My = My(8) = {VECI)IVEP),i=0,...,N, V() = V(1) = 0}.

Let 9, ..., ¢,_; and positive w,, ..., w,_, be the unique choices such that

2) fol x(1 =x)p(x)dx = Z wjp(¢i)’ Vp €P,, 50, 1).
i=1

That is, ¢;, ..., 9,_; are the roots of the Jacobi polynomial J, _; of degree r — 1 on
[0, 1] with respect to the weight function x(1 — x). The collocation points are tensor
products of affine transformations of the roots of J,_; onto each subinterval. More
precisely, let Xy = X; + hitpi,y,k =y, +he,i,1=0,... ,N;jk=1,...,r— 1L

The collocation-Galerkin method for the approximate solution of (1) consists in
finding U € M = Mg ® My, satisfying

i,l1=0,...,N,

(3.9) AU(x;;, x;) + f(x;, %) =0
ij> 1k ij Ik) j,k=1,...,r—1,

[ wey, v - [ L wey, pyv'@a
I o Xij» YV (§)dt 13y Xij»

(3.ii) i=0,...,N,
+ [ re V@ aE=0, Ve,
i=1,...,r—1,
o I LW vV @) dt + f CCELGL
1=0,...,N,
+ | &) VE© di =0, 1
S, r& v v a ot e,
(3.iv) VU, VV)=(f, V), YVEM) ® Mg,

where (-,-) denotes the L2-inner product over .
In order to demonstrate the existence and uniqueness of the collocation-Galerkin
approximation U, bilinear forms D( -,-), Dand T are introduced. Let

*{VEMIV(x)—Oz 1,...,NL
Then .

@ Mo = Mg ® Z5.
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For v € Z{, and a function g defined on I, let
—1 g(xll)V(xu)

D(g’ V) ]Zl i ] ‘P,(l _Sol)

and set

N
D(g, V) = Z Di(ga V)
i=0

Two semidiscrete bilinear forms D(-,-) and I(-,-) are defined as follows; for
V € Mg, there are unique ¥; € Mg and ¥, € Z§ such that ¥ =V, + V,, and for g
defined on each I; and g € L2(I), let

1
(g, V)= D(g V;) + [ g()V,(x) ax.
For g € H'(I) such that g" is defined on each 7,
” 1 '
D& V) =-D(¢", V) + [, € CIV{(x)ax.
If g, V € Mj, relationship (2) and integration by parts imply that

® D, V)= f 01 gV (x) dx.

Notice that if p € P,,_,(0, 1), then p(x) = p,,_, * J f_l(x) + g(x), where
Pg,_, is the coefficient of 2772 in p(x), and ¢ € P,,_5(0, 1). Then it is straightfor-
ward to show that

r—1

T wp)= [ x(1=x)p(x) dx
&

2r
+ (er)' ﬁ[x(l =x)p(x)] fol x(1 = x)J2, (x) dx.

From this relationship it follows that if g € M}, then

(6) 1(g, 8 = fol g (x) dx.

When considering functions of more than one variable a subscript, x or y, will be
used to denote the variable to which the bilinear form is being applied. Bilinear forms
on the two variables are formed by taking tensor products of D and I. From (4), it
follows that

= (25 ® 23 ©(Z ®M0)6(M0 ® 7 )@(Mo ®M0)— N, ®N, ®N; ®N,.
Thus, for V € M there are unique V,, € N,,, m = , 4, such that
V=V1+V2+V3+V4.
And for g an L2-function defined on all of , let

N glx X; ,J’m)Vl(x",yzk) z
1,®I,(s V)= h;h / L
&) i,lz=o z—:l 12—:1 1k o1 = ei)e;(1 7

+ LD(g("y)a Vz("y))dy +LD(g(x")’ V3(xa'))dx + (ga V4)'
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The other bilinear forms D, ® I, and I, ® D,, are similarly defined. Using these
bilinear forms, a related variational approximation is defined. Let W € M be the solu-
tion to

@) 0,®ILW,N+I,8D,W, V=1, V), YVEM
It follows from the definition of the bilinear forms that U € M, the solution to
(3), satisfies equations (7). Thus, in order to show existence and uniqueness of U € M

satisfying (3) it is enough to show that if f= 0 then W = 0. Relationship (5) implies
that W satisfies

(L, vax+ [} LW, V)dy =1, 8L V), VVEN

Choosing ¥ = W and using (6), it follows that

11 .9 11,2 <
[ifo wiaxay + ([ Whdxdy < T, ® I(f, W),
thus
VW, VW) <1, ® I(f, w);
hence if f= 0, W = 0.

