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A Bench Mark Experiment
for Minimization Algorithms*

By J. N. Lyness

Abstract. In this paper we suggest a single bench mark problem family for use in
evaluating unconstrained minimization algorithms or routines. In essence, this prob-
lem consists of measuring, for each algorithm, the rate at which it descends an un-
limited helical valley. The periodic nature of the problem allows us to exploit af-
fine scale invariance properties of the algorithm. As a result, the capacity of the
algorithm to minimize a wide range of helical valleys of various scales may be sum-
marized by calculating a single valued function gQ(Xl)' The measurement of this
function is not difficult, and the result provides information of a simple, general

character for use in decisions about choice of algorithm.

1. Introduction. At the present time, considerable effort is being expended on
constructing numerical software for unconstrained minimization. In order to allow an
orderly development of this area, it is necessary to compare the performance of dif-
ferent algorithms which carry out the same task using information of a similar nature.
In general, a theoretical comparison is not feasible, and one must resort to comparison
by numerical experiment.

There are many difficulties which present themselves when one comes to con-
struct such an experiment. One of the first is simply that there is such a wide choice
of calculations which could be performed. For any of the large number of potentially
interesting objective functions (many of which have n-dimensional versions for all values
of n) one has to assign a set of initial parameters. The consequent trajectory for the
same objective function is different for each different assignment of these parameters.
And from each run a great deal of information may be obtained. It is only too easy
to generate an enormous amount of information about the behavior of routines. The
investigator then faces a daunting task in processing this in some coherent manner.
Moreover, in many problems the details of the trajectory are unstable with respect to
the initial parameters and parameters defining the objective function. A minor per-
turbation (of machine accuracy magnitude) in one such parameter may result in a
completely different trajectory.

Naturally, there are other difficulties too. But it is to the alleviation of these
particular ones that the present article is addressed.

Our approach is based on three underlying themes.
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First, we should glean information about one topographical feature at a time.
We deal in this paper only with classes of helical valleys.

Second, we should choose quantities to measure which are not unstable with
respect to minor parameter perturbation. An individual trajectory is not such a quantity.
Quantities such as the percentiles Yo of the cost distribution functions ¢, defined in
Section 2 are suitable, being mathematically defined and relatively easy to measure.

Third, we require that the numerical results, while covering a relatively wide
class of problems, may be expressed or summarized in a reasonably concise form.

This may be accomplished to some extent by recognizing the affine scale invariance
properties of the algorithms under consideration (described briefly in Section 3) and
constructing an objective function family for which these properties may be exploited
to reduce the number of parameters on which g5 depends. The calculation in Sections
4 and 5 is devoted to this.

In Section 6, we present some numerical results for four well-known algorithms.
The author feels that these, which may be displayed on a single graph, provide simple
unambiguous information about the relative performance of the algorithms in a three-
dimensional helical valley topography.

2. Cost Distribution Functions. The underlying ideas, on which the theoretical
framework described in this section is based, may be applied to almost every type of
minimization algorithm. The description given in this section is in the context of un-
constrained minimization. This section is quite independent of the concepts of affine
scale invariance of algorithms (Lyness 1979). In order to provide a reasonably concise
description, we assume that the algorithm has the following features. It proceeds by
making a sequence of function calls which provides information (of an identical nature)
about the objective function. In order to start, it requires the assignment of elements
of a parameter list, called I in Lyness (1979). In this paper, we assume that one of
these parameters is x(°) a starting iterate and use I to denote the other elements of
the parameter list.

The parameter list contains an element NV, which assures termination in oV itera-
tions or less. Let us suppose that in a run in which x(°), I and f(x) are specified,
the algorithm proceeds, calculating interates

(2.13) X0, x(, ™ F <.

