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Minkowski Reduction of Integral Matrices

By John L. Donaldson

Abstract. In 1905 Hermann Minkowski introduced his theory of reduction of
positive definite quadratic forms. Recently, Hans J. Zassenhaus has suggested
that this theory can be applied to the problem of row reduction of matrices of
integers. Computational investigations have shown that for matrices with more
columns than rows, the number of steps required for reduction decreases
drastically. In this paper it is proved that as the number of columns increases,
the probability that a matrix is Minkowski reduced approaches one. This fact
is the motivation behind the introduction of a modified version of Minkowski

reduction, resulting in a reduction procedure more suitable for computation.

1. Introduction. In 1905 Hermann Minkowski introduced his theory of
reduction of positive definite quadratic forms [1]. This theory is one of the
essential foundations of the geometry of numbers. Recently, Hans J. Zassenhaus has
suggested that Minkowski reduction can be applied to the problem of row reduction
of matrices of integers [2]. It is the study and development of this idea that forms
the basis of this paper; emphasis is placed particularly on the reduction algorithm,
as adapted to machine computation. Section 2 is devoted to the theoretical founda-
tions of the subject, including an outline of Minkowski’s original work. Statistical
methods are used in Section 3 to examine the algorithm, and the result is the main
theorem of the dissertation. This theorem gives a relationship between the dimensions
of a matrix and the probability that it is reduced. In Section 4, motivated by the
theorem, a modified version of Minkowski reduction is defined and developed.

2. Theoretical Background. We are concerned with matrices of integers. Two
matrices A and B are said to be unimodularly equivalent if and only if there exists a
unimodular integral matrix U such that A = UB. Our aim here is to define a
canonical representative, the “reduced” matrix, in each class, and to provide an
algorithm for finding the reduced matrix equivalent to a given matrix.

2.1. The Hermite Normal Form. The usual method of reduction of integral
matrices was introduced by Hermite in 1851 [3]. Among more recent accounts of
his theory is the one by MacDuffee [4]. Hermite showed that every matrix is uni-
modularly equivalent to one in upper triangular form, such that each entry above the
diagonal is bounded by one-half the magnitude of the diagonal entry directly below
it. Such a matrix is said to be in Hermite normal form.
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Several algorithms to compute the Hermite normal form of a given matrix have
have been published, all of them similar [5], [6], [7]. Implementation of these
algorithms for machine computation suffers one major drawback, that of overflow. The
computer investigations by Zassenhaus and David Ford verified the fact that the
numbers generated by the reduction procedure can increase rapidly in magnitude,
beyond the capacity of the typical machine, even when the matrices to be reduced
have as few as three or four rows and entries bounded in magnitude by 100.

2.2. Matrices and Modules. Before we pursue our alternative to Hermitian re-
duction, we shall mention the connection between a matrix and its associated Z-
module, first developed by Chatelet [8]. Suppose 4 is an m x n real matrix, with
Tows a,, a,, . . . , a,,. With addition and scalar multiplication defined component-
wise, the Z-module generated by a,, . . ., a,, is called the row module of A. a,,

., a,, form a basis for the row module if and only if 4 is nonsingular. If 4 is
nonsingular, there is a one-to-one correspondence between matrices unimodularly equiv-
alent to A (modulo the ordering of the rows) and bases of the row module. Thus,
reduction is equivalent to selecting a canonical basis for the row module. It is this
correspondence which leads us to develop the theory of Minkowski reduction in
terms of modules.

Remark. The row module of A may be thought of as a lattice in real n-
dimensional space. It is here that the connection with the geometry of numbers lies.
Minkowski’s work is done in terms of lattices.

Remark. Although the primary concern is with integral matrices, the reduction
theory is valid for real matrices. Most of the work following will be in this more
general setting.

2.3. Gauge Functions. The basic idea of Minkowski reduction is to choose a
matrix from each equivalence class whose rows are as short as possible, according to
some definition of length. Minkowski used the common Euclidean length; this was
generalized to the gauge function by Weyl [9]. Since we can consider any Z-module
of row vectors as a subset of a real n-dimensional vector space, we shall define gauge
functions on real vector spaces.

