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Computer Solution and Perturbation Analysis
of Generalized Linear Least Squares Problems

By C. C. Paige*

Abstract. A new formulation of the generalized linear least squares problem is given.
This is based on some ideas in estimation and allows complete generality in that there
are no restrictions on the matrices involved. The formulation leads directly to a nu-
merical algorithm involving orthogonal decompositions for solving the problem. A per-
turbation analysis of the problem is obtained by using the new formulation and some
of the decompositions used in the solution. A rounding error analysis is given to show

that the algorithm is numerically stable.

1. Introduction. An important problem that has been treated at length in the
numerical literature is the linear least squares problem: find the n-dimensional vector
x that minimizes

€] ICx = ylI? = (Cx = »)T(Cx — ),

where C is a given real m by n matrix, y is a given real m-dimensional vector and super-
script T denotes transpose. See for example [2] to [14].

A closely related problem is the generalized linear least squares problem: find x
that minimizes

@) (Cx =)W H(Cx - ),

where in addition W is a given real symmetric positive definite m by m matrix. Perhaps
the main use of this latter numerical problem is in the estimation of linear systems, see
for example [15] and [16]. In such problems the vector y of measurements is given
where y is known to be related to x by

(3) y=Cx+w,

w being an unknown noise vector with zero mean and variance-covariance matrix (co-
variance matrix) 02W. Here W is a known m by m nonnegative definite matrix, and o2
is an unknown nonnegative scalar. That is, if £(-) is used to denote the expected value,

4 Ew)=0, Ewwl)=0o?W.
For this linear model, the vector x that minimizes (2) is called the least squares estimate

of x, and its properties are discussed in [15]. The W' in (2) can be thought of as a
way of taking into account the relative importance of noise elements, and the minimi-
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zation then finds x corresponding to “smallest” noise in (3). A good introduction to
the statistical ideas here is given in [16].

The numerical solution of this problem has not been fully treated in the literature,
although methods are available. However, a method such as that described in [10, p.
185] and used in [17] and [8] and elsewhere in the numerical, engineering, economet-
ric, and statistical literatures, can be numerically unstable when W in (2) is close to sin-
gular, and fail completely when W is singular. Bjorck [1] has designed a method to han-
dle less than full rank W, and his method will work well when the nonzero eigenvalues
of W are all of the same order. However, it is unstable in that it can lose accuracy un-
necessarily when W is ill-conditioned for solution of equations.

It is the purpose of this paper to examine the problem in the setting of (2) and
(3) in order to produce a natural formulation and solution. A proof of numerical sta-
bility of the algorithm will be given, along with a perturbation analysis for the whole
problem. One advantage of the present method is that it follows directly from the new
formulation of the problem, and this formulation appears to be the most natural and
general one for the problem. Another advantage is that both formulation and method
combine to give a reasonable perturbation analysis of the problem.

2. Problem Formulation. The formulation in (2) breaks down when W is singular,
and yet a positive semidefinite W in (4) is perfectly meaningful. Here a formulation
which allows any matrix C and any symmetric nonnegative definite W will be given.
Any such m by m W of rank k has a factorization

®) W = BBT,

where B is m by k of rank k. For example, the Cholesky factorization W = LLT could
be carried out as in [10, p. 124], ensuring that a column of the lower triangular matrix
L is zero whenever its diagonal element is also zero. B would then be obtained by de-
leting the zero columns of L. The decomposition can also be arranged to have L upper
triangular. If there is uncertainty about the rank of W, it might be preferable to use
the eigendecomposition of W.

In (4) and (5) B is a more basic matrix than W, and will often be directly avail-
able. Since computing W from a given B can lose information (see for example [6]),
we will assume from now on that B is given.

It can be shown that a random vector w satisfying (4) with (5) can be expressed

(6) w=Bv, Ev) =0, EwT)= %,

where v is a k-dimensional random vector. As a result, (3), (4), and (5) give the linear
model

(7 y=Cx+By, E@®=0 E@v)=0dL

Since all the elements of v can be treated equally, it makes sense to formulate the prob-
lem as
(®) minimize vTv subject to y = Cx + Bu.