Our key assumption is that if we make another almost identical run, specifying x(®,
1" and f(x), where 11" differs from II only in that N’ replaces &V, one obtains iterates

(2.1b) x(O X ,x@"), N' <N,

where an individual iterate x() if it occurs in both (2.1a) and (2.1b) is identical;
noreover, when N' = N, N' = JA\7 This states first that the trajectory is determinate,
ind second that altering N may extend or curtail this trajectory but not alter it in

ny other respect. Associated with each iterate is a function value f(x(j)) =n". To
implify our analysis, let us assume that the function values at successive iterates form
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a monotonic decreasing sequence, that is

(22 RO > p(1) > p2) > .. (),

Also associated with each iterate x() is ) the number of function calls made by
the algorithm including those required before and during the jth iteration. Naturally
these form a monotonic increasing sequence, starting with »(0) = 1. Thus,

(2.3) 0 < (1) < p(2) <L < PN,

A basic cost function v(h, x@ f) is a continuous function of 4 which fills in or
approximates in some well-defined manner the discrete valued function defined by
(2.2) and (2.3). This may be defined in various ways, depending on the specific
application in mind.

Definition 2.4. An iterate based piecewise linear basic cost function
v(h, x(®) 11, f) is a continuous function of # satisfying

h, x(® 11, =0V hn>h® =fFi®),
2.4) wk, x ")

V(h(]), x(o), H, f) = V(j), ]= 0, 1, e

G+1) = )
(2.5) W _ VTV e (WU, h0y,
oh  pG+1) — KO

When f(x) has a global minimum x we define

min?

u(h, xXO 1, f)y = VYV h<f(x

min)‘

If, for all finite values of N, the algorithm terminates, or cycles and does not obtain

a function value smaller than /], , then

v, xO, 1, fy=oo Y h<hH

min*
We shall be particularly interested in the derivative of this function with respect
to . To this end we define

(2:6) vs(h, xO T f) =@ + 8 xO, 10, £) = v(h = 8, x4, 11, ))/26
and

In view of (2.2) and (2.3) these take negative values (except where they may be
indeterminate).

A function such as v defined above, while it may be of interest, suffers from
two principal drawbacks. First it is somewhat erratic. Second, minor perturbations
in parameters such as x(®) or those contained in II may lead to an entirely different
trajectory, though usually one of the same general nature. For this reason instead
of treating cost functions directly we treat the distributions to which they give rise.

We define a finite region R of configuration space and let x(®) be a variate,
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uniformly distributed in R. (While we could do the same with respect to the other

parameters contained in II, this would be unnecessary in the application we shall

consider.) When this is done, the values of v 4 (A, x(O 11, 1) for fixed A, 11, f form

a distribution function, defined below. In order to deal with cases where algorithm

failure is possible, i.e., for some values of x, within R, a premature termination oc-

curs before minimization has occurred, we define R, (R, II, f) as follows.
Definition 2.8.

(28) R,(R, I, £) = {x(® such that x(°) € R and v(h, x(O), 11, f) < }.
If one is prepared to assume that no premature termination occurs, one may set
2.9) R,(R, I, f) = R.

We now define distribution functions.
Definition 2.10.

(2.10) vs(r; b, R, 0, f) = th+8H(y + by(h, x©, H,f))dx(o)/thde(o)

where

(2.11) Rivs = Ruys(R, 1L, )
and
1, t>0,
(2.12) Hi) = 4%  t=0,
0, t <0

>

is the unit step function (or Heaviside function). Like all distribution functions,
¢s(¥) is a monotonic nondecreasing function of y, taking values in the interval [0, 1].
Unless ¢ () is discontinuous at ¢ = y, the function ¢;(y) is the probability that
= vy is less than y. (In general, 5 () is the average of the probability that — vy is
less than y and the probability that — v, is less than or equal to y.) The value Vo.s
of y for which ¢g(y) = % is the median value of — vy.

