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The Affine Scale Invariance
of Minimization Algorithms*

By J. N. Lyness

Abstract. Let f(x) be a general objective function and let 17‘(x) = h + mf(Ax + d).
An analytic estimation of the minimum of one would resemble an analytic estima-
tion of the other in all nontrivial respects. However, the use of a minimization algo-
rithm on either might or might not lead to apparently unrelated sequences of cal-
culations.

This paper is devoted to providing a general theory for the affine scale in-
variance of algorithms. Key elements in this theory are groups of transformations T
whose elements relate f(x) and f(x) given above. The statement that a specified algo-
rithm is scale invariant with respect to a specified group T is defined. The scale in-
variance properties of several well-known algorithms are discussed.

1. Introduction. There is a pressing need for the construction of numerical
techniques for comparing the relative performance of minimization routines which
carry out the same task using input of a similar nature. In developing one such tech-
nique, the present author found that it could be made very much more efficient (by
time factors of 100 or so) if one could assume that the algorithm being tested has
certain affine invariance properties. References to the literature show that the under-
lying ideas of affine scale invariance have been exploited by almost every constructor
of a successful algorithm. However, to the author’s knowledge, no set of definitions
or general theory has been published. In the application mentioned above, a properly
based theory of scale invariance of algorithms is required.

Suppose we consider two problems. One consists of finding the minimum of a
specified function f(x). The other consists of finding the minimum of f(x) defined
by

(1.1) fG) = h + mf(4x + d)

where m > 0 and 4 is nonsingular. If we were treating these problems analytically,
we would think of these as differing only in a trivial manner. An analytical solution
for one would closely resemble an analytical solution for the other. In fact, if f(x)
has a minimum at x = x,,,, it follows immediately that f(x) has a minimum at x =
Ax,, +d.

Received January 4, 1978.

AMS (MOS) subject classifications (1970). Primary 60K05, 90C30.

Key words and phrases. Numerical software evaluation, affine scale invariance, minimiza-
tion algorithms, optimization algorithms,

*Work performed under the auspices of the U. S. Department of Energy.

© 1979 American Mathematical Society
0025\-571 8/79/0000-0017/$07.00

265



266 J. N. LYNESS

On the other hand the same minimization routine presented with these two
problems may proceed in apparently unrelated ways on either.

The definitions introduced in this paper are devoted to classifying the extent
to which the behavior of an algorithm of related problems is related. The principal
definition occurs in Section 4. The two preceding sections are devoted to specifying
the type of algorithm we consider and to defining various transformation groups.

The rest of the paper is devoted to applications of this theory. In Section S,
the theory is illustrated in a one-dimensional context. One of the drawbacks of the
theory is that it is a tedious task to prove that any specific algorithm is scale invariant.
In Section 6, part of the definition is reformulated in terms of tensor algebra, as this
simplifies to some extent the examination of n-dimensional algorithms.

In Section 7 the scale invariance of a simple version of the quasi Newton method
without a line search is established. Algorithms which involve line searches pose a
special problem as the scale invariance of the algorithm is related to the scale invariance
of the line search. The nature of this relationship is established in Section 8 for the
quasi Newton algorithm and for some well-known variants of the conjugate direction
algorithms.

The principal purpose of this paper is to provide the definitions which appear
relatively early in Section 4. The bulk of the paper is devoted to the secondary pur-
pose, the application of the definitions to a few well-known algorithms.

2. A Class of Algorithms. The theory presented in this paper applies to ‘“‘real
arithmetic” algorithms. It is supposed that no “rounding” error occurs. The algo-
rithms with which we deal have the following structure.

1. The algorithm proceeds by making a sequence of function calls to an ob-
Jjective function f(x). By means of such a call at x = a, the algorithm acquires the
function value f(a), possibly the components

of

2.1) g}\(a) -

) 7\=1,2,...,n,
0x,

xX=a
of the derivative vector g, and in some cases the elements
o°f

0x, 0x

(22) G?\,ﬂ(a) = s )\,IJ, =1, 2, PP (B

| x=a

of the hessian matrix G. The nature of the function call forms part of the specifi-
cation of the algorithm.