Definition. Let V be a real vector space. A gauge function on ¥V is a function
f: ¥V — R such that for x, y € V we have:

1. f(x) > 0, except f(0) = 0.

2. f(tx) =1t1f(x) for all t ER.

3. f(x + ) <FE) +FO).

With f as the norm, V becomes a finite-dimensional normed linear space. It
follows that all gauges on V generate the same topology [10].

By means of the correspondence between matrix rows and elements of the row
nodule we now have a means by which to measure the length of rows.

2.4. Minkowski Reduction. We shall define a Minkowski reduced matrix by first
sonsidering the row module M. We assume we are given a gauge function f on M.

Definition. A set of elements of M, x, . .., x;, is called a primitive system
f it can be extended to a basis of M.
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Definition. A basis of M is called Minkowski reduced if the following properties
are satisfied:

1. x, is a shortest element of M.

2. x, (k=2,...,m)is a shortest element among all elements of M which
together with x,, ..., x, _, form a primitive system.

This definition is equivalent to the following:

Definition. A basis of M is called Minkowski reduced if the following condition
is satisfied:

) <f(syx; +s,x, + 0+ +5,x,,) for all systems s;,...,5, of

(1.5.1)

m
integers with greatest common divisor (s, . . . , §,,) equal to one.

The second definition is most useful for matrices, for the inequalities (1.5.1) can
be checked once we are given the matrix and the function f. The algorithm for
reducing a matrix is based on the first so-called finiteness theorem:

THEOREM. When the gauge function used is the Euclidean norm f(x,, . . ., x,)
(x? +---+ xf, )", then we can select finitely many of the inequalities (1.5.1) from
which all the rest follow.

The theorem is true only for gauge functions in the form of positive definite
quadratic forms [11].

Thus, the algorithm is as follows: We are given a matrix 4, with rows a, . . .,
a,,. We test all the finitely many inequalities. If all are satisfied, we are done. If on

the contrary f(a,) > f(s,a; + - - + 5,,4,,), we may apply a unimodular transforma-
tion to replace a; by s;a, +- - +5,,4,, and leavea, ..., a,_, fixed (that this is
possible follows from the fact that (s, . . ., s,,) = 1). Eventually, all the inequalities

must be satisfied, and the matrix will be Minkowski reduced.

THEOREM. If‘all the inequalities (1.5.1) are strict, the Minkowski reduced
basis is unique. If not, there are at most finitely many different such bases.

Since our concern is the determination of a unique representative of each class,
this is important. In the case where we must select from several different reduced
matrices in a class, Zassenhaus uses the lexicographic ordering [2]. This consideration
completes the algorithm.

When m = 2, 3, or 4, the necessary inequalities are those for which the coeffi-
cients s; take on the values O or +1. In these cases the number of tests is small, and
the unimodular transformations used in the reduction steps consist merely of
replacing the row a; by the row s;a;, +- - +5,4,,.

However, when m > 5, the number of inequalities to be tested begins to increase
rapidly. A table of these for m < 6 is found in Tammela [16]. When m = 7, we
may no longer assume s, = 1 in (1.5.1), and this is another significant complication
[12].

2.5. The Zassenhaus-Ford Conjecture. This algorithm for Minkowski reduction
of matrices was programmed by David Ford, a student of Zassenhaus, for matrices
of 2, 3, or 4 rows and a varying number of columns. The reduction procedure was
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applied to randomly generated matrices, and the average number of steps required
was computed for each dimension pair m, n. Ford’s results produced the following
unexpected phenomenon: Among matrices with a fixed number of rows, those with
a larger number of columns required significantly fewer steps, on the average, to
reduce. Zassenhaus and Ford conjectured that there was some provable connection
between the number of columns and the average number of steps. This connection
is the subject of Section 2.

