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A New Step-Size Changing Technique
for Multistep Methods

By G. K. Gupta and C. S. Wallace

Abstract. The step-size changing technique is an important component of a Variable
Step Variable Order algorithm for solving ordinary differential equations using multi-
step methods. This paper presents a new technique for changing the step-size and
compares its performance to that of the Variable-Step and Fixed-Step Interpolation

techniques.

1. Introduction. It is generally assumed that in solving ordinary differential
equations numerically, the best linear multistep methods (formulae) available are those
based on interpolation; that is, the Adams-Moulton formulae (AMF) for solving the
nonstiff equations and the backward differentiation formulae (BDF) for solving the
stiff equations. Recent work by the authors reported in Wallace and Gupta (1973),
Gupta and Wallace (1975) and Gupta (1975, 1976) has shown that the multistep for-
mulae based on interpolation are not necessarily the best. This is particularly true for
formulae for solving stiff equations and several high order formulae of orders up to 12
suitable for solving stiff equations have been presented in the papers referred to above.
Existence of multistep methods of arbitrarily high orders for solving stiff equations
has been proved by Jeltsch (1976).

Several excellent algorithms for solving ordinary differential equations using mul-
tistep methods BDF and AMF have been published recently, e.g. Krogh (1969),
Brayton et al. (1972), Gear (1971b), Shampine and Gordon (1975) and Byrne and
Hindmarsh (1975). All these algorithms, except that of Gear, use the Variable-Step
(VS) technique for varying the step-size. In the VS technique, the multistep formulae
used are based on unequally spaced points (x,_;, v,_;),i =0,1,...,k This tech-
nique provides almost complete freedom in selection of step-sizes because the VS
Adams-Moulton formulae are always stable and convergent. This was proved by
Piotrowski (1969). Also Brayton et al. (1972) found that BDF could sometimes be-
come unstable for the VS technique but the formulae based on the VS technique
were more stable than those based on the Fixed-Step Interpolation (FSI) technique
used by Gear (1971b).

The FSI technique used by Gear (1971Db) in his subroutine DIFSUB essentially
consists of the following two steps:
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(a) Suppose the solution at unequally spaced points x,,_,, i =0, 1,2, ... ,k,
has been computed and it is required to compute the solution at x,,, ; = x,, + A,,.
Then interpolate using the current approximating polynomial to obtain the values of
the solution (¥,,_;) at X,,_; = x, = ih,, i = 1,2, ..., k. Note that, in general, the
values )7n_i are not computed by interpolating through the last k¥ + 1 computed values
of the solution.

(b) Use the fixed step-size multistep formula to compute y, , ;.

The FSI technique is easily implemented using the representation suggested by
Nordsieck (1962), but the technique is not suitable when high order formulae are used.
Krogh (1973) has shown that for AMF, the FSI technique can cause serious trouble if
the step-size is reduced for methods of orders greater than 7. It is expected that these
results are applicable to all multistep formulae.

Though the FSI technique can become unstable, it is a technique which is flexi-
ble in the sense that any set of formulae can be used in subroutine DIFSUB simply by
replacing the coefficients of the formulae being used presently (and the truncation er-
ror coefficients). This is in contrast to an algorithm using the VS technique. To use
a new set of formulae in an algorithm using the VS technique must necessarily involve
replacing all the code which computes the VS coefficients. Since there is no consensus
on what are the best formulae for solving stiff equations, flexibility to use several for-
mulae in an algorithm may be desirable.

In this paper we present a technique called the Average-Step Interpolation tech-
nique, which we believe does provide the flexibility to use any set of multistep formu-
lae in an algorithm and is shown to be stable by numerical testing.

We have assumed that the equation being solved is y' = f(x, ), y(x,) = y,- We
note that the predictor-corrector algorithm may be represented by the following poly-
nomial representation.