UV, X
This is a very general formulation in that it allows all C and B, and any y that could
have come from the linear model (7). It is straightforward to show that when W is non-
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singular, a vector x solving (8) will also minimize (2), and so this formulation is
consistent with present ideas. It can be shown that the formulation in (8) leads to the
same solution that Rao obtains in his unified theory of least squares [15]. The advan-
tage of the formulation (8) is that it appears to be easier to derive and work with than
Rao’s approach which is based on generalized inverses. Most importantly, formulation
(8) will greatly facilitate perturbation analysis and will easily lead to numerically stable
computations. It is also very amenable to treating special cases where C and B have spe-
cial form—as in many engineering problems (see for example [17]). Rao’s approach
does not lead directly to good computations and does not appear to offer any advan-
tages for special problems.

3. Problem Solution. C. L. Lawson and the referee both pointed out that once
the realization is made that the problem can be formulated as in (8), the solution is
fairly straightforward. For example (8) could be expressed as

()

a simple equality-constrained least squares problem. One of the general methods in [10°
could then be applied. The method in [10, Chapter 20] appears to be the most numeri
cally reliable of these, although no rounding error analysis is given. The method in [10,
Chapter 21] has the same type of numerical instability we are trying to avoid here. If
we extend the approach in [10, Chapter 20] to the rank deficient case, we will find or-
thogonal matrices Q and P to give

o'[c BlP= <g 8), T nonsingular,

w P P
< 1> _ PT<JC>’ P < 11 12>, <sl > _ o7y,
W2 v Py Py, 8y

The constraints then become

minimize

subject to [C  B] <i) =y,

Tw, =5, s, =0.

The first of these can always be solved for w,, but for consistency y must be such that
the second automatically holds. We then need only solve

minimize || Pyow, + Py wyll

for w, and then reconstruct x and v.

Using such a well-known technique could save time in finding solutions to prob-
lems of the form (8) for general C and B. However, such an approach does not treat
x, v, C, B separately. In the statistical context where such problems usually arise, x is
a vector of parameters while v is a noise vector, and it is important in the analysis to
treat them separately. Here we will give a numerically stable algorithm that takes ad-
vantage of the special form of (8), and maintains x, v, C, B as separate throughout.
This will allow us to carry out a perturbation analysis of the problem based on the re-
sulting decompositions. For problems with special structure, as for example in [17], it
is also important to maintain x, v, C, B as separate during the computation.
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First, decompose C as is usual in the ordinary least squares problem [4], [6]

oTc R
) o7c = <Q%"C> = <0>, Q = (Q,, @,) orthogonal,

so that R has full row rank. Column pivoting can be used; or if there is some uncer-
tainty as to the rank of C, the singular value decomposition of C could be obtained [7].
The constraints in (8) then split in two

(10) 0Ty = Rx + Q7Bv,

(11) 07y = 0IBu.

Since R has full row rank, (10) can always be solved for x once v is given, and so (11)
gives the constraints on v, and (8) becomes

(12) mjn vTv subject to ofy = 07 B.

Next, decompose

(13) QIBP =(0,S), P =(P,,P,) orthogonal,

so that S has full column rank. Row pivoting can be used, as can the singular value de-
composition. The solution to (12) is then

(14) 0= Pyi, where Sii = Q2TJ’-

Since S has full column rank, & is unique if the set of equations is consistent, and so D
is unique. These equations will be consistent if the constraints can be satisfied in (8),
that is, if the original linear model is correct. Thus, a check can be provided on the
correctness of the model. If Q2T B has full row rank, then S in (13) can be made trian-
gular, in this case solve (14) for . Otherwise, decompose

oS\ _(§
(15) 07s = e | = <0 >, 0 = (Q,, Q,) orthogonal,

08
so that § is triangular. Again column pivoting can be used, while if the singular value
decomposition was used in (13), FélT and § (diagonal) would already be available. Then
solve
(16) Sa = 070}y.
Now x rather than v is wanted, so (10) becomes

Rx =QTy - 0TBP,i = b say,

(17)

=] -BP,S 0T 0))y =Gy say.
If R is square, solve for the unique solution X. Otherwise, there will be many x satis-

fying (17); and we will usually want the solution X with minimum 2-norm, so decom-
pose

(18) RP = (Rﬁl, Ri’;,) =(0,R), P orthogonal,

so that R is triangular. Row pivoting can be used, while if the singular value decompo-
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sition was used in (9), T’; and R (diagonal) would already be available. Then
(19) x=P,z, where Rz = b,

and z, and so %, can easily be computed.