The conjecture is important because of its implication for the efficiency of the
reduction algorithm. It would indicate another advantage of Minkowski reduction as
opposed to Hermitian reduction, at least for matrices with more columns than rows.
It is clear that no similar phenomenon should occur in the Hermitian case, since only
the leftmost square of the matrix is actually used to make decisions in the algorithm,
with the rest of the columns merely being carried along.

It is important to note that we must investigate the algorithm from a statistical
point of view. Since any matrix can be lengthened by adding columns of zeros,
without affecting its reduction, we cannot expect that any absolute measure of the
speed of the algorithm would improve as the number of columns increased. We
consider instead the average behavior of matrices.

3. A Theorem on Minkowski Reduction of Matrices. In this section we assume
L . 2
that the gauge function is the Euclidean norm, f(x;,...,x,) =@ + -+ xi)"’,
so the reduction inequalities (1.5.1) may be written as

(s,ay + - +5,8,) =>a; forall systems s, ..., S,

(3.0.1)
with (s, .. .,5,) =1. (x? is used to denote x - x throughout.)

We note, in particular, that in a reduced matrix the rows must be in increasing
order according to length, that is

(3.0.2) B <ad<---<dl.
We will assume here that all matrices have already been put in this form.

3.1. The Probability Model. We are going to investigate the probability that a
real m x n matrix is reduced; and, therefore, we need to make the set of all such
matrices into probability space. We shall consider each matrix as a point in mn-

dimensional real space. Ideally, we would consider a random variable distributed
uniformly in R™", so that probabilities of events 4 would be defined by

P(X eA) = _Ln_(_& s
m(Rmn)

where m denotes Lebesgue measure and A4 is any measurable set. Obviously, we
cannot do this, so we have a number of alternatives:
1. Give X some distribution other than uniform; say its density function is f.
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Then
G.1.1) Pxea) = [, fX).

2. X can have a uniform distribution if we think of R™” as a conditional
probability space [13]. Then

(A N B
3.1.2 € cp)y=MA0E)
(3.12) P(XEA|XEB) B
The disadvantage is that we can determine only conditional probabilities.
3. Since we are concerned primarily with integer matrices, we might define the
density of a set of integer points in R™" as follows:

o (# of integer pointsin 4 N S, )
(3.1.3) D) gf"m (# of integer points in S )

>

where S, denotes the sphere of radius k centered at the origin. This D is not, however,
a probability, since it is only finitely additive.

In our computations in the following sections, we investigate directly the
conditional probability P, , , = P(K N Sy |S,) as defined by (3.1.2), where K is the
set of nonreduced matrices in R™”. We will show later the connection between Py
and the probabilities defined in (3.1.1) and (3.1.3).

3.2. The Reduction Inequalities. The set of reduced matrices, the measure of
which is to be computed, is determined by the inequalities (3.0.1). To simplify
matters, we make some observations on these inequalities.

In our list of necessary inequalities, we may assume we never have s, = 0. For

if(sk,... m) = 1 and s, = 0, then for some ¢t >k, s, # 0, Gpr v v s 8py) = 1, and
(s,a, +- -+ smam)2 >a’>adl.
We may write the inequality (3.0.1) as
m m
(3.2.1) > s;sia; - a;) = ai
i=1j=1
or
m 2 2 2 m m
(3.2.2) Z si ai - ak = Z Z sisj(ai . aj)’
i=1 i=1 j=1y5#i
Inequality (2.2.2) will hold if
m m m
(3.2.3) Zl sta} —ai > Z Z |sisj| la; - ;1.
i= i=1 ;j

To further simplify (3.2.3) we use the following lemma:

LeEmMA. If |a; -ajl/aiz < Isil/mlsjlfor al 1 <i,j<m;s;, s; # 0, then (3.2.3)
is satisfied.