(1.1) Pn+1(x)=Pn(x)+8n+1C((x_xn+l)/hn+l)

P, ,(x) and P,(x) are the polynomials approximating y at x,,, ; and x,, respectively.
C is the modifier polynomial representing the formulae used, 4,,, , is the present step-
size and §,,, , is the correction applied so that P, (x) satisfres the differential equa-
tion at x,,, ;. (Note that in this definition of §,,,, there is no need to normalize C.)
The representation (1.1) is similar to that presented in Wallace and Gupta (1973). Al-
so (1.1) is equivalent to the following representation used by Gear (1971a, p. 224)
(1.2) a4y = Aa, + .

In Eq. (1.2), a,,,, and a,, are vectors of the scaled derivatives of the polynomials
P,,,(x) (at x,,,,) and P,(x) (at x,,) respectively. I1is a vector of the scaled deriva-
tives of the modifier polynomial C at x,, |, 4 is the Pascal triangle and w =
8,,+1C(0)/Iy; I, being the first element of /. This representation of a polynomial by
a vector of its scaled derivatives was originally suggested by Nordsieck (1962) and has
been recently used by Byrne and Hindmarsh (1975). In this paper we are going to as-
sume that this is the representation being used because it seems to be a very conven-
ient way to represent all multistep methods.
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2. Average-Step Interpolation (ASI) Technique. Let us first consider an example
which demonstrates why the FSI technique is unsatisfactory. The modifier polynomial
corresponding to the BDF of order k¥ + 1 is

@1 COY= (= 1) =ty €= 1),
where

(2.2) thi = ey = Xy DX gy = X,),
2.3) 1= (x =X, )Gy = %y)-

Now consider that the solution at the following points has been computed
Xp_3 =06, x, ,=10, x,_, =20, x,=30.

It is now required to compute solution at x,, ; = 3.5. We therefore have ¢,_5 =
-58,t, ,=-50,¢t,_, =-30,t, =-1.0,¢,,, = 0.0. If BDF of order 4 is being
used, the modifier polynomial using VS technique is given by

C)=(t+ 1)+ 3)(t+5)( +5.8).
Using the FSI technique, the following modifier polynomial is obtained
C(t) = (¢r + 1)(t + 2)(¢t + 3)(z + 4).

The vectors of the scaled derivatives of C(¢), that is the vectors [ in the represen-
tation (1.2), are (to three digits) [1.0, 1.706, 0.864, 0.170, 0.0115]7 for VS and
[1.0,2.083, 1.458,0.417, 0.0417] T for FSI

Since the correction term w in Eq. (1.2) is computed using only the first two
elements of /, it can easily be shown that the difference between w using FSI and w
using VS will be of the order of the difference between the second elements of the
vectors /. Therefore using the FSI technique, the correction applied to the 3rd and
4th derivatives of the approximating polynomial will be much greater than that applied
using the VS technique. In our opinion this is the main cause of the trouble using
FSI. We therefore want that the interpolation points should be well spread over the
interval containing the last k points (i.e. x,, — x,,_;) rather than crowding together to-
wards x,, whenever the step-size is being reduced as in FSI. The best solution, of
course, is to compute the VS formulae but a good compromise seems to be to choose
the interpolation points equally spaced over the interval x,, — x,_,, the spacing being
the average step-size in the last k-steps. That is why the name ASI.

The last element of / in the above vectors was 1/C(0), ((0) being the product of
the roots of the modifier polynomial. For BDF these roots are the interpolation
points. When the step-size is being reduced, the sum of the roots of the modifier
polynomial is obviously going to be much greater for the VS formulae than for the
FSI formulae.

In the above example, if we used the ASI technique, then the modifier polyno-
mial will be
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C(t) = (¢t + 1)t + 2.6)(t + 42)(t + 5.8).

Therefore the vector / using ASI is [10, 1.795, 0.994, 0.215, 0.0158] T

Graphically the idea behind FSI and ASI is illustrated in Figure 1 and Figure 2
respectively. In these figures P, is the polynomial approximating y at x,, C is the
modifier polynomial (for BDF) used in computing v, , ; and the vertical lines show
the points used in computing C.