Error Analysis. As before let u denote the solution to the boundary value prob-
lem (1) and U € M the collocation-Galerkin solution to (7). In this section, estimates
for u — U are derived. Those estimates are given in the following theorem.

THEOREM. Let u be the solution to (1) and U € M the collocation-Galerkin ap-

proximation to u defined by (3). Then, if u is sufficiently smooth, there exists a constant
C independent of h and u such that

lu=Ul , +hllu=Ull , <Cllull_, 1<s<r+1.
L Hy H

Before proving the theorem, some basic estimates are derived. For e = u — U, let
Y € H*(Q) satisfy

—Ay =e, on{,

Yy =0, onaQ,
then

Ilellzz = (e, €) = —(e, AY) = (Ve, V¥) = (Ve, V(¥ — X)), X € My ® M},
using (3.iv). Thus, by Cauchy-Schwarz inequality
2
IIeIIL2 < IIeIIHcl)IN/ - xIIH(I), X € My ® Mg,
the approximation properties of the space M}) ® M(l, imply that

inf My -xll_; <Chlvll_,,
XEMHOMY Ho H

also by elliptic regularity
INIIIHz < ClleIILz,

thus it follows from these inequalities that
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< .
) IIeIILz < Chllelchl)
Therefore, it is sufficient to derive an H; -norm estimate of the error. In the derivation
of this estimate the following lemma, proved in [3], will play an important role.
LEmMA 1. ® € H'1(0, 1), let g € H%(0, 1) N Hy (0, 1) satisfy " = ®. Also,
let G € M}, be the collocation-Galerkin approximation to g satisfying

G"(x,.,-)=<I>(xii), i=0,...,N;j=1,...,r—1,
and

[l G'viax+ [, evax=0, Vveu;
0 0
then, there exists a constant C independent of h such that

s 2
[Vieax +n* [Lierax <on | 4 A ax, 1<s<r+1,
0 0 0 S

g

dx

where e = g — G.

Also, a space M,, and an element ¢ € M,, a projection of u into M,, are intro-
duced. Then error estimates for u — q and g — U will be obtained in Lemmas 2 and 3,
respectively. The desired estimates will follow from the triangle inequality.

The space M, is defined by

M, = {2 a (»)V,(x), {V,} basis for My and a; € H)(I) N H2(I)}.
The function q € ‘;l'Ix satisfies the following equations
U = @Qyx(x;j, ¥) + @ = q),,, (x5, ) = 0,
) i=0,...,N;j=1,...,r=1,y€(0,1),
- [J @&V @dt+ [0, &NV EdE=0,
VeM,ye(o,1).
This system of equations leads to a system of second order two-point boundary value

problems, the collocation-Galerkin solution of which corresponds to the solution U of
(3). Moreover, U satisfies

(¢8)) 0, ®TU-qN+1,8D,U-q,)=0, VVEM

This fact will play an important role later. Using the bilinear forms D and I, a weak
formulation of (10) can be written as

12 [0 vd+ [ 1(u-a),v)dy =0, Voemu,

The choice v = g and the use of relationships (5) and (6) in (12) give

L: fol qidxdy + L: fol qrdxdy < L: D,.(u, q)dy + fol I(u,, q,)dy,

(10.)

(10.ii)

from which existence and uniqueness of g follow. Notice that if for any o > 0,
3%u/dy® € H = Hy(Q) N H*(Q), then 3°q/9y* € M,,. The estimates of u — q are giv-
en in the following l:mma.
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LEMMA 2. Let u be the solution to (1) and q € M, the solution to (12). Then,
if u is sufficiently smooth, there exists a constant C independent of h such that, for
az=0

b ( ) aa+l (
u-q +h u-

oy 1? oxoy® 9 12

(13)
s+a s +a
<cm 2w L i<s<r+
axtoyflr?  |laxtoyxt| 2
Proof. Let n =u —q. It is straightforward to show that equations (10.ii) imply

that
(14) ||17||L2 < C7l||anllL2-

Thus, it suffices to estimate IIanIL2. For this a map w € M, for which the results of
Lemma 1 can be applied directly, is introduced. Estimates of the difference of w and
q will be derived and estimates for u — g will follow from the triangle inequality. De-
fine the map w by