2. The algorithm requires values of a set of input parameters. We refer to
these as a parameter list. An example of a parameter list is

2.3) M= {x®, 1@ AfO N ¢85 N, e}

Jere x(®) is a starting iterate, I'®) is a user-provided matrix hopefully containing
ipproximations to G(x(o)) and N is a limit on the number of iterations to be carried
yut before termination. This notation is used consistently. Other quantities will be
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defined when we use them. Briefly, € and § are tolerances used in applying termina-
tion criteria and V; and €, are used in a line search in the same manner as V and €
are used in the algorithm. Each parameter in (2.3) may be restricted in its range of
possible value. For example, '(®) may have to be positive definite, N> 1 or €, § >
0. An allowable assignment of parameters is one for which no stated restriction is
violated.

3. The algorithm proceeds by making a sequence of iterations. Each iteration
involves one or more function calls. At the end of the jth iteration, the algorithm
chooses one of points at which function calls have occurred to be the jth iterate,
denoted by x). Thus, among the function calls are ones at

(24) x(@, XM @) xNY L N <N

We impose two conditions on the algorithm:

(a) The sequence (2.4) is determinate in terms of the objective function f(x)
and the parameter list II.

(b) The values of individual members x@) of sequence (2.4) are independent
of € and 8, the termination criteria parameters. These simply affect the value of N '
the point at which termination occurs. Moreover, it is possible (by setting € = & =
0 or by some other means) to dismantle these convergence criteria, ensuring that NV '
=N in (2.4).

4. The algorithm returns one of the iterates, which we denote by xF) as mini-
mum. This satisfies

x® e (x©), xM . 2™}, fe®)= min f).
k=0,N’
If two or more iterates x) satisfy this criterion, the one with the highest j-value is
returned.

The theory described in this paper can be extended to cover a wider class of
algorithms. The class described above is sufficiently general to be realistic and suffi-
ciently restricted to allow a reasonably concise description and application of the
theory.

3. A Group of Affine Transformations. The affine transformation, mentioned
in Section 1, namely

(3.1) f&x)=h+mfAx +d), m>0,lAl#0,
may be expressed in the form
3.2) f=tfs t=1thm A d,

where ¢ is an element of a group TIS") of transformations.

Definition 3.3. The group T};”) is composed of all elements ¢(h, m, A4, d),
where /4 is a real number, m is a positive real number, d is an n x 1 real vector and
A is a real nonsingular 7 x n matrix. The group element combination rule is 73 =
t,t,, where
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B3)  hy=hy, +mh; my=mumy; Ay3=A,A,; dy=Ad, +d,.

The identity element is ¢ = #(0, 1, I, 0).

This full transformation group T},") has many subgroups. For some of these, we
introduce now specific notation.

Definition 3.4. Subgroups T,(,"), T,(,f'), T/({'), T}") are defined as follows:

(3.4) T\ = {t(h, 1,1,0) ¥ h},

(3.5) T\ = {10, m, I, 0) ¥V m > 0},

(3.6) Tf{’) = {1(0, 1, 4, 0) V real nonsingular n x n matrices 4},
(3.7) T = {10, 1, 1, d) V real n x 1 vectors d}.

Clearly, the full transformation group 7, IS") is the semidirect product of these, i.e.,
(3.8) 7 =7 @ T ® T4 @ (M.

Before proceeding we note that these transformations may be described in real physi-
cal terms in a two-dimensional context, in which the objective function is measured
in the conventional z-direction. The transformation t(k, m, 4, d), after applying a
homogeneous affine transformation A in the x-y plane, displaces the function a vector
distance d, applies a magnification factor m to the function and then raises it to a
height h above its previous level.