P, (x)

FIGURE 1. Fixed-Step Interpolation

P,(x)
y(x)

FIGURE 2. Average-Step Interpolation
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3. An Algorithm for ASI. Let the order of the method being used be & + 1
and let the last £ + 1 points at which the solution has been computed be x,_; i = 0,
1,...,k. The average step-size in last k + 1 steps is k,, = (x,, — x,,_;)/k. Since we
are going to compute C(¢) using the scaled variable ¢ defined by (2.3), we define &, as
the average step-size in the scaled variable ¢. Therefore

he = gyl(Xp gy = Xp)-

Now the collocation points are (again, using the scaled variable £)
=-1-ih,, i=0,1,..., k.

Since these points are equally spaced, we can represent the modifier polynomial based
on these points as a vector of scaled derivatives at # = —1. This representation is inde-
pendent of %, and therefore may be stored in the subroutine.

Now let C(¢) be given by

(3.1) Clt)y=cq+et+eyt> + oy 570

The vector of the coefficients {c;} is equivalent to the vector / (except a scalar multi-
plication). Also this vector of coefficients may be thought of as the vector of the
scaled derivatives of the polynomial C(¢) at ¢+ = 0. (Note that the present step-size in
variable ¢ is always 1.) Therefore to compute / we need to compute the vector of the
scaled derivatives of C(¢) at t+ = 0. We already have a vector of scaled derivatives
(scaled so that the step-size is /,) of C(¢) at ¢ = —1. Therefore two steps are involved
in computing /:

(a) Rescale the vector of the scaled derivatives of C(r) at t = —1 by multiplying
the ith element of the vector h;‘+ = G=0,1,...,k).

(b) Extrapolate (by multiplying by the Pascal triangle) to obtain /.

Consider an example to illustrate the above algorithm. For BDF of order 4, the
modifier polynomial using ASI is

C)y=@+ D+ 1+h)t+1+2n)t+1+3h).
This may be represented as the following vector of the scaled derivatives of C(?)
[0, 643, 1112, 6h,, 1]7.
The vector is now multiplied by the Pascal triangle giving us the vector /.

4. Stability of FSI and ASI Techniques. In this section we rigorously analyze
a simple example where FSI gets into trouble while ASI does not. The stability of
the FSI technique has been analyzed by Gear and Tu (1974), who have shown that
the FSI technique is stable if at least k steps of constant step-size are taken between
step changes for k-step Adams method. Also it was shown that if the step-size varies
so that

(4.1) hyi=hyjyy = hyjpp =0hy; g ="
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then the Adams method becomes unstable. We now analyze the stability of the ASI
technique if the step-size varies according to (4.1).

We follow an approach similar to that of Gear and Tu (1974) and define a pre-
dictor-corrector method, when the step-size may not be constant, as

(4.2) A1 = Anan + Wnln

4,41, @, are vectors of the scaled derivatives of the approximating polynomials at

X, . and x, respectively, [, is a vector of the scaled derivatives of the modifier poly-
nomial at x,, ;, w, is the correction required (a scalar) so that a,, , satisfied the dif-
ferential equation at x,,, ,, and 4,4, is the predicted vector of derivatives. To sim-
plify the analysis, we consider that the differential equation being solved in y' = f(x)
and that a third order Adams method is being used to solve it. Therefore at x,,, |,
the second element of vector g, , ; must be equal to &, f(x, ), where h, =x,,; —
X,. (Further assume that [, in (4.2) always has its second element equal to 1.) Since
a, ., must satisfy the differential equation at x,, ;, the second element of 4,4, +
w, I, must be equal to 4, f(x, . ). This implies that

Wy = hnf(xn+l) - egAnan
and therefore,
(4'3) AGny1 = Anan + hnf(xn+ l)ln - egAnanln
where
el'=10,1,0,0,...,0].

To investigate the stability of the above predictor-corrector scheme, we need to find
an expression for the global error propagation. The global error vector at x,, . is
€, Which is defined as

4.9 €nt1 =dnt1 " bngy

where b, . ; is a vector of scaled true derivatives of the solution. Also let us define

(4 5) ;n+1 =Anbn +Wln
=Auby + 1 [y Dy — X A,b,1,.