(u—w)xx(xi].,y)=0, i=0,...,N;j=1,...,r—-1;y €(0, 1),

and

[L@-w, @&V, @®de=0, VENM,yEO .
Equivalently, w is the solution of
(15) fID@-wvdy =0 veEM,

Notice that, as for g, if for any a > 0, 3%u/dy* € H, then 3°w/dy* € M. From Lem-
ma 1 it follows that there exists a constant C independent of 4 satisfying for a = 0,

a+1

oxoy®

as+a

0% (u—w) "
ax*oy®

oy¢

+h
2

<Kt
2

(u—w) , 1<s<r+1.
12

(16) |

L L

Estimates of the difference between w and q are now derived. Let e = q — w.
Equations (12) and (15) imply

1
[Ioeva+ ) L@y vy = [ T(w-w),.v)dy, VoeEM,
Since € and v € M, then by (5)
1

[logevay = 1! e drdy = (e, V2,

and for v = € by (6)
101
jol I(e, €,)dy > fo f . e2dxdy = (¢, €,).

In [3], it was shown that if g € H’(1), 1 <s <r+ 1 and V € Mg, then
dsg 2 ¥ 1 1%

17 - (! < CH* 1(as 2

an lI(g,V) Jq gvax Ch{fo( ) dx} {fOde}.
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Thus

IIexllz2 + ||€y||2 S(@-w),, ¢,) +f {I (m~-w),,¢,) - f (u—w),e dx}

< ((u- w)y, €,) + fol{Ch<fol (u - w)iydx>%<fol ef,dx)l/z}dy

< L - w2, + 2ele 12, + S8 10— w2
S e W2 €, L2 4t (u—w),, L2

where the inequality 2ab <a? + b2 has been used. Take ¢ =%, then
(18) 1w = @)y, < CLlGw = W)y 125 + A2 = W), 12,3,

Estimates (14), (16) and (18) and the triangle inequality complete the proof of
the lemma.

It remains to obtain estimates of the difference between U and g. In order to ob.
tain these estimates, an auxiliary function W € M is introduced which satisfies

W=q)y, G,y ) =0, [1=0,...,Nyk=1,...,r—1,x€(0,1),
(19)
~fy W-a),x oV, (9ds =0, Vel xe,),
or equivalently

D(W-q,V)=0, YVEM), x€(0,1).

In particular

(20) I,®D,(W-q,V)=0, VVeE
Equations (19) and Lemma 1 imply that for « = 0, 1

a+l

ox*9y

as+oz
ox“ays

s
—(@q-W
a“(q )

g—-w 2<Chs

L

q

L L2

Setting ¢ = ¢ — u + u and using estimate (13), it follows that

(21) llg - W||L2 +h{li@@ - W)xIILz + g - W)yIILz} +h%l(g - W)xylle < ChsIIuIIH:

In the following lemma, estimates of the difference between U and W are given.
LEMMA 3. Let U € M be the solution to (3), q € M,, the solution to (12) and
W € M the solution to (19). Then there exists a constant C independent of h such that

(22 I\ W)lliz <C{lg - W)xllzz + (g - W)xylliz}-
Proof. Let E=U— W. Using (11) and (20); it follows that

D, ®L(EN+ILONEN=D,81LG-WV), YVe,
or equivalently using (5)

Jo LE V@ + [} 1B, V) ay = [! T,(a-W),. V)dx, YVEM,
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with V = E and using (6), it follows that
1
B2, < [ 1,8, By dx,

and
1
IE)I2, < [ L(E,. E,)dy.
Hence

1B, + 1E,I2, < [ 1,(@a = W), ) dy
<@-WeE)+ [} { 1@~ W) E) - [ - W)k, dx}dy

<W(¢-W),,E,)+ j;: {Ch (fol (q - W)iy dy)%<fol E? dy)l/‘}dx

< Lig-woie, +2elE 2, + S8 G- w2
= 4e q pd L2 X L2 46 q xy L2’

where the inequality 2ab <a? + b? has been used. With € = % and e = %, estimate
(22) follows completing the proof of the lemma.

The Theorem follows from estimates (9), (13), (21) and (22) and the triangle
inequality.

Remarks. 1. Although the same partition has been used for both sides, the argu-
ment holds for different partitions.

2. The Galerkin procedure for the same space requires {(N + 1)(r — 1) + NP
two-dimensional quadratures while the procedure described by (3) needs only N2 two-
dimensional quadratures plus 2(V + 1)(r — 1) one-dimensional quadratures.

3. In general the solution can only be asserted to liein H3 “¢(), for any € > 0.
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