In the following discussion we restrict our attention to values of /4 satisfying

(2.13) h < min f (x)

so that — v is positive. From this it follows that ¢;(0) = 0 and it also follows from
the definition that (for zero 8), p(>°) = 1. However, it is the quantity ¥, with finite
& which is measured experimentally and in some respects, this measurement is more
useful as it allows a failure probability to be calculated. From Definition 2.8 it
follows that

(2.14) RO Rpys 2 Rys-
Thus, when R, .5 # R, _; there are values of x(® € R for which vh +6,xO0), 11, )

is finite, but v(2 — &, x(®), II, ) is infinite. For these values of x(®) the algorithm
terminates prematurely, returning a function value between 4 — § and A + §.
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Examination of definitions (2.6) and (2.10) shows that the integrand function in
(2.10) (the unit step function) is zero for all finite y for such a value of x(®). This
gives

(2.15) v5(>) = fn,,_g dx /fR nes T

which may be less than 1. Thus, a knowledge of the distribution function ¢z (y) pro-
vides usable information. The value of (1 — p5(e°)) indicates a failure probability. So
long as this is small, we can still use the median y, 5 or other properties of ¢, (y) for
evaluation purposes. There is no need either to introduce arbitrary penalties for
failure, or to unfairly ignore algorithm failure.

In the next section we shall apply the definitions presented in this section to a
particular “bench mark” problem. The details of the above definitions were introduced
with this particular problem in mind. However, the author hopes that the same sort
of definitions will prove helpful for wider classes of problems. However, in other
problems different definitions of the same general nature may be more appropriate.
There is no need to use a measure such as », the number of function calls per unit
drop in function value. One could use measures related to the distance from the
minimum. Different types of function calls occurring in the same algorithm simply
introduce different cost elements and each of these can be measured. Again, even if
one decides to use a basic cost function, it need not be defined precisely as in Defini-
tion 2.4. And both this and any other definition may be modified to avoid the neces-
sity of inequalities (2.2). However, the essence of this approach is that one is measuring
quantities which are properly defined, which are insensitive to minor parameter varia-
tion and which can be measured however unexpectedly a particular algorithm behaves.
The median y, 5 of this distribution @5 (y) is such a quantity.

3. Affine Scale Invariance Properties. In a companion paper (Lyness (1979))
we discussed the concept of T-scale invariance of algorithms, where T stands for a
group of affine transformations. An element #(k, m, 4, d) € T is specified by as-
signing values to k, m > 0, A an n x »n nonsingular matrix and d an n x 1 vector.
The transformation ¢ applied to an objective function f(x) gives

(3.1) f=t
where
(32) F(x) =k + mf(4x + d).

An algorithm is T-scale invariant under the following circumstances. When applied to
fix) with parameters I the algorithm calculates iterates

(3.3) x(0) (1) ),

Then, for all r € T, it is possible to assign parameters IT (which depend on ¢ and II
but not on f) so that when applied to f (x), the algorithm calculates iterates
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(3.4) x O xM M)
which satisfy
3.5) ¥D = 4= 16D - g);  FED) =k + mf(xD).

In Lyness (1979) we defined various groups T with respect to which an algorithm
might be affinely scale invariant. In particular, we define the full transformation group

(3.6) T};”) = {tk, m, A, d) ¥ k, m > 0, d, nonsingular 4}.

We showed that many standard versions of the quasi Newton algorithm are fully scale
invariant, i.e., scale invariant with respect to Tg’). However, we showed that conju-
gate direction algorithms are not fully scale invariant. They are usually scale invariant
to a group Tg') defined as

T8 = {t(k, m, A, d) ¥ k, m >0, d and for all
3.7
A satisfying 447 = 22T (A # 0)}.
When two functions f(x) and f(x) are related by (3.2) and the algorithm is
scale invariant, there are consequent relations between the functions v constructed

for f(x) and f (x). It follows from (3.5) without difficulty that we have
THEOREM 3.8. When the algorithm is scale invariant under t(k, m, A, d)

(3.8) wh, x, T, ) = v(k + mh, A~ x©) = q), T, 7).

This equation merely implies that if one has taken the trouble to evaluate the »-
function for a particular problem, and the algorithm is scale invariant, the result applies
also in scaled form to a scaled version of the original problem.