~

d,4+, — b, is the truncation error, d,,, and therefore

€nt1 =Quyq ~Apprta, by
=an4 —;n+1 +d,
=~ lneZ)Anen +d, using (4.3) and (4.5).
Therefore

(4.6) €p1 = Sp€, T4,
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where
S, =(-l,eNA,.

For the FSI technique /, = / and it has been shown by Tu (1972) that one of the
eigenvalues of I1,S, becomes large if step-size changes as in (4.1). For the ASI tech-
nique, [,, = ADA ™'l where A4 is the pascal triangle, D is a scaling matrix, and [ is the
vector /, as used in FSI. For a third order Adams method, A7'1=10,0, 1/4, 1/6] r
and D, a diagonal matrix, has its diagonal as (1, r, ¥2, r*) where r = 2a/(a + 1) when
step-size is reduced and r = 2/(a + 1) when it is increased using the scheme (4.1). Us-
ing the above vectors /,, we can find expressions for S; when the step-size goes down
by a factor of « and also S;, ; when step-size goes up by a factor of a. It can be
shown that the product of S;S;, ; simplifies to

-

1 ? ? ?
0 o0 0 0
0 ? Qu-1DRv-1) Qu — 1)(3va) + 6uw

+ 6u(2v — 1)/3a
0 7 2Qu-1Rv-1)/3 2Q2u = va + 4uv
L + 4u(2v — 1)/3a i

where u = (o + 1)/(6 + 2a) and v = (a + 1)/(6a + 2). The above matrix has eigen-
values of 1, 0, 0, =(a — 1)?/ {4a + 3(a + 1)2}. If & > 1 then the last eigenvalue is
certainly less than unity and therefore the ASI technique is stable.

5. Numerical Testing. In this section the performance of the new technique
ASI is compared with that of VS and FSI techniques. Numerical testing similar to
that suggested by Krogh (1973) was done and detailed results are presented in Gupta
(1978). Some of the more interesting results are presented in this paper.

To test the techniques we used AMF of orders 5 to 14 to solve the differential
equations y' = f(x); f(x) = e ¥, cos x, cos xe*I"* 4¢%*[(e** + 1)2. We selected
quadrature type differential equations and AMF only for simplicity and, as commented
by Krogh (1973), we expect other methods and other differential equations to produce
similar results. The following algorithm was used in testing:

(a) Compute the coefficients of a polynomial, P(x) of degree m, approximating
the solution of the differential equation being used in the test. P(x) satisfies the fol-
lowing conditions

P'(xg —ih) = f(xq —ih), i=0,1,...,m—1,
and
P(xo) =J’(xo)

where & is the initial step-size and x, = 0.0.



132 G. K. GUPTA AND C. S. WALLACE

(b) Now to test the performance of the three techniques when the step-size is
changed from % to ok, we compute the vector of the scaled derivatives of P(x) such
that the ith element of the vector is

(«h)PD(x)it, i=0,1,...,m.

P(i)(xo) being the ith derivative of P(x) at x = x,.

(c) Integrate the differential equation for m steps using AMF for each of the
three techniques of changing the step-size.

At each step during the numerical testing, the local error in the numerical solu-
tion is computed. That is, we compute (v, 4, = ¥(x, . ))/¥(x, 1) where y, ., and
Y(x, ) are the computed and true solutions respectively of the following differential
equation:

v =1 ), y(x,) =y,

The results may now be summarized as follows

(1) Test Series 1. The aim of these tests was to test the step-size changing tech-
nique when the order of the method was held constant.

Krogh (1973) presented results of numerical testing and concluded that FSI works
quite satisfactorily when the step-size is increased. Our testing confirms this conclu-
sion. Therefore in this paper our attention is focused on the performance of the three
techniques whenever the step-size is reduced.