Proof. Since we have observed that in (3.2.3) 5, # 0, we may assume without
loss of generality that s; # 0 fori =1, ..., m. Now, if necessary, relabel so that
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2

2 . _ _ 2 2 . 2 2 2
a, =a; fori=1,...,m~-1, and further thats, s> | = > syay = sia;.
Then
m
2 Is;s;1 la; - ;1
i=1 j=1y #i
m—1 m m—1 m siza?
=2 Z Z ‘slsjl lai a]l<2 Z m
i=1 j=i+1 i=1 j=i+1
Ml m—i 5, M m+m=-2) 5 ,
=2 X Sja; = i 4
m 4 m
i=1 i=1
— m—1 2
_ 22 m 1 22
- Zsial + Z m staz
i=1 i=1
m—1 . .
m— 2i m-—2 , 4
SSage xomsd, T omilag
L m ; m
i=1 1<i<m/2 m/2<i<m-—1
Letting j = m — 1 in the third summation, the right side becomes
S 242 m-—2 5, Z-m 2 2
E S a; Z m S 4 + Z m S'"—Jam—f
i=1 1<i<m/2 1<j<m/2
m—1 .
_ 2.2 m=2i 5, 2 2
= 2 sia} + 2 m (787 — Sy _)-
i=1 1<i<m/2

T'he second summation here is less than or equal to 0, so we have

m m
> > . Is;s;1 la; “a;

i=1 j=1;j#i

m—
< zlsfa? < Y sta} + (s34l —ad) = Z s?a} —al.
i=1 i=1 i=1

Chis is (3.2.3), so the lemma is proved.

CoroLLARY. If |a; - ajlla} <|s;\lm|s;| for all 1 <i, j <m with s, s; # 0,
or each of the inequalities (3.0.1), then A is Minkowski reduced.

Let M be a bound for the coefficients s; in the inequalities (3.0.1). Then M
lepends on m but not n.

CoROLLARY. If

|ai : a.I 1 a.2 mM
i< i >
2 a2 and Zta? AmM A D)
i
orall 1 < < m, A is Minkowski reduced.

Proof. Multlplymg the inequalities gives

la; - a;1 mM < ai2 1
a? +a]? 2(mM + 1) al? _|_aj2 2(mM + 1)
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or

la; - a;| .
i < 1 < Isil

= .
a? mM  mls;|

3.3. Probability Distributions of Vectors in R*". The last corollary suggests that
we examine the probability distributions of the functions |x - y [/(x? + y*) and
x2/(x? + y?), where x and y are row vectors of R”. According to the discussion in
Section 3.1, we let

2
Hn(t)=P< T <tlx* 42 <k
x? -I-y2
(3.3.1) 2
m< (x, »): x* +y? <k d <t>
x2+y2
= 5 0<r<1
m({(x, y) :x* + y* <k})
and

m <{(x, y) i x2 +y? <kt <b;;J}l2}>
= Xty (0 <t<Hn).
m({(x, y) : x* + y? <k})

Using the substitution kw = (x? + - - - + x2,)(sgn x,,) and the formula for the
volume of an m-dimensional sphere, the resulting mutiple integral can be reduced to

_ I'n+1 [t _ \nvin—1 4, _ 1 _‘/zn‘/zn]
(3.3.3) H”(t)__J__)__F(l/m e fo(l AnZAn=ldz - (1 - """

For G, the change of variables
x; = (; + vi) /\/i» Yi=(— U,')/\/iy
results in an integral similar to the one for H,, giving finally

. 2I'(n + l__} % 1 Vingl, _ \Van—
3.4y O = T + D Can) [ eev opnes =2t

Lo+ pncs- o]
n
Simple estimates of these integrals yield the following upper bounds:

T(n+1) (t-)""
(33.5) H,(0) < T + 12 20 -28)

Pn+1) _(h—r2)""

G,(t) <
A T(%n + 1) 2t

(3.3.6)
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3.4. The Conditional Probability of Reduction. Let K be the set of nonreduced
matrices in R™". Let B, . j be the set of matrices for which |a; - a; /(a} + a2 )>
1/2(mM + 1) and C i @ <]) be the set of matrices for which a2/(a + a2) <
mM[2(mM + 1). Then by the corollary of Section 3.2,