The first two and the fourth of these subgroups are of a somewhat elementary
character. The third Tlg") is isomorphic with the group of nonsingular # x n real
matrices B. This has many well-known subgroups. We shall require nomenclature for
some of these.

Definition 3.9.

B is the group of n x n nonsingular matrices B (for which |B| # 0).

B, is the group of n x n orthogonal nonsingular matrices B (for which BBT =1).

B, is the group of n x n matrices for which B = N, \ # 0.

By is the group of n x n matrices for which BBT = )1, A #0.

B, is the group of positive definite n x n matrices B.

Clearly B, , = By ® B,. Isomorphic with each of these groups of matrices is a sub-
group of the full transformation group. Specifically,

Definition 3.10.

T§) = {0, 1,4,0) st 4 € B},

T3 = {10, 1,4,0)st. 4 € By},

T{) ={#0,1,4,0)s.t. 4 € B, },
T = (#0,1,4,0) s.t. A € By},

®) ={#0,1,4,0)st. A€ B, }.
The subscript notation is designed to be mnemonic. F stands for full and O for ortho-
ronal.
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4. Definition of Affine Scale Invariance. Let #(h, m, A, d) be any element of
™.

Definition 4.1. An n-dimensional minimization algorithm is affinely scale invar-
iant with respect to an individual transformation ¢ if the following situation prevails:

Given any arbitrary allowable assignment for the elements of the parameter list
I1, and that the application of the algorithm to any specified objective function f(x)
gives rise to a sequence of iterates

4.2) x©) x)  W)

then it is possible to choose an input parameter list IT (whose elements depend only
on the elements of IT and of ¢ but not on f) in such a way that the application of the
algorithm to the transformed objective function

(4.3) fG) = h + mf(Ax + d)

gives rise to a sequence of iterates

(4.4) 0N CORIE0)
satisfying
(4.5) AxD +d=x9D, j=0,1,...,N

In this event, it follows that
(4.6) M =h +mf®), j=0,1,...,N

We note that item 4 of Section 2, which specifies the value xF to be returned,
has the consequence that, when (4.5) is satisfied,
4.7 AxF +d =xF,

The onus of this definition is on the construction of an associated parameter
list TI. Corresponding to each element of II, a prescription for the construction of the
corresponding element of II has to be stated. Since we require our algorithms to be
deterministic, it follows that all algorithms are invariant under the identity transforma-
tion #(0, 1, 7, 0). In the definition, f(x) may be chosen arbitrarily. It follows im-
mediately that when an algorithm is invariant under transformation ¢, and under
transformation ¢, it is also invariant under transformation #,¢,. Consequently, the
full set of transformations under which a particular algorithm is invariant forms a
group, which may be the full group 7}"), or some subgroup, or simply the group of
order one, the identity transformation.

Definition 4.8. An algorithm is affinely scale invariant with respect to a group T
of transformations if and only if it is invariant with respect to every element of the
group.

We shall refer to properties of this sort as affine scale invariant properties and
refer to an algorithm satisfying the above definition as being T-scale invariant. If T
coincides with the full transformation group T, we refer to the algorithm as being
fully scale invariant,
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This concludes our definition of affine scale invariance. The remainder of this
paper is devoted to showing to what extent standard algorithms are scale invariant.
The more interesting results are connected with n-dimensional algorithms and their
properties under transformations 7T ‘f{'). An alternative definition of T&")-scale invariant
in terms of tensor algebra will be provided in Section 6. The reason for the delay is
that these algorithms contain line searches which are special purpose one-dimensional
minimization algorithms, and the scale invariant properties of the n-dimensional algo-
rithm depend to some extent on the scale invariant properties of the one-dimensional
algorithm used in the line search. Thus, we outline some of the theory as it applies to
one-dimensional algorithms first.