Methods of orders 5 to 14 were used in the testing. For methods of orders 5 to
7, we tested the three step-size changing techniques when the step-size was reduced by
a factor of 2 and by a factor of 4. For higher order methods, the step-size was re-
duced by a factor of 2. Similar results were obtained for methods of different orders
except that usually the performance of FSI got worse at higher orders. In this paper
we only present results for methods of orders 8 to 14.

In Tables 1 and 2, we present the local errors computed at each step using the
three step-size changing techniques for differential equations y’ = e* and y' = cos x.

In Tables 3 and 4, similar results are presented for differential equations y’ = cos xe*i"*
and y' = 4e2*/(e** + 1)2. In Table 5, the 11th derivatives of the approximating poly-
nomials are presented after a step-size change from 0.75 to 0.375. The differential
equation being solved was y' = e* and AMF of order 11 was being used. Results in
Table 5 show what exactly happens to the approximating polynomial after the step-
size is reduced using the various step-size changing techniques.

(2) Test Series 2. To test the step-size changing techniques when the order is
changed by one.

In a variable order variable step-size algorithm a situation may arise when the or-
der is lowered and the step-size is reduced. Also it is possible that in some instances
when the order is being lowered the step-size may be increasing, the latter usually hap-
pening when the derivatives of the approximating polynomials are somewhat corrupted.
On the other hand when the order of the method being used is increased, the step-size
must be increasing.
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We therefore tested the three step-size techniques when the step-size was reduced
and the order was lowered by one and also when the step-size was being increased and
the order was either lowered by one or increased by one. The results obtained are
similar to those obtained when the order was héld constant and are therefore of little
interest.

Studying the various results of numerical testing when the order of the method
and the step-size both were changed, we did find some other minor items of interest.
Firstly we found that when the step-size was reduced substantially it was usually better
(that is, the local errors were lower) to reduce the order of the method as well. Sec-
ondly, the order reducing technique used by Gear (1971b) whereby the mth derivative
of the approximating polynomial is dropped, when the order is reduced to m — 1, was
found to work quite satisfactorily. Also in increasing the order from m to m + 1 it
was found to be better to just put the (m + 1)st derivative of the approximating poly-
nomial to zero rather than using the technique of Gear (1971b). This was suggested
by Shampine and Gordon (1975).

(3) Test Series 3. To test the stability of the ASI technique.

A large number of tests were conducted to investigate the stability of the ASI
technique. In many tests the FSI technique was found to be unstable, but in all the
tests, using various sequences of step-sizes, the ASI and VS techniques were always
found to be stable. For example, for the method of order 7, the ODE y' = e* was
solved with alternating step-sizes of 0.5 and 0.1. After ten steps, the 7th derivative of
the approximating polynomial was 1.1 £ + 11 when the FSI technique was used. Us-
ing the ASI technique, the derivative was only 6.96. In fact the FSI technique was un-
stable even if the step-sizes of 0.5 and 0.2 were used alternately.

In Table 6, we present results for the differential equations y’' = e* and y' =
cos x when the step-sizes of 0.75 and 0.375 were used alternately using a method of
order 11. Similar results were obtained for other differential equations and methods
of different orders.

In the above stability tests, the step-sizes used were alternating between two very
different values. This alternating behavior cannot be expected to occur in practice
and this artificial example was used only to highlight the stable behavior of the ASI
technique. Some other sequences of step-sizes have been used and again ASI technique
was found to be stable.

6. Discussion. The new step-size changing technique (ASI) seems to be per-
formed quite well in the numerical testing; though not as well as the VS technique.
ASI is quite stable and in our opinion is attractive because it provides the flexibility
to use several sets of multistep formulae in an algorithm in contrast to the VS tech-
nique which requires that separate algorithms must be included for computing the VS
coefficients for each set of formulae.

Though generally ASI has performed better than FSI, there are instances where
FSI seems to be better. For example, in Table 2 we can see that after step number
10 FSI performs much better than ASI. Similar results were obtained for other differ-
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ential equations (Table 4) when method of order 14 was used and the step-size was re-
duced by a factor of 2. Also for the differential equation y’ = 4¢®*/(4¢%* + 1)2, the
performance of ASI is not better than that of FSI (Table 3).