From (3.8) it follows immediately that both i and v satisfy

(3.9) vs(h, x(O, T, ) = mv,, s(k + mh, A=1(x(® - ), T, F).

To define the corresponding relationship between cost distribution functions, we de-
fine a region R, denoted by ¢R, in terms of R by

(3.10) xER= A (x-d) €ER = tR;
and we find
(3.11) s h, R L f) = @ 5(m~1y; k + mh, R, T, ).

The foregoing relations are all derived from (3.5), and require no detailed know-
ledge about the construction of II. The circumstance that (3.5) is valid presumes that
Il can be constructed. In practice this is one of the difficult aspects of establishing
scale invariance. In the rest of this paper, we shall assume that the parameter list

includes x(©), T(®_ A £(®) N where x(°) is the initial iterate I'(®) an approximation
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(possibly unrealistic) to the inverse Hessian at x(©) A f(0) an estimate (again possibly
arbitrary) to the expected reduction 1) — h(1) during the first iteration and N a

limit on the number of function calls. The associated parameter list then includes x (0),
[, A7) and N related by

(3.12) 30 = x(0) = 4=1(x(0) - g),
(3.13) 0O = 1) = pp=1(4~-1HTTO0)4 -1,
(3.14) AF©@ = tAF(© = mAf(©,

4. A Family of Helical Valley Objective Functions. In this section we shall
describe a single numerical experiment of a somewhat extensive nature. The purpose
of this experiment is to quantify how well or badly a single algorithm handles a partic-
ular curved valley.

We consider an objective function defined in detail by (4.2), (6.2) or (6.3) below.
Each of these is of the form

(4'1) f(x) yv Z)=FH(xv y) Z; T) R) P)+sz

where T, R, P and M are positive parameters. The locus Fy(x, y, z; T, R, P) =0 is a
circular helix, passing through (R, 0, 0), described on the cylinder x2 + y? = R?
having pitch (or period) P. The function Fy(x, y, z; T, R, P) is positive at all points
(x, y, z) not on the helix and generally increases in value, at a rate depending on T,
as the shortest distance from (x, y, z) to the helix increases.

The objective function (4.1) has no global minimum, its value on the helix de-
creasing steadily with decreasing z. The trajectory followed by a minimization algorithm
presented with such an objective function, might be expected to follow this helical
path in a rough sort of way.

The reader may find it helpful to visualize the following mechanical system. A
light bead is threaded onto a helical wire having vertical axis. A heavier bead is at-
tached to the light bead by an elastic string. There is friction present. When the
system is released the subsequent motion of the heavier bead resembles to some ex-
tent the “trajectory” of the iterates in the minimization problem. This analogy should
not be taken too far. Energy or angular momentum conservation laws do not usually
apply to minimization algorithms.

However, the mechanical system and the behavior of the algorithm do have some
features in common. The detailed behavior in each case would be expected to be
rather spasmodic and one would expect to be able to define for each an overall or
average ultimate rate of descent.

We now specify an objective function family of type (4.1) and provide parame-
ters to specify the input parameters required to define a cost distribution function ¢g
of Definition 2.10.
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We define an objective function
f&x, », z; T, R, P, M)

2 2 2
“42) = __Z___z_ [<x—-R cos 2_;2)2 + <y—R sin ~—;TZ> ] + Mz
VxZ +y

and refer to parameters T, R, P, M as problem family parameters. We define a region
R by

4.3) R: pR <+/x% +y2 < p,R; z = p3P,
an initial approximation to the inverse Hessian by

(4.4) r'® = diag{y,R/T 2, v,R/T?, v;P/M},
and an initial estimate of the expected improvement by

(4.5) Af® = v,T2R.

We refer to p,, p,, P3, 71, Y3 and 4 as secondary parameters.
Definition 4.6. The distribution function

(4.6) Vs h, T, R, P, M, py, py, P3> Y15 V35 Ya)

is the function ¢g(y; &, R, II, f) defined by 2.10 when R, II, and f are replaced by the
parameter defined quantities in (4.2) to (4.5) above.