5. Scale Invariance of One-Dimensional Algorithms. We shall illustrate this dis-
cussion using an algorithm Localmin (Brent (1973)). This algorithm has function calls
requiring only function values, and has a parameter list

5.1 MN={Lue€sd}

where (I, u)l < u defines the interval to be searched and €, § define a local tolerance
parameter

(5.2) 1D =elx?D| + 5.

To establish scale invariance for a single transformation #(k, m, a, d) we have to
provide an associated parameter list

(5.3) MN={lues)

giving the relation between these barred and unbarred quantities. Then defining
(5.4) fE@) =h+mf(x);, x=a"'(x-d),

we have to show that the respective sequences of iterates are related by

(5.5) D =41V -d), j=0,...,N

Our first step must be to obtain the relationships for the quantities in the param-
eter lists. This involves examining the steps in the algorithm to see where they are
used. A very early step in Localmin sets

(5.6) O ==+ c=%3-V5).
Thus, if (5.5) is to be satisfied with j = 0, we require

(5.7 O =1 -c) +cu

to be related to x(®) given by (5.6) by

(5.8) ¥ =410 - g).

This can occur generally only if

(5.9) I=a'(-d), u=da'@wu-d), a>0.
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If a < 0, one finds 1 > u which is disallowed as a parameter assignment. Immediately
then, this algorithm is not T}l)-invariant, but may be Téﬁ_)-invariant.

The tolerance parameter, besides being used to provide a termination criterion,
is also used in the update loop to prevent an iterate becoming too near an end point,
or other bound. Consequently, a step

(5.10) LG+ = 1 4 D

may occur, t9) being given by (5.2) above. In view of (5.5)

(.11 FUHD =7 470 = g 10D gy = a1 + 1D - a)
and, using (5.9) we find

(5.12) 7D = g1,

Using (5.2) and (5.5) gives

(5.13) aHxD —gle+8 =a xDle + a7 1.

This can be satisfied if

(5.14) e=e b6=a'5, d=0,

or (see later) if € = € = 0 in which case d may be arbitrary. Thus, Localmin is not
Tf,‘)-invariant. Equations (5.9) and (5.14) allow us to construct an associated param-
eter list (5.3) on a pro tem basis.

THEOREM 5.15. Algorithm Localmin (Brent (1973), Chapter 5) is scale invariant
under the group TSV ® TV @ TSL), the associated parameter list being

(5.15) OD={a',a'u ¢als})

Note that the preceding remarks have in no way proved this theorem. They have
merely shown that the algorithm is not scale invariant under wider transformations,
and have provided the necessary parameter list transformation should it appear that it
is scale invariant at all. Nevertheless, this theorem is true. It may be validated by
establishing (5.5) as a consequence of (5.15) and (5.4). Since the algorithm has a cen-
tral loop, the proof involves three distinct parts. These are: (i) To establish (5.5) for
j =0, 1 and perhaps 2 in the initialization stage. (ii) To show that the central loop is
such that when X9, x@) satisfy (5.5) so do xU* 1D, xU*+ 1 (iii) To show that the
termination criterion concludes the calculation at the same stage in each case.

Most one-dimensional algorithms examined by the author are either fully scale
invariant, or else departure from full scale invariance is occasioned either by there bein
insufficient input parameters or by individualistic types of termination condition. The
central loop is usually fully scale invariant. To see why this happens, we widen the
scope of the discussion to include algorithms whose function calls may involve deriv-
ative and second derivative evaluations, and note that, in the calculation we may use
the relations

(5.16) x =a '(x - d); ) =h + mf(x); g(x)=magx); Gx)= maG(x).
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The central loop calculation rarely involves input parameters explicitly (Localmin is an
exception in this respect). Normally, it is quite complicated but conforms to the fol-
lowing structure. Three or four iterates, defined by the geometric configuration ap-
parent after the jth iteration, are retained. These may include the iterate x™) having
smallest function value f"‘), and two bounding iterates, x®) and x> which are, re-
spectively, to the left and to the right of x(*), and perhaps others, defined geometrical-
ly. Depending on the relative values of these iterates, and their function and derivative
values, the algorithm may terminate, or may choose a particular type of step such as
cubic interpolation step or an extrapolation step or a bisection step. A new iterate is
calculated; x®), x®) and x® are reassigned; and the process is repeated.