KNS, <UB,.J- U c,,,j> ns,,

i,j i<j
SO
P(K NS, 1S,) < ZP(BUOS 1S0) + 2 P(C,; NS, 1Sy)
i<j
- __mM_ 1
‘%Hn <2(mM+ 1)>+,§ ¢ (2(mM+ 1)>
_ _ mM m(m — 1) 1
mlm = DA, <2(mM+ 1)) T G (2(mM+ 1)>
SO

+ M+ 2mM
Bal) P, ., <mm-1)—LeFD <’" M+ 2m

Yan
mM + 1).
F%n + 1)2 \ 4(mM + 1)? > ( )
Applying Stirling’s formula to estimate the Gamma function, we get

/ 1
\/2n1'r(n) 1 +——12 = , .
Pm,n,k<m(m_1) = <n n - > < 2M +2’2"M> l (mM+1)
n7r<2—> (mM+ 1)
(34.2) e
2202 Yan
P i o 0/ (14 ) (2

Since (m*M? + 2mM)/(mM + 1)> <1, we have
THEOREM . For fixed m, as n — oo, Pk
Remark. Since A is reduced if and only if any scalar multiple of 4 is reduced,

P, i does not actually depend on k. Therefore, from now on we shall simply write

— 0.

m,n-

3.5. The Other Probability Models. We now consider the other situations
liscussed in Section 3.1. Suppose X, the random variable representing an m x n
matrix, has density function f on R™". If fis of a certain type, then P(K) =
fo X)) =P m.n

Suppose f depends only on | X |, the Euclidean length of X. Then

PK) = hm P(XEKﬂSk)= lim P(IXI €EKand [X| < >

k— oo

= lim P(—=- €K)P(X|<k
Jm <|X| >(|| )

m,n*

=PXEK|IX|=1) lim P(X|<k)=P
k—> oo
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Now we consider the density of the integer points of K.

_ (# of integer points in K N S,)
DiK) = khJE. (# of integer points in S, )

i (# of integer points in k(K N S))
= lim
fo> o0 (# of integer points in kS )

K"mK 0S)  mEKNS)
lim = =
k> KMm(S)) m(Sy)

I

m,n’

4. Extended Reduction.

4.1. Reduction by Submatrices. The purpose of this section is to investigate
Minkowski reduction, with the aim of making it more suitable for computation. We
recall that the main difficulty in Minkowski reduction is the large number of
inequalities to be tested. The theorem of Section 2 suggests that some type of block-
wise reduction might be advantageous; since long thin matrices are easy to reduce,
perhaps we can develop some connection between reduction of a matrix and its
submatrices. For example, given a 24 x 24 matrix 4, we break it up into six 4 x 24
matrices 4,, . .., Ag. By reducing 4,, ..., 4, we hope to be able to find the
reduced form of 4.

Unfortunately, even if all submatrices of a matrix are reduced, there is still a
possibility that a linear combination of all its rows may give a further reduction. In
fact, the inequalities to be checked involving all the rows will be the most numerous
and difficult to use.

To circumvent this difficulty, we must be able to make final the choice of the
submatrices 4, . . . , A, from the row module; that is, no more operations involving
rows of different submatrices should be necessary, once 4, . . . , 4, are chosen.
Also, further reduction of the individual submatrices should be possible without
altering this choice.

Minkowski’s definition of reduction will not permit this type of scheme; we
need a new definition. To do so, we need a way of choosing submatrices of a matrix
which generalizes Minkowski’s method of choosing rows, which is based on the gauge
function. We will obtain a gauge function on matrices by first looking at the Grassmann
algebra of a matrix.

4.2. The Extension of the Gauge Function. Our gauge functions were originally
defined on a real vector space ¥V, and we shall extend them to the Grassmann algebra
G of that vector space. We recall that the Grassmann algebra is an anticommutative
associative algebra with vector space basis {eil A e;2 A A e:nm tr;=0or 1},
where e, . . . , €,, is a basis of V. We can write G = Gy,® G, @ ®G,,
where G; is the set of homogeneous elements of degree i. In particular, G, =V.

Definition. Let f be a gauge function on V. Then f : G — R is called an
extension of f if:
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1. f le L= f-

2. f is a gauge function on G, considered as a vector space.