An assignment of R, (%) and Af(®) of this general nature is crucial to the fol-
lowing analysis. However, it is not unreasonable. When p5 > 0, the starting region
is a disc symmetrically arranged above the helical valley. The approximation to the
inverse hessian is diagonal, the elements being dimensionally correct, and the guess
for the initial reduction is also dimensionally correct.

Our relative evaluation procedure will be based on comparing this twelve-argu-
ment function, evaluated using one algorithm, with the same function evaluated using
the other algorithm. If it were expected that Y5 would depend significantly and in-
dependently on all these arguments, it would be hopless to seriously attempt such a
comparison.

We shall be treating the situation in which f(x, y, z) is positive for f € R and
for which % is negative. Since the secondary parameters normally affect directly only
the beginning of the iteration, we can reasonably expect that Y5 will be to a significant
:xtent independent of these parameters.

At this point we have merely defined a twelve-parameter cost distribution func-
:ion. We now assume that the algorithm is affinely scale invariant either with respect
0 Ty or T, defined in (3.6) and (3.7) above. The rest of this section is devoted to
:xploiting this scale invariance in order to obtain information about 5. This informa-
ion is in the form of functional equations.

LeMMA 4.7. If the algorithm is scale invariant under t(0, m, I, 0),

4‘7) kbg(yQ hy T‘y R) P: M) p—>’ ?) = lpms(m—ly; mhr \/aT) R) Py mMy ;)3 ’;))‘
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If the algorithm is scale invariant under t(0, 1, N, 0),

(48) Ys(v; h TR P, M, p,7) = ys(; h /AT, R\ P/\ MY, B, 7).

If the algorithm is scale invariant under t(k, 1, A, d) where k, A and d are defined in
terms of | by

0 ' cos 0, sinf,0 271
(49a) d = ?, A= "Si(I)l@, COS@,? , 0=— k = Mi,

then

-
kba(y, h: T: Rr Py Mr p], p2’ p3’ 7)

(4.9) -
=ys(»; h + ML, T, R, P, M, py, p,, p3 + /P, 7).

If the algorithm is scale invariant under t(0, 1, A, 0) where A = diag{1, 1, X}, then

(410) Yy h T, R, P, M, p,¥) = Us(vi h, T, R, P\, \M, B, 7).

These transformations have the following property in common. The function f =tf
is @ member of the same problem family, having different principal parameters. In ad-
dition, the entities R = tR, h(®) = th(®) gnd Af(®) = tAf(©) gre, respectively, the
same function of these different principal parameters as the unbarred entities are of
the original principal parameters.

We give a detailed proof of the second result (4.8) only. The others are proved
in the same way.
When

(4.11) t=(0,1, N, 0)

we may use the relations of Section 3 with

(4.11a) k=0, m=1, d=0, A=1AIL
From Definition 4.6 and Equation (3.11) we may write

(4'12) wﬁ(_y: h» 7‘: R) P’ Mr ;), ’7)= ¢6(y, h, R) Hr f) = 8050); h) ﬁ’ ﬁ) f_)

where £, R, T(® and Af(®) are defined by (4.2) to (4.5) and f =¢f, R = tR, ['(®) =
' and A7 = tA (0 are defined in accordance with (3.2), (3.10), (3.13) and
(3.14), respectively. Direct substitution in (4.2) gives

f&, »,2)=tf=f0x, N\, Az, T, R, P, M)

(4.13) _ T2 _R  mz)2 _R_2mz \2\ L.
a2 152\ X %P YIRS b ‘

This may be written in the form
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(4.14) f—(x’ y’ Z) = f(xr y! Z’ Ty }—2) F’ M)’
where
(4.15) T2 = )\Tz’ R = R/)\, I_) = P/)\, M_ = W