The matrix i’; can effectively be kept and used in (19). The matrix Q in (9)
could be kept for forming b in (17), or it need not be kept if Q7B is formed at the
same time as Q7 C and Q7 are formed. Again, P could be kept for forming b, if only
QgB is transformed in (13). P need not be kept if

oTpp, 0oTmpP T
(20) 0TBP = < s 2> =<é g) say

is formed. In this case if B has special form such as upper triangular, it could be advan-
tageous to carry out the P and Q transformations together, making careful use of rota-
tions to maintain the triangular form throughout. This would result in S and LT be-
ing upper triangular. If B has lower triangular form, the computations in (9) and (13)
can be rearranged to maintain this form too. This latter form has been programmed in
ALGOLW by Stavros Kourouklis [18] for the McGill University IBM 370 system.

Some properties of the problem will be clarified by examining the matrices ap-
pearing in this method of solution. From (9) we see that the columns of @, span R(C).
the range of C, so the columns of @, span the orthogonal complement of R(C); that is,
the columns of Q, span the space of all vectors g such that g7C = 0. Next from (13)
and (15)

~

aTQgB = <g)P2T s s nonsingular,
so that the columns of Q, az span the space of all vectors g such that ¢7(C, B) = 0.
This means that the columns of (Q,, Qzal) span R(C) + R(B). So for the model (7)
to be meaningful we need y € R(C) + R(B), that is ag 0Ty = 0. If this is so, then
from (10) and (11) we see that v will be chosen to account for aTQ; y, and then x
will be chosen to account for the rest. In other words, I@; 0Tyl will give a measure
of how wrong y is for this model; and when y is allowable, II@TQzTyII shows how much
of y can only be accounted for by noise.

4. Properties of the Estimator. For a given measurement vector y, X in (19) is
our least squares estimate of x in (7). Now since v is a random vector in (7), y is a ran-
dom vector before it is measured; and then X which is a linear function of y, see (17),
will also be a random vector, called the estimator of x. Here we examine some of the
important properties of X as an estimator of x.

We have seen that X is the minimum 2-norm solution of (17). From (13) and
(15)

(21) 07B = SP} = Q,SP7,
so in (17) RX = Gy becomes with (7) and (9)

Rx = G(Cx + Bv) = Rx + QTB(I - P,PD)v;
thus with the orthogonality of P and the notation in (20)
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(22) R(% - x) = Q] BP, PTy = LTPTy,
From (7) it follows that

(23) REF -x) =0,

(24) RHRT = ®LTL, H=E[E-x)E-x)T].
If R is square, it is nonsingular, and

(25) EG-x)=0, H=0?R'LTLRT,

$0 X is an unbiased estimator of x whose covariance matrix H has the right-hand factor
oLR™T. IfRis upper triangular and L is lower triangular, then this factor is lower tri-
angular.

If R which has full row rank is not square, then C in (7) and (9) has less than full
column rank. In this case write

(26) x=x,+ %, x, LN, x,€NO),
where N(C) is the null space of C. Then % is an unbiased estimator of x,, with covari-
ance matrix, from (18) and (24)
27) o?P, R LTLR TR .

5. Perturbation Analysis. It is important to understand what effect changes in
the data will have on our estimate X¥. Let our perturbed data be
(28) y=y+8y, C=C+8C, B=B+ B

leading to the solution 9 + 6v, X + 8x of the perturbed problem (8). Considering (8)
for both the original and perturbed problems, we see that §v and 8x give

(29) minimum (2678v + sv76v),
§x,6v
(30 subject to Céx + Bsv = 67,
(31 8y =8y — 8C% — 8BY.
The constraints (30) have the same form as in (8), so we can proceed as in (9) and (20)
32) g'c= <§) QTF’T:(f)T ?)

where Q = (0,, 0,), P = (P,, P,) are orthogonal, and R and S7 have full row rank.
In the following, superscript + will denote the pseudo-inverse, and o(-) will de-
note the smallest nonzero singular value, so for example in (15)

(33) St =817, 1Is*I = 1/a(S),
where || || will always denote the 2-norm.