It is almost self-evident that, under the transformation x = a~!(x — d), f(x) =
h + mf(x), the new geometric configuration is simply an affinely scaled version of the
previous one, and decisions about defining x®), X*) and X are likely to produce
an exactly corresponding result (see Lemma 5.17 below). Moreover, polynomial in-
terpolation turns out to be scale invariant also (see Lemma 5.18 below). Thus, so
long as the termination criterion is scale invariant, the central loop is likely to be scale
invariant.

The following three lemmas are straightforward consequences of (5.16) and (5.5).

Lemma 5.17.

16D) = fD) = m(fxD) - fx D),
g D) = m*a* gV (xNy),
GED - xMNgx®)) = m(x® — xD)g(x*)),
X —xD2 = 72 1xD — xD]|2,
The signs of quantities such as these are used to decide the nature of the next
step. Since a2 and m are positive, the resulting decision is scale invariant.
LEMMA 5.18. Let p(x) interpolate f(x) at x = x*), j=0,1, ..., ko, and

f'x)at x = xA) = ko +1,...,k,, where k; > k, > 1. Let p(x) have the same
properties with respect to f(x) and its derivatives at X, Then

p(x) = h + mp(x)
and should p(x) have a minimum at x ;., then p(x) has a minimum at

by — 1
Xmin = ¢ (xmin _d)‘

LEMMA 5.19. Let p(x) be a least squares fit polynomial of degree d < k, which
minimizes the expression

ko
2 o) = fx D)2 w2,
=0

Then p(x), the corresponding least squares fit polynomial which minimizes
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ko
> PG - sy 12w
j=0

is given by
p(x) = h + mp(x).

Undoubtedly, algorithms exist whose central loop is not scale invariant. The
lemmas above simply indicate that many different conventional algorithms are likely
to have scale invariant central loops. A formal proof of Theorem 5.15 involves apply-
ing lemmas such as these to each step of the algorithm in order to verify (5.5) for all j.

Having discussed at length features of the algorithm which are fully scale invari-
ant, it is pertinent to comment on the underlying causes of the loss of scale invariance.
The reader should bear in mind that scale invariance is not a virtue but a property.
And one may quite properly sacrifice this property in favor of some other more desir-
able feature. For example, in Localmin, the author took the view that if a user set /
> u, he made an error; and so the algorithm aborts immediately. This means that one
cannot reverse the coordinate system. He also took the view that the user would like
the option of a tolerance relative to the magnitude of the abscissa. This clearly is not
invariant with respect to displacement of the objective function. Both decisions seem
to the present author eminently reasonable.

Incidentally, the user has the option of removing the feature which causes the
algorithm to fail to be invariant with respect to displacement. If he constructed a
modified version in which € is zero, then the algorithm requires only three input

parameters

(5.20) M={,u s}

This modified algorithm is invariant under the group of transformations
(5.21) Ve i) @ T ® ()

with

(5.22) N={a'(-d),a(u-d),a's}.

Again, relatively simple changes, which allowed / > u would yield an algorithm scale
invariant under the full transformation group T},l).

The present author is not advocating such changes. Indeed, the option for the
first change is already present, simply by setting € = 0. Discussion of hypothetical
changes is simply intended to illustrate some of the aspects of the affine scale invari-
ance theory.

Loss of scale invariance can be caused by inflexibility in the calling sequence.
To see this we consider an algorithm, which requires derivatives, for which the calling
sequence is

(5.23) n={x®r . ..

where I' > 0 is a user-provided approximation to G(x()). We suppose that one of the
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initial steps in this algorithm is
(5.24) x(1) = 5(0) —g(x(o))/F.