In words, f is the same function of the barred variables (4.15) as f is of the corre-

sponding unbarred variables. Simple manipulation using successively (3.10), (3.13)

and (3.14) together with (4.15) leads to a similar statement with respect to R, ro
and Af () being valid. Specifically, we find

(4.16) R: PR <VX2 +y2 < p,R; z=p,P,
(4.17)  T© =4 = \~21® = diag{y,R/T 2, v,R/T %, vsP/M},

(4.18) BT = jAf© = Af©) = 4, T2R

We note that 7, R, T(®) and Af (©) given by (4.14)—(4.28) are, respectively, the
same functions of T, R, P, M, 5), ? as f, R, h(®) and Af(® given by (4.2)—(4.5) are
of T, R, P, M, /7, ; Consequently according to Definition 4.6

(4.19) 0s(; b R, F)=ys(ih, T, R, P, M, p, 7).

The result (4.8) in the theorem then follows immediately from (4.12) when the barred
parameters in (4.19) are replaced by their values given in (4.15).

The proof of the other three parts of Lemma 4.7 is virtually identical. In fact,
the same text may be used, making the appropriate alterations in displayed equations
(4.11)—(4.19).

When a function, such as Y5 above, of several specified independent variables
satisfies a functional relationship, it is often possible to express it as a different func-
tion of fewer different independent variables. For example, in (4.10), it is clear that
iltering P and M in such a way that the product PM remains constant does not affect
the value of Y. If we had used X5 = P and X, = MP as independent variables in-
stead of P and M, the purport of (4.10) is that the new function is independent of Xj
To provide a straightforward treatment of this and the other relations, we introduce
1ew variables as follows:

Definition 4.20.

. - > -> >
4'21) BD(Y; H! Xl’ X2: X3: X4y P> 7) = \L’s(y; hy T) R) P) M’ o, 7),

vhere
D

§/MP; Y = MPy; H = h/MP,

4.22) X, = T?R/MP, X, =R/P; X5 =P; X,=MP.

Rewriting (4.7)—(4.10) in terms of the function 6, gives, respectively:
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(4.23) 0,(Y, H, Xy, X,, X3, X4, 0, 7) = 05(Y, H, X, Xy, X5, mXy, 5> 7)s
-> - -

(424) eD(Y’ H’ X]r X2’ X3’ X4, ,0, 7) = BD(Y, H, Xl’ X2, X3/>\, X4, p, ')’),

->
0p(Y, H, X, X,, X3, Xy, p, ’7)
(4.25) R
= 0D(Y’H+I/Pr Xl» X2: X39 pl; 925 p3 +I/P’ 7)5

-> -
(426) 0p(Y, H, X\, Xy, X3, Xa, 0, 7) = 0,(Y, H, X,, \X,, X3/\ X4, 0s 7).

THEOREM 4.27. When the algorithm is fully scale invariant, the distribution
function Y may be reexpressed as a function 0 which is independent of X,, X5,
and X,.

Proof. Such an algorithm has a distribution function 5 which satisfies (4.23),
(4.24), and (4.26) above. The first two indicate that 6, is independent of X, and
X, respectively. When 0, is independent of X5, the third shows that it is indepen-
dent of X,.

When the algorithm satisfies only the more limited T;-scale invariance, 0, is
independent of X5 and X, but may depend on X,.

5. The Nature of a Limiting Cost Distribution Function. From this point on,
only limited progress is possible without making a further assumption (or approxima-
tion) about the behavior of the algorithm. This is essentially that ultimately the dis-
tribution function

Vsih TR P, M, p,7)
settles down to either a function independent of 4, or to one which depends on A
in a quasi-periodic manner.

Assumption 5.1. A limiting cost distribution function ES, defined by

- -> - . 1 ny - -

Vi TR P M p,7) = Lim —— [y ih T,R P, M 5, 7)dh
hy—>—co N, = h, Y h3

exists, is finite and is independent of %, as indicated.