The mild unstability displayed by the ASI technique in some of the tests is most
likely due to the following reason. If a step-size change takes place in going from x,,
to x,,,, and the ASI technique is used for computing the solution at x,, . ,, x5,

. » X, 4, then the approximating polynomial P, , (x) at x,,; (m =i > 1) is com-
puted based on interpolation points which are, except for the last point, all different
from the points at which the solution was computed. This is, it seems, not a problem
for most cases but in severe cases, like reducing the step-size by a factor of 2 at order
14, it can cause mild unstability. Further testing is being carried out and results will
be available in Gupta (1978).

The ASI technique can be implemented efficiently. Step (a) of the algorithm
presented in Section 3 takes 2m — 1 multiplications for a method of order m. Step
(b) requires (m + 1)(m + 2)/2 additions for extrapolation. Work done in step (b) can
be reduced because in the Nordsieck representation the prediction step also involves
extrapolation and therefore Step (b) of ASI technique and the prediction step may be
combined as follows:

(a) We have the approximating polynomial at x,, represented in Eq. (1.2) by the
vector a,,. Rather than computing the predicted vector Aa,, compute only the first
two elements (that is, predicted values of y,, ; and Ay, , ). This takes 2m — 1 addi-
tions and m — 1 multiplications.

(b) Rather than computing the predicted vector in step (b) of ASI technique
compute only the first two elements. Again this takes 2m — 1 additions and m — 1
multiplications.

(c) Now compute the correction to be applied (that is, w). We now have the
first two elements of vector 4, , ; in Eq. (1.2).

(d) Except for the first two elements, add w times the vector obtained after
step (a) in Section 3, to a,,.

(e) Extrapolate the corrected vector (except the first two elements). We now
have a,, ;.

The work done in steps (c), (d),and (e) above is part of the predictor-corrector
algorithm and is not additional due to ASI. Therefore the ASI algorithm cost is a lin-
ear function of the order m.

A further saving can be made by using the ASI technique for only (say) m/2
steps after a step-size reduction (rather than m steps) and then switching to the FSI
technique. Also when the step-size is increasing we need not use ASI since FSI works
quite satisfactorily.