Such an algorithm may well be fully scale invariant, the associated parameter list being

(5.25) 0= {a'x©® -4q),a®mr, ...}

However, the constructor may take the view that the user is unlikely to know the
value of I" and so he modifies the algorithm by removing I" from the parameter list
and setting I' = 1 in (5.24). This modified algorithm is no longer fully scale invariant.
In fact, it can only be invariant under transformations T},l) ® Tgl) .

6. Tensor Algebra Formulation of T ﬁ”) Scale Invariance. When investigating
the scale invariance properties of n-dimensional minimization algorithms, a convenient
framework for handling T f{')-scale invariance is provided by the part of the elementary
theory of tensor algebra which refers to affine transformations (see,e.g. Spain (1953)).
This allows one to avoid excessive algebraic manipulation and provides a unifying back-
ground. The first part of this section (embracing Egs. (6.1) to (6.13)) is devoted to
a very brief description of some tensor algebra definitions and results in order to re-
fresh the reader’s memory and to establish the notation. In the subsequent theory,
the distinction between covariant and contravariant entities plays a key role.

Let B be an element of a group B of nonsingular #» x n matrices. Such an ele-
ment defines a coordinate transformation

) n ox’ ox’
6.1 X = k. Z__ B O
(6.1) X = :;1 B Sw= B =B ik
between coordinate systems (x!, x2,...,x") and (x', X2,...,x").

Definition 6.2. An n-dimensional covariant (contravariant) tensor A of rank r
with respect to transformations of group B is an entity A which is represented by n”
;omponents in any particular coordinate system. When two coordinate systems are
related as in (6.1), the components of A in these respective coordinate systems are
celated by

n n n —_
(6.2) )\il,i2:---’ir = Z Z e Z Bf],ile2,i2 T B]'r.ir)\fl,fz,-..,]'r
) 1=1 j2=1 jr=1 ,
(covariant tensor)'
o
n n n X
Ny igesiy = 2 Z T Z Aiy jiAig iy Ay j Nz i
6.3) j1=1 j2=1 =1

(contravariant tensor)

vhere A;jis an element of 4 = B!,
An n-dimensional tensor of rank zero is called an invariant; this has only one
;omponent which satisfies

6.4) A=A (invariant).
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An n-dimensional covariant (contravariant) tensor of rank 1 is called a covariant
(contravariant) vector. It has n components which satisfy

n —
(6.5) N, =2 B\, (covariant vector),
=1
n —
(6.6) A; =2 A;;\; (contravariant vector).
=1

Some of the elementary properties we shall employ include:
(i) The dyadic product M = \v of two covariant (contravariant) vectors A and
v is a covariant (contravariant) tensor of rank 2 whose components are defined by

(6.7) M;; = Ap;.

(ii) The inner product s = \v of a covariant vector A with a contravariant vector
v is an invariant defined by

n
(6.8) =3 Nt
i=1

(iii) The contraction v = Lu of a contravariant tensor L of rank 2 with a co-
variant vector u is a contravariant vector v whose components are defined by

n
(6.9) Vi = Z Ll,]“]
=1

(iv) When L is a covariant tensor of rank 2 and when the elements of an entity
M satisfy

(6.10) Z Z L iM; o = 6y

j=1 k=1

0, i+#k,
=1, i=k,
in all coordinate systems, then M is a contravariant tensor.
Matrix algebra is a convenient tool for manipulating tensors of rank 2 or less.
The results stated above simply introduce a convenient nomenclature for describing
entities in terms of their transformation properties. Their proofs are trivial.
The definitions and results stated above apply when B is the full group of n x n

matrices or any subgroup. In general then, when X is a contravariant vector, the
quantity associated with its length

(6.11) 1=3 AN

is not an invariant, since 1= ATBTB\ when I = AT\ However, if we restrict ourselves
to orthogonal transformations B, whose elements satisfy B TB = I, I given by (6.11)
is an invariant.