It is important to appreciate the nature of this assumption. In the previous
section we assumed that the algorithm has certain scale invariance properties and
showed that as a consequence, the distribution function 6, associated with this prob-
lem has a certain form. In practice one can determine analytically whether or not
the algorithm has these properties and, if it does, the results of the previous section
are rigorously established.

Assumption 5.1 is of quite a different nature. It stems from the author’s be-
lief that the algorithm, faced with this particular problem, settles down to a quasi-
steady rate of minimization and defines a new function, a limiting cost distribution
function which quantifies this rate. While theoretically it might be possible to analyze
any particular algorithm to the extent that one could establish this, or show that it is
not true, the effort involved would be out of all proportion to the utility of the re-
sult. Part of the numerical experiment to evaluate algorithms has to include an at-
tempt to verify this assumption numerically. Such verifications show at most that
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for certain ranges of the incidental parameters, immediate consequences of such an
assumption appear to be close approximations to reality.
In terms of the function 0, this assumption may be written in the form

0. (Ys Xy, Xy X3 Xa0 P> 7)
0 ; ’ 20 3 4> ps 7
2 27
— . 1 H) > >
= Hngrgw H, - H, fHZOD(Y; H X\, X5, X3, X4, p, v)dH

and 0,5 = ;.

Simple substitution of the functional relationships (4.7)—(4.10) or (4.23)—(4.26)
into (5.1) or (5.2), respectively, gives new functional relationships. These have an
appearance almost identical with the previous ones, the difference being that barred
functions replace unbarred functions and the second argument (corresponding to /4 or
H) is missing. For example, corresponding to (4.9) we find

— - —
(5'3) 1}/5()’2 Ty R: P: My p]y p2> p3’ 7) = lpﬁ(.ys T': R’ P, M, pl, pz, p3 + I/P, ?),

a relation valid when the algorithm is invariant under #(k, 1, 4, d) defined in (4.9a).
Since for all values of /, this transformation is a member of the group T';, this estab-
lishes the comparatively minor result that Y is independent of p for all T;-invariant
algorithms.

In the following theorems, 9 and g should be read as ““a function of”’. In fact,
in each case 0 is the function obtained from 6 p by removing redundant arguments.
These theorems follow directly from (4.23)—(4.26), (5.2) and (5.3).

THEOREM 5.4. When the algorithm is T -scale invariant and Assumption 5.1
is valid,

(5.4) Us = 05p(MPy, T2R/MP, RIP, py, py, V1. Y3» Va)

and its percentile y o may be expressed in the form

— 1
(5) Yo = ﬁ gQ,S/MP(TQR/MP: R/P, Pys Pys Y15 V35 '74)-

THEOREM 5.6. When the algorithm is fully scale invariant and Assumption 5.1
is valid, then

(56) ws =05/MP(MPyr T2R/MP, pl, p2, 71, 737 74)
and

— 1
(5.7 Yo = MP gQ,a/Mp(TzR/MP, P1s P> Y1> V35 Ya)-

Relations (5.5) and (5.7) are simple consequences of the definition of a percentile.

6. Experimental Results and Conclusions. In this section we present some re-
sults obtained using implementations of four well-known algorithms. All four are fully
scale invariant so, if one can rely on Assumption 5.1, the cost distribution function
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¥, for each is of the form described in Theorem 5.6, and the median (see (5.7)) has
the form

_ 1
(6.1) Yo,5 = 37p 80.5s(T*RIMP, Py, 03, 71, 735 Va)

where we have suppressed the dependence on § which is zero. The comparison is
based on calculating by numerical means the function g, . for each of the four algo-
rithms; in general, the more economic algorithm is the one with the smaller value of
8o0.5-

As it stands, g, 5 is a function of six variables. However, two of these define
a starting disc and three define starting conditions. It is heuristically plausible to be-
lieve that the function g, . will be relatively insensitive-to these five parameters as it
describes the behavior of the algorithm long after it has started. However, so far as
7Y, and 5 are concerned, this argument is less plausible in algorithms having reset
mechanisms (Fletcher (1972)).