3. A: G x G— G is continuous in the topology defined by f .

In fact, condition 3 is not necessary, for every bilinear mapping of finite-
dimensional normed linear spaces is continuous.

4.3. The Gauge Function on Submatrices. We construct a map g from the set
of matrices into the Grassmann algebra as follows: Let 4 be a matrix, made up of the
row vectors a,, . .., a,,. Then q(4) =a, Aa, A---Aa,. Iffisa gauge function
on a vector space containing a,, . . ., a,,, and if f is its extension to the Grassmann
algebra, then f ° g will be the gauge by which we measure the size of submatrices of
a matrix. To complete the connection we note that

ProPOSITION. If L is any linear transformation of V, and a,, . . . ,a, isa
basis of V, then

L@) N---N L@,,) = (det Lya, \- -+ ANa,, [17].

COROLLARY. If Bis any m x m matrix, then f(BA) = |det B|f(A).
CoROLLARY. If Uis any m x m unimodular matrix, then f(UA) = f(A4).
COROLLARY. A is row-dependent if and only if f(4) = 0.

These are the important properties we need for our applications to matrices.
Corollary 2 allows us to consider f as a function on submodules of the row module,
as follows: Let NV be a submodule. Let b, ..., b, be a basis of N. Define f (V) =
1, JANRERWA by ). Since any other basis of NV is obtained from b, ..., b, by a
unimodular transformation, f is well-defined.

Example. The function f(4) = \/‘det (AAT) is a gauge on matrices. It corresponds
to the function f on the Grassmann algebra defined by f(Zx,8,) =/ Ex,?, where
&> - - -8 is the standard basis of G. In this case we have f(4 A B) < f(A)f(B).

4.4. Reduction by Submodules. In Minkowski reduction, we selected a basis
for the row module M of a matrix by choosing basis vectors as short as possible,
according to the gauge function f. We will now define a reduction procedure which
selects submodules of M as small as possible according to the extended gauge function,
which we shall also call f.

Definition. Lletl,, I,, ..., be positive integers such thatl, +1, + -+, <
m. Let M be an m-dimensional free Z-module. A system of submodules N, . .
N, of M is called (I, . . ., I;) primitive if

l. dmN;=1,i=1,...,k.

1

L]

2. Ny, ..., N, are linearly independent.

3.ra + ot €A+ -+ A, (r;real,q; €Ay, thenr, ..., 1,
eZ

In particular, an (/,) primitive system is called a primitive submodule. A
primitive (1, 1, ..., 1) system is called a primitive system of vectors. If [, +--- +
I, = m, a primitive (/;, . . ., [;) system is called a basic (/;, . . . , ;) system.

THEOREM; IfI +---+ lp =m =dim M, and 1 < k < p, then any primitive
(- .., ) system of submodules of M can be extended to a basic (I, . . ., lp)

system of M.
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Proof. First, we show that any [, -dimensional primitive submodule N, of M can

be extended to a basic (/;, ..., 1)) system. Letb ..., b,l be a basis of the sub-
modules N,. We show that b, .. ., b,1 is a primitive system of vectors.

Suppose r b, + - - + r,lb,1 €N, (r; real). Since N, =Zb, + -+ + Zb,l,
rb, +-- 0+ r,lb,l can be expressed as z,b + -+ z,lb,l, with integers z,, . . .,
2y, Since b,, ..., b,l are linearly independent, 7, = z;,sor,€Zfori=1,...,1,.

Since b, ..., b,l is a primitive system of vectors, it can be extended to a
basis of M [14]. If we group these basis vectors in groups of /,, . . ., l, in any
fashion, we obtain the desired basic 7, . . ., lp system for M.

Now suppose we start with a primitive (/;, ..., 1) system N, ..., N,. Then

N, + -+ N, is a primitive submodule, for if Ha, + - +a )EN, + -+ N,
where a; € N;, thanray +- -+ +ray, €N, + -+ + N,,and sor € Z. We can extend

N, + -+ N, to a basic (I, +---+lk,lk+l,...,lp)systele + -+ Ny,
Negir oo ,Np,anle, - ,Np is a basic ({;, . . ., [,) system. This completes
the proof.