Result 6.12. When the transformation group is B, or a subgroup of B, the dis-
tinction between covariant and contravariant entities disappears, and these adjectives
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may be interchanged indiscriminately in all results or statements occurring in this
section.

It is perhaps worth noting that, in the context of tensor algebra, one may con-
struct one-dimensional vectors and tensors. For example, if we set A =d = 0 and
m = 1 in Eqgs. (5.16) of Section 5, we obtain

(6.13) x=a'x, f=f g=ag and G =d%G.

These are statements to the effect that x is a contravariant vector, f is an invariant
and g and G are a covariant vector and a covariant tensor, all being one dimensional.
However, to avoid confusion we have not used the tensor algebra nomenclature in a
one-dimensional context.

In order to relate the formalism described above to our present problem we con-
sider a fixed objective function, whose functional form in the first coordinate system
is

o) =it %%, ..., x")
and whose functional form in the transformed coordinate system is

G =&Y %2, ..., %").

Since a fixed point having coordinates ¢ in the first system has coordinates B{ in the
second system, the value of the objective function at this point may be expressed
either as f(§) or as f(B¢). Consequently,

(6.14) fGx) = f(Bx) = f(x),

which, in view of (6.4), may be reexpressed by the statement that f is an invariant.
The Definition 4.1 of affine scale invariance, when applied to transformations
t(0, 1, A, 0), is based on a function transformation f(x) = f(4dx). If we set

(615) A= B_l,
this transformation may be written
(6.16) f(Bx) = f(x),

which is of precisely the form (6.14). The demands of Definition 4.1 in this situation
are that, under certain circumstances, (4.1) should be valid, that is 3D = 471D o

(6.17) X = Bx(),

In view of (6.6) this may be reexpressed as a demand that x) should be a contra-
variant vector.

Thus, Definition 4.8 as it applies to transformations of group Tf{') or its sub-
groups may be reexpressed in the following form:

Definition 6.18. Let T be a subgroup of Tﬁ") which is composed of all transfor-
mations 7(0, 1, 4, 0) for which 4 € B. An algorithm is T-invariant if it is possible to
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define II in terms of II in such a way that, when f is an invariant with respect to B,
x0) is a contravariant vector with respect to B for all ;.

When we come to use this definition, we shall be interested in the tensor char-
acter of derivatives of f when f is invariant.

THEOREM 6.18. When f is an invariant and x is a contravariant vector, the ele-
ments of Table 6.18 have the following associated tensor character. In the table A =
Bt

TABLE 6.18
x contravariant vector x = Ax x = Bx
f  invariant f=f f=f
g covariant vector g=BTg g=A4Tg
G covariant tensor G = BTGB G =4764

G~!  contravariant tensor G~! = AG'4T G ! =BG 'BT

G 'g contravariant vector

gG'g invariant

The final two columns express the relation in matrix form. The third and fourth
entries may be verified by differentiation using (6.1). For example

of ___ o
x 71 x
Since f(x) = f(x),
) of n 3f Ox n _
(6.20) ALY TP g
ax]. x axj ¥ k=1 Oxp ax]' X k=1

The final three entries in the table follow by applying (6.10), (6.9) and (6.8),
respectively, to results stated in earlier entries in the table.