In Gupta (1975), we have presented an algorithm using the ASI technique as
suggested here. The results of preliminary testing presented in Gupta (1975) suggest
that the subroutine has performed satisfactorily. Further extensive testing is being car-
ried out and the results will be presented in a later paper.
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y' = &r y' =cos x
Step
No x FSI AST Vs FSI AST Vs
1 0.375| 0.314E-4 |-0.740E-5 [-0.740E-5|-0.695E-3 | 0.132E-4 | 0.132E-4
2 0.750 [-0.248E-4 |-0.857E-5 |-0.274E-5| 0.420E-3 |70.612E-5 [0.954E-5
3 1.125| 0.124E-4 [-0.619E-5 |-0.138E-5|"0.249E-3 [r0.201E-4 |~0.558E-5
4 1.500 {-0.479E-5 |-0.315E-5 [-0.848E-6| 0.110E-3 |-0.193E-4 [~0.306E-5
5 1.875| 0.459E-6 |-0.154E-5 |-0.603E-6|~0.350E-4 |~0.544E-5 |=0.176E-5
6 2.250 |-0.506E-6 |~0.860E-6 |~0.486E-6| 0.518E-5| 0.623E-6 |70.101E-5
7 2.625 |-0.418E-6 |-0.204E-6 |=0.437E-6 |~0.574E-6 |~0.526E-5 [70.344E-6
8 3.000 [-0.420E-6 |-0.511E-6 |~0.437E-6| 0.227E-5| 0.156E-4 | 0.228E-5
TABLE 1. Local errors for methods of order 8
when the step-size is reduced from 0.75 to 0.375
y' = e y' = cos x
Step
No. x FSI AST Vs FSI AST Vs
1 0.375 | 0.681E-6 t+0.641E-7 |-0.641E-7 | 0.220E-4 ~0.507E~5 |-0.507E-5
2 0.750 |0.120E-5 +0.963E-7 |-0.182E-7 {-0.297E-4 0.549E-5 [-0.786E-6
3 11.125 | 0.165E-5 +0.866E-7 [-0.696E-8 | 0.438E-4 0.477E~5 |-0.148E-6
4 1.500 F0.171E-5 +0.467E-7 +0.322E-8 |-0.586E-4 -0.142E-5 -0.200E-7
5 1.875 |0.134E-5 H0.169E-7 |0.169E-8 | 0.692E-4 | 0.159E-5 | 0.761E-8
6 2.250 +0.801E-6 [0.152E-7 ~0.101E-8 {-0.733E-4 | 0.528E-6 | 0.132E-7
7 2.625 | 0.364E-6 H0.176E-7 H0.624E-9 | 0.761E-4 0.493E-5 | 0.155E-7
8 3.000 F0.124E-6 (0.483E-8 +0.452E-9 |-0.132E-3 | 0.547E-5 | 0.325E-7
9 3.375 |0.306E-7 |0.214E-8 |0.323E-9 |-0.289E-4 ~0.157E-4 -0.949E-8
10 3.750 H0.544E-8 H0.602E-8 +0.274E-9 | 0.290E-5 [ 0.880E-5 F0.110E-8
11 4.125 {0.365E-9 [0.941E-11{0.220E~9 -0.303E-6 -0.218E-5 | 0.476E-9
12 4.500 +H0.217E-9 |0.242E-8 0.197E-9 | 0.192E-7 0.521E-5 | 0.101E-8
13 4.875 H0.192E-9 r0.626E—8 F0.192E-9 | 0.141E-8 | 0.187E-4 |0.138E-8
14 5.250 .186E-9 | 0.749E-8 F0.186E—9 0.180E-8 {0.412E-4 |0.182E-8

TABLE 2. Local errors for methods of order 14
when the step-size is reduced from 0.75 to 0.375
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1

sin x

2x 2x

)2

y' = cos x e y' = 4”7/ (e
Step
No. x FSI AST S FSI AST VS
1 0.250 [-0.260E-4 |~0.420E-4 +0.420E-4 +0.292E-2 | 0.485E-4| 0.485E-4
2 0.500 | 0.112E-4 |-0.879E-4 +-0.415E-4 | 0.433E-2 -0.976E-3 -0.750E-3
3 0.750 F0.112E-4 |~0.923E-4 [0.163E-4 (0.451E-2 |-0.173E-2 | 0.196E-3
4 1.000 | 0.174E-4 |~0.170E-4 | 0.132E-4 |0.383E-2 | 0.112E-2 | 0.767E-3
5 1.250 | 0.173E-4 | 0.702E-4 | 0.255E-4 +0.226E-2 | 0.321E-2 r0.443E-3
6 1.500 | 0.754E-5 | 0.314E-4 {0.109E-4 +0.143E-3 |-0.419E-2 -0.707E-3
7 1.750 F0.196E-4 [F0.442E-4 F0.194E-4 [0.242E-3 | 0.424E-2 | 0.225E-3
8 2.000 +0.377E-4 -0.152E-4 0.390E-4 |0.594E-3 +0.116E-2 | 0.629E-3
TABLE 3. Local errors for methods of order 8
when the step-size is reduced from 0.5 to 0.25
y' = cos x eSin x y' = 4ezx/(ezx+1)2
Step
No.| = FSI ASI Vs FSI ASI Vs
1 0.250 | 0.450E-1 [-0.391E-3 [~0.391E-3 0.311E-4 |-0.880E-3 |-0.880E-3
2 0.500 [70.964E-1 |-0.300E-3 | 0.135E-3 | 0.897E-3 |-0.135E-2 | 0.482E-3
3 0.750 | 0.147E+0 | 0.142E-3 | 0.767E-5 H0.490E-2 | 0.221E-2 | 0.894E-3
4 1.000 [0.218E+0 | 0.461E-3 -0.267E-5 |0.133E-1 | 0.861E-2 |-0.223E-2
5 1.250 | 0.186E+0 | 0.152E-3 +0.118E-4 0.237E-1 |-0.418E-2 | 0.133E-2
6 1.500 H0.189E+0 |-0.480E-3 H0.240E-5 |0.309E-1 [-0.404E-1 | 0.289E-2
7 1.750 |0.107E+0 H0.266E-3 |0.166E-4 [H0.398E-1 | 0.178E-1 |-0.709E-2
8 2.000 H0.643E-1 |0.802E-3 |0.703E05 |0.402E-1 { 0.156E+0 | 0.477E-2
9 2.250 [0.248E-1 |0.114E-4 [H0.281E-4 F0.263E-1 |-0.302E+0 | 0.416E-2
10 2.500 +0.757E-2 FH0.158E-2 HO0.162E-4 |0.145E-2 {-0.271E+0 {-0.938E-2
11 2.750 |0.147E-2 |0.287E-2 |0.487E-4 |0.378E-2 | 0.112E+1 | 0.318E-2
12 3.000 H0.959E-4 (0.376E-2 |0.373E-4 {0.411E-2 |[0.529E+1 | 0.427E-2
13 3.250 {0.684E-4 |0.533E-2 +0.673E-4 H0.221E-2 | 0.243E+1 |-0.196E-2
14 3.500 +0.812E-4 |0.694E-3 [0.794E—4 F0.211E-2 | 0.168E+1 |-0.175E-2