Combining (30) and (32) shows that the constraints on §v are
(3% 076y = 0IBsv =SPLév,

and this must be a consistent system for the perturbation to be meaningful for this
problem. We can then express

sv="Pz, + Pyz,, z,=5"0%sy,
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for all z;. Substituting this in (29) and taking the derivative with respect to z, gives
(35) zy =-P[d, bv="P,5*0]sy ~ PP},
The first term in (35) can easily be bounded, but the second is more difficult. From
(14)

T~ _ > N
(36) P ="P[P,st0ly =PTpP,PT%,
and we will seek an expression for PTP,. To do this we first consider 070,. Com-
bining (9) and (32), and realizing that R has full row rank,
(37 0;C =0](C+6C) = 0JsC = QfO,R, QT0Q, = QI6CR*,
(38) 10301 < e/o(©), e, =l5CI,

where 0(C) = o(R) is the smallest nonzero singular value of C = C + §C. Note that if
C and C have the same rank, then (see for example [19, p. 321])

(39 l6(C) = 0(C)] <e,.
Continuing our search for P,TP,, we see from (32)
T
0

|

(40) (B + 8B)P = §<

).

010,L7 - 0IsBP, = QIBP, = SPTP,

so from the first set of colunns of this

from (21). This combines with (37) to give
(41) P]P, = S*(QTSCRYLT - QT5BP),
(42) IPJP Il < [eg + ILlle,/a(D)]/a(S), eg = II8BI.

This can now be used with (35) and (36) to give an expression for §v which can be
bounded

(43) Sv=P,S 0787 + P, [P{6BTQ, ~ L(R*)TsCTQ,](S*)"PTs.

We now obtain an expression for 6%, the smallest §x in (29) and (30). From (32)
Réx = 0] (57 - Bov),

and combining this with (43) and (32) gives

(44) 83 = R*[Q] ~FS*QJ18y ~RTLT[PT5BTQ, - L(R*)T6CTQ,](S*)TPTY.

Note that for large D this second term can be quite large, this is the equivalent of the

possibly large residual term in the analyses in [3], [9], [12], [13], [19], and [20],

for the ordinary least squares problem. If here B=B =1I,then 8B=0,P=(Q,P =

0, L=L=1,5=5=IF=F=0and

(45) 8x = R*QTsy + RY(RH)TsCT9,

which corresponds to the results in those references. We also note that if the columns

of B and §C lie in the range of C, then the second term in (44) is zero. A simple
bound for (44) is
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(46)  [18xll < {[1 + IFI/o(S)H1NIFI + [eg + ILIle,/a(OVILI- [I01l/a(S)}/a(T),

where 87 is as in (31) and o(C) satisfies (39) if C and C have the same rank. We also
have

(47 LI, 1Al < 1B + 8Bl < |IBIl + eg.

For (46) to give a rigorous a priori bound, we see we will have to obtain a lower bound
for 0(S). Now

(48) 0(S) = 0(Q3B), o(S) = 0(02B)
and to relate these we note that
(49) 0;B=0500"B + 0JsB = 050,0TB + (0, 070,078 + 0758,

_ - 0{0,07B 0
R QTQ2Q§ = . + .
0fB 10.0(8)  \0fss
(50) —
0 -070, 0
=| 0"B+ |
70, © T5B
But from (9) and (32)
(51) 0Jc=0%0,R = OI(C - 5C) = —0ZsC,
(52) 070, =-0IsCr,
and we will assume e, = |I6C]| is sufficiently small so that
(53) 10701l < e.fa(C) <1.
If also C and C have the same rank, then (38) and (39) give
(54) 1070, 1l < €,/(a(C) —¢,),
50 if S and S have the same rank, (48) and (50) give
(55) 10(S) = 0(S) < eg + €,lIBII/(a(C) — ¢,).