We assume now that we have some gauge function f defined on submodules of
M. If f(N)) S f(N,), we say N, is smaller than V.

LEMMA. Let M be a Z-module with basis a, . . . , a,,, q the mapping of
submodules into the Grassmann algebra G. Then {q(N) : N is a submodule of M}
is a discrete set in G.

Proof. Suppose q(V,)) converges to x € G. Let {b

of N,. Letb,; = Z7 cUh;. Then

s - ,b,,k"} be a basis

t
aW,) = ( > el a,> <]Zl i a> =L Znso
where z,, are integers and g¢ are the elements of the form a‘fl A A a(,jn'", d;=0
or 1. Since {g,} is linearly independent, we must have {z, } converges for each s.
Therefore, z,, = z for some integer z; for every s for sufficiently large n. Therefore,
qWN,) = Zz g, for sufficiently large n.

THEOREM . In every nonempty set of submodules there is a smallest one.

Proof. By the lemma, {f(V) : N is a submodule} is a discrete set of nonnegative
real numbers; and, therefore, every subset has a least element r. Given any set of sub-
modules S, and N € S with f(V) = r has the required property.

Definition. A basic (I;, ..., ) system N, ..., Np of submodules of M is
called reduced with respect to the extended gauge function f if the following conditions
are fulfilled:

1. N, is the smallest /,-dimensional submodule of M.

2. Fork=2,...,p, N, is the smallest /, -dimensional submodule of M

which, together with N, ..., N, _,, forms a primitive (/,, . . ., [,) system of sub-
modules.
In particular, a basic (1, 1, ..., 1) system is a Minkowski reduced basis for M.
THEOREM. Every !, +---+ lp-dz’mensional Z-module M has a reduced basic

. ..,1,) system.



212 JOHN L. DONALDSON

Proof. We construct the system inductively. The second theorem says we can
choose N, to satisfy condition 1. The first theorem says that the set of submodules
which together with Ny, ..., N, _, form a primitive system is nonempty; the
second allows us to select a smallest one.

Ay, ey lp) reductions may be used to select a canonical basis for M, by
further reducing each submodule /V; once it has been chosen. By combining
s e, lp) reductions we have many different reduction schemes, each of which
yields a basis of M.

The consideration of the uniqueness of the basic system is similar to that of
Minkowski reduction. Because of the discreteness, every choice made in the proof of
Theorem 3 is from a finite number of submodules. Therefore, a module can have
only finitely many reduced basic systems.

45. (.. .. ,lp) Reduction of Matrices. A matrix A with rows a,, .. ., a,,
may be thought of as consisting of p submatrices 4, . . ., Ap, such that 4, consists
of the rows a,, ..., a,, A, consists of the rows a, +1,...  ar, and soon. A4
will be called (I, . . ., lp) reduced if the submodules N 1oeee ,Np associated with
A, ... ,Ap form a basic (/,, . . ., lp) system in the row module M. Again, by
combining reductions we can construct a reduction scheme which selects a particular
matrix from each equivalence class. As an example, we shall investigate the computa-
tion of the reduced form of a matrix according to a particular scheme, namely
successive (1, m — 1) reductions.

4.6. The (1, m — 1) Reduction Scheme. The particular reduction scheme will
be defined as follows: Denote by A the matrix formed by the last k rows of 4.
Then A is reduced if and only if for each k = 2, . . . , m, we have that A% is a
(1, k — 1) reduced matrix. The procedure used for finding the reduced matrix accord-
ing to this scheme would be simply to first (1, m — 1) reduce A4, then (1, m — 2)
reduce A =1) then (1, m — 3) reduce A=2) and so on.