The first stage in the measurement process is naturally to acquire evidence about
the nature of g,. In a pilot project (described in some detail in Lyness and Green-
well (1977)) considerable effort was devoted to obtaining numerical evidence relating
to the nature of 8o- This evidence established a prima facie case for the following
statements.

(1) For a wide range of values of T2R/MP, Assumption 5.1 appears to be valid,
and g, is of form (5.5) or (5.7).

(2) The function gp appears to be almost independent of parameters p,, p,,
Y1, ¥3 and vy, for a significant range of values of these parameters.

Our experiments were naturally limited. However, we did search for counter-
examples to these statements and found none. All discrepancies were minor and non-
coherent and could be accounted for by the crudeness of the numerical technique.

In no case did any of the algorithms terminate prematurely. Apart from this (which
implies ¢(e°) = 1) our experiments were too crude to obtain detailed information
about the tails of the distribution. A phenomenon which we termed “rung jumping”
was encountered. This is described in Lyness and Greenwell (1977).

In the figures we present the function g, <(X,) as a function of X for four
routines and for three problem families.

The problem families are (4.2) above, and two variant families, namely

fGe, v, 2z, T, R, P, M)
(62) , o
2
.—_T2[<x—Rcos—%> +(y—~Rsin—;r;z—> ] + Mz,

63)f(x, y,z; T, R, P, M, A) = T*>(r — R)? + 24 (1 - cos(% -0 )) + Mz,

where 72 = x2 4 »? and 0 = arctan(y/x).
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For these latter two, certain definitions given in the text have to be modified.
In place of the definition of X, in (4.22) one must set

(5.6) X, = R*T?/MP

and one must set

(4.4) o = diag{'yl/Tz, ’yl/T2, v3P/IM},
(4.5 Af©® =y, T2R2

in place of Egs. (4.4) and (4.5), respectively.

With these modifications, all the theory given in Sections 4 and 5 is valid, except
that, for the third problem family, an additional problem parameter A = X, is pres-
ent in many argument lists, specifically all lists containing X, or . These families
conform to the description given in the beginning of Section 4. They are based on an
identical helix, but the objective function has a different nature away from the helix.
Our reason for including these is to demonstrate at least some limited generality for
conclusions which may be based on the results illustrated in one of the figures.
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The four routines, whose behavior is illustrated in the figures are:

(A) An in-house implementation of the Davidon-Fletcher-Powell quasi Newton
algorithm.

(B) An in-house version of DRVOCR (Davidon and Nazareth 1977) which is
based on an optimally conditioned optimization algorithm without line searches
(Davidon (1975)).

(C) A quasi Newton algorithm QNMDER (Gill, Murray, Picken, Graham and
Wright (1975)).

(D) A quasi Newton algorithm VA13AD of the Harwell Library.

At no stage were we able to differentiate between the performance of routines (C) and (D)

Besides calculating y, . the median, we retained other numerical features of the
statistical distribution functions. Among these was an average between the first and
third quartiles, defined in Lyness and Greenwell (1977). In the results appearing on
the figure, this average coincided with the corresponding median to within one percent.

The following comments are in order. It seems that for these helical valleys,
the BFGS methods are marginally more economic thah DRVOCR by factors of be-
tween 15 and 20% and that the in-house DFP implementation is less economic than
any of these by a substantial margin. Moreover, the two BFGS routines gave almost
identical results which coincide with results produced by an in-house implementation
having a poor line search.

However, the author feels that the more significant conclusions to be drawn
from this bench mark experiment are qualitative. By means of a carefully conducted
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experiment, measuring properly defined functionals, we are able to obtain information
about algorithms of a definite and useful character. This information can be added
to as and when other algorithms are forthcoming. And the information provides
clear and unambiguous evidence about the relative merits of the routines when faced
with a particular topography.

The author hopes that similar bench mark experiments will be carried out using
other topographies, using definitions of the same character as those outlined at the end
of Section 2.
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