Happily we note that if the perturbations are sufficiently small, and C and C
have the same rank, while S and S do too, then ¢(C) and o (S ) in (46) can effectively
be replaced by o(C) and 6(S), respectively, where 0(S) = o(Q¥B), and the columns of
Q, form an orthogonal basis for the null space of CT. In this case it is the smallest
nonzero singular value of C and that of the projection of B onto the null space of C7,
which determine the condition of the problem.

If a tighter bound than (46) is needed, we can write

6Cy 6By, 08By, by
(s6)  QTsC= , QTsBP = L oTsy=| ')

8C, 6B,y 8By, 8y,
and use (41) to give

(57) Q78BP, = 8B, PP, + B,,S*(5C,R*LT - QTsBP)),
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8B 1l + IIL1I - 1I8C, 1l - 18B5,lI(6(S) o (C))

loFsBP, I, <
(58) 12 1 = 18B,,11(6(S)) ™!

where we assume the denominator is positive. For small errors this bound is nearly

1684, 1. These results can be used to bound the second term on the right-hand side of
(44). For the first term we use

(59) 0f = (©@70,,070,)07, j=1,2,
with (31), (56), (14), (37) and (52) to give
0Ts7 = 0T, [6y, — 8C,% — 8B,,P10]

(60) _
+ RNHTsCTQ, [6y, — 8C,% — 8B,,P30],

0367 = —0386CR™ [6y, — 6C,% — 8B,,PT1]
(61)
+070,[6y, — 8C,% — 8B,,PID].

From the expressions we have derived we could produce a correct, fairly tight, but ex-
tremely messy a priori bound on ||6X||. Instead we will assume the perturbations are
small enough to ignore some of the second order error terms. Thus, if C and C have
the same rank, and S and S have the same rank, we effectively have from (44), (60),
(61), and (58)

sl < — |1+ AN oGl 8y Il +NSC LI -NxN + 8B, I - 101l
lloxil < o) 5(5)o(C) 16y 11 +118C 11 - 11X 12111101

18C, Il
<Mﬂ 4 18G

(62)

a(S) o(C) > 18y, 1l + 118C, I - 111l + 118B,, 11 - 11D11)

Ll I5C, | X
+ %(nwun + O(—Cz) ||L||> nun].

This separates the perturbation effect into its main components. For example, we see
that the term QT8BP; has no effect on §%. Next we note that if all the perturbations
are orthogonal to Q,, that is if they all lie in the range of C, the condition of the prob-
lem is proportional to 1/¢(C). If Q; 8C = 0, then the condition is proportional to
1/(6(C)a(S)). In the worst case the condition depends on 1/(a(C)? - a(S)).

This perturbation analysis can be used to see what effect errors or changes in the
original data will have on the solution. It can also be used along with the backward

error analysis in the next section to understand what effect rounding errors can have
on X.

6. Rounding Error Analysis. The analysis of the most likely computation will be
given. This will occur when orthogonal-triangular decompositions are used in (9) and
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(13) rather than singular value decompositions, and when R in (9) and S in (13) are
both square. This last will always occur when C has full column rank and B is square

in (7) and (8). When no rounding errors are present, the resulting computations in Sec-
tion 3 can be summarized by

T
(63) orc.a |l P |- N . =00,
1 Oa O’ S’ y2 ! !

< R F> x ) B / I
(64) 0o s <ﬁ _\y2>'
For this case well-known backward rounding error analysis results will be used to show
that the computation is numerically stable. By this is meant that the computed solution
will be exact for a problem of the same form as (8) but with slightly different initial
data. It will simplify the presentation if multiplicative terms involving the dimensions
of the problem are omitted from the error bounds, since the exact terms are not need-
ed for proving stability, and can be found for any particular computation in [21] and
elsewhere in the literature. Results of basic rounding error analyses will be quoted from
the work of Wilkinson (see for example [21]) without further reference, and the sym-
bols ¢; will indicate nonnegative quantities which are bounded above by the product of
¢, the floating point arithmetic computer precision, and constants dependent only on
the dimensions of the problem. Terms of the form €;€; will be ignored.