TABLE 4. Local errors for methods of order 14

when the step-size is reduced from 0.5 to 0.25




STEP-SIZE CHANGING TECHNIQUE FOR MULTISTEP METHODS

Step True Using Using Using
No Value FSI AST Vs
0 1.0 0.030 0.030 0.030
1 1.455 5.506 0.060 0.060
2 2.117 -20.761 0.085 0.116
3 3.080 44.044 0.156 0.218
4 4.482 -55.750 0.291 0.392
5 6.521 49.990 0.478 0.683
6 9.488 -26.965 0.756 1.153
7 13.805 13.032 1.420 1.886
8 20.086 0.861 2.647 2.995
9 29.224 4.993 3.659 4.617
10 42.521 6.914 8.102 6.914

TABLE 5. 11th derivatives of the approximating

polynomials when the step-size is reduced for the equation y' =e

X

137

y' = cos x y' = &

Step

No. FSI AST VS FSI AST VS

1 0.112E-3 | 0.983E-5 0.983E-5 0.474E-5 |-0.647E-6 |~0.647E-6
2 0.246E-2 0.122E-3 | 0.445E-4 0.132E-3 |-0.851E-5 |-0.286E-5
3 -0.207E-2 |-0.643E-6 | 0.392E-5 |-0.844E-4 |-0.55 E-7 |-0.326E-6
4 -0.156E+0 0.134E-3 0.185E-4 |-0.236E-2 |-0.565E-5 |~-0.175E-5
5 0.184E+0 |-0.181E-4 0.340E-6 0.151E-2 |-0.797E-8 [~ 0.222E-6
6 - 0.300E+2 0.129E-3 | 0.374E-4 | 0.423E-1 |-0.412E-5 |-0.132E-5
7 0.860E+0 [-0.140E-4 0.287E-5 |-0.279E-1 0.169E-6 |-0.180E-6
8 0.260E+3 0.978E-4 0.130E-4 |-0.758E+0 |-0.323E-5 |-0.114E-5
9 0.936E+0 |-0.208E-4 0.111E-5 0.319E+0 0.309E-6 |-0.164E-6
10 0.849E+3 0.105E-3 0.386E-5 0.134E+2 |-0.280E-5 |-0.109E-5

TABLE 6. Local errors for method of order 11 using

alternating step-sizes of 0.75 and 0.375
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