In the next two sections we shall define versions of several well-known x-dimen-
sional algorithms. We shall show that some of these have specified scale invariant prop-
erties by establishing that the iterates x) are contravariant vectors and appealing to
Definition 6.18. It is worth noting that many algorithms proceed by constructing ap-
proximations to intermediate quantities. Some of these quantities have definite tensor
character and, in general, the approximations provided by the algorithm have the same
tensor character. For example in algorithm QN (see 7.15 below), the greater part of
the calculation is concerned with the construction of #%), an approximation to G™*.
We note that G~ isa rank 2 contravariant tensor and the algorithm does indeed gener-
ate approximations 1 which are rank 2 contravariant tensors.
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7. Algorithms Without Line Searches. Our purpose in this and the next section
is to demonstrate the scale invariant properties of some n-dimensional quasi Newton
and conjugate direction algorithms. These involve line searches and the scale invariant
properties of the n-dimensional algorithms depend on the scale invariant properties of
the line search. This connection is described in Section 8. In order to arrive at these
results in a painless manner we proceed as follows:

In this section we treat Newton’s Algorithm N without a line search and extend
the results to a quasi Newton algorithm QN also without a line search. In Section 8
we extend these results to Algorithm QNLS which is the same as QN but with a line
search included. Finally, we treat a conjugate direction algorithm CDLS having a line
search.

The somewhat stylized algorithms which we shall treat have a single termination
criterion, i.e., each stops after precisely /V iterations and returns the iterate correspond-
ing to the lowest function value then available.

The following algorithm is mentioned in Murray (1972).

Definition 7.1. Algorithm N.

Function calls provide f(x), g(x) and G(x).

Parameter list [T = {x(©), N}.

No line search: () =1 in Step 2A).

Step 1. Make a function call at x(®), obtaining £(©), g(®) and G(®). Define

(72) p(o) = —G(O)—lg(o)_

Step 2. Carry out steps 2A, 2B and 2C withj=0,1,...,N — 1.
Step 2A. [Here a®=1. In Algorithm NLS, o) is calculated using a line
search.] Set

(7.3) xU+D) = x4 Dp®,
Step 2B. Make a function call at xU+ 1), obtaining fU+1), g0+ GG+,
Step 2C (Omitted whenj =N —1). Set
(7.4) pU+D) = —GU+1=1gG+1),
Step 3. Return x¥ | the element of the set x(j),j =0,1,...,N—1, for which
f(f) is smallest.

THEOREM 7.5. This algorithm is fully scale invariant, the associated parameter
list being

(7.5) 0={4"1x©® -d), N}.

We show this, treating transformations of group T,(,”) ®T ,(n") ® Té") first and those of
group Tf{') second.

THEOREM 7.6. Algorithm N is scale invariant under transformations of the group
T, ,(,”) Q T,(,f') ® ngn)' the associated parameter list being defined by

(7.6) = {x© -ad),N}.
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This is almost self-evident. The general transformation of this group is t =
t(h, m, 1, d). When f(x) = h + mf(x + d) and

(7.7) ¥ =x0 g,

it follows by differentiation that

(7.8) O =10y =n +mfxV) = n + mf?,
(7.9) gD =2xD) = mg(xD) = mg®,
(7.10) G = 5(}(}')) = mG(x(i)) = mGY,

and from (7.4) or (7.2) that

(7.11) p? = -G 1g0) = —gW-10) = pO)

The proof is inductive. The parameter list asserts that (7.7) is valid when j = 0.
When valid for j =0, 1, . . ., k, it follows from (7.3) that
(7.12) XA = x(®) 4 5 = 5 (0) — g 4 p(k) = x(k+1) _ g

establishing its validity for j = k + 1. Consequently, throughout the calculation, x¢?
and x¥) are related by (7.7). This is the principal condition (4.6) in Definition 4.1 of
scale invariance. The final step is also invariant as

7O < 7O = f0) < p0),

These are the conditions for scale invariance of Section 4.
THEOREM 7.25. Algorithm N is scale invariant under transformations of the
group Tff ), the associated parameter list being

(7.13) = {4"1x(), N}.

In the discussion of Section 6, the statement that x(°) is a contravariant vector
is shown to be equivalent to the statement that

(7.14) 30 = By(0) = 471,(0)

under the transformation #(0, 1, 4, 0). Consequently, x(°) as defined in (7.13)is a
contravariant vector. It then follows also from the sixth entry of