When a matrix A4 is transformed by stable orthogonal transformations or fast sta-
ble square root free rotations (see, for example, [22]) so that ideally aTA =G, a or-
thogonal, it can be shown that the computed matrix G satisfies

(65) 0T(4 + E|) =G, Q orthogonal, |E,ll = e,llAll,
and this holds even when a is directly chosen to make part of G zero, and the corre-

sponding part of G is set to zero. If G is then transformed from the right, the com-
puted result N satisfies

(G +E,)P =N, P orthogonal, |E,Il = e,llAll.
These combine to give
(66) QT(4 + E)P =N, |IE;ll = IE; + QF,| = &4l

and further left and right transformations can be applied in any order to give the same
form of result.
Thus, when rounding errors are present, (63) becomes

R,LT, F9y1
0, 0, 8, ,

5

— I —
QT(C+E,,B+E,,y +6y)< P 1> = (
(67)
IELII =€ ICll, NE1l = € lIBIl, 1181l = €liyll,

where Q and P are orthogonal, and R etc. are the computed results. We see that this
holds whether Q is applied first and then followed by P, or the two transformations
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are “interleaved” as in [18]. In the presence of rounding errors it can be shown that
the computed solution %, & of (64) satisfies

R+E;, F+E\[3 Y1
0, S+E\a) \»,)

E,
IE51l = 5lICIl,
3 31ICll E

(68)

= ¢€,||BP,|I.

Combining (67) and (68) shows that ¥ and & give the exact solution of (8) for the ini-
tial data

C=C+E, +0,E;, IC~-CI<(e + elCl,
(69) B=B+E, +0,E,P] + Q,EP], B -BI<(e, +ep)lBl,
y=y+8y, 17-ylI<elyl,

that is, the computed solution is exact for a nearby problem. Note that the computed
R and L are exact for the data C + E, B and that R differs by E,4 from the true ma-
trix corresponding to (69), while L is correct. As a result, the algorithm is numerically
stable for computing the estimate X and is also numerically stable for computing full
available information R and L on the covariance matrix in (24). Since the triple %, R,
L is not exact for (69), but is very close to the exact solution of (69), the statement
that the algorithm is numerically stable for this triple can be interpreted in the wide
sense described by Stewart [19, p. 76].

7. Comments. The rounding error analysis does not say that R"1L7 in (25) can
be computed in a numerically stable way, and so it has not been shown that the algo-
rithm is stable for computing the covariance matrix factor. However, it is the author’s
opinion that (24) gives a more general and useful representation of the covariance matrix
than the more standard (25) or (27), and the algorithm is numerically stable for compu-
ting R and L in (24). In this wider sense the algorithm can be said to be stable for find-
ing the covariance matrix representation.

The cases where either R in (9) or S in (13) is square and nearly singular, or not
square, can lead to difficulties in deciding just what ranks are meaningful for any given
problem. This has been examined in [14] for the ordinary linear least squares problem,
and needs further work here.

Finally, it is the author’s opinion that the formulation (8) of the problem contri-
butes greatly to its solution and analysis, as well as generalizing the problem. For ex-
ample, if the formulation (8) is used for the ordinary least squares case of B = I, then
it seems to lead to a slightly easier perturbation analysis, and in the general case (8)
makes the perturbation analysis definitely more tractable . Also, since y = Cx + Bv is
now just a set of constraints, it is clear that the transformation in (9) can be carried
out by any well-conditioned nonsingular matrix Q. Then it is clear that the algorithm
can often be speeded up by using stabilized nonunitary transformations [11], [21].
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Again it is not necessary to use orthogonal transformations to solve (12), see [11], al-
though orthogonal transformations are elegant for this problem. Cline [5] has used
stabilized nonunitary transformations for the ordinary linear least squares problem,
thereby saving computations in some situations, with no loss in accuracy. This type of
approach is also especially useful for problems of the form (8) when the matrices have
special form such as being large and sparse with structure. Paige [23] has suggested
some fast algorithms for the present problem, especially in structured cases. Numeri-
cally stable updating techniques are given in [24].
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