The method for the actual (1, kK — 1) reduction of each matrix is given by the

following:
PROPOSITION. Let A be an m x n matrix with rows a,, . .. ,a,,. Then A is

1, m — 1) reduced if and only if f(a,) < f(s,a, + - -+ + s,,a,,) for any relatively
vrime integers s, .. .,S, , and

a2 a, + t,a,

f <f

m a,, + 1,4,

for any system of integers t,, . . ., t, . Here
a, a, + t2a1
and

a,, a, +t,a,
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denote the matrices whose rows are a,, . . . ,a,, and a, + tya,,...,a, +1t,4a,,
respectively.

Proof.  First, we prove the sufficiency. If f(s,a; + - +s,4a,,) <f(a,), then
the first condition of the definition of reduction is not satisfied; if

a, a, +t,a,
f >f . ,
am am + tmal

then the second condition is not satisfied.
Next the necessity. Suppose 4 is not (1, m — 1) reduced. If a; is not the
shortest vector in the row module of 4, then f(a,) > f(s,a, + - +5,,4,,) for

some integers s, ...,s,. Ifd =gc.d.(sy,...,s,,), then

-
Sy Sm 1
f7a1+-'~+—d—am :C—if(sla1+“'+smam)<f(a1)

which contradicts the first hypothesis.
If

is not the smallest (72 — 1)-dimensional submodule of the row module which along
with @, forms a primitive system, then

b, a,
f M <f 5

b, a,,
where a,, b,, ..., b, is a primitive system, and therefore a basis of the row module.
We then have that

al al

b, a,

. =U

b,, a,,
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for some unimodular U in the form

Let

Then

1 0 0 0
12
I3
U= U*
tm
1 0 o0 0
0 \
0
V= . !
0
a, 1 0 0 0 a,
a, t, a,
149) = ud,,_,)
am ; a
2
ay
a, +  ta
a, + 1,44
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So
b, a, + tya,
(U*)—l . = . .
bm am + tmal
Thus,
a, + ta, b, b, a
f =f (U*)—l . =f . <f . R
a, +t,a, b b, a,

which contradicts the second hypothesis.

To obtain the reduced matrix, we must, therefore, be able to minimize the
functions

Fsyy oo ousy)=f(sa, +- - +5s,a,)
and
a, + tya,
Dy, ....t,)=f .
a, tt,a

over Z. We can simplify

D(ty, ..., t,)=f(ay +ta) N---N (@, +t,a,)
=f(a2 /\' i /\am + tZA(Z) + t3A(3) + -+ tma(m)),

where Ay =a, N ANay_  Na, Nag., N+ N a,,

In the case where the gauge function is the familiar Euclidean norm, F is just a
positive definite quadratic formins,, ..., $,, and D is a positive definite quadratic
polynomial.

The improvement therefore over the standard Minkowski reduction is that instez
of finding the successive minima of a module or form, we need only find the absolute
minimum. In addition, we can expect on the basis of the theorem of Section 2 that
the task of (1, k — 1) reducing each submatrix will become easier as we proceed, since
the number of columns will remain fixed as the number of rows decreases.
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APPENDIX

Computer Results. To verify the theorem of Section 2, a computer program was
written by Merle Owdom of Ohio State’s Instruction and Research Computer Center.
The program generated matrices using the system’s random number generator, then

tested whether or not they were Minkowski reduced. The matrix entries were

integers bounded in magnitude by 100, and were assumed to be distributed uniformly.

For each dimension pair, 1000 matrices were tested, using the reduction inequalities.
The results follow:

TABLE 1. Percentage of Reduced Matrices

m n % reduced m n % reduced
2 4 474 3 4 13.7
2 8 73.4 3 8 449
2 12 843 3 12 65.2
2 16 93.1 3 16 77.6
2 20 95.1 3 20 879
2 24 97.1 3 24 94.0
2 28 98.5 3 28 96.0
2 32 99.2 3 32 98.2
2 36 99.1 3 36 98.1
2 40 99.8 3 40 99.3
2 44 99.9 3 44 99.6
2 48 999 3 48 99.7
2 52 100.0 3 52 999
2 56 100.0 3 56 100.0
2 60 100.0 3 60 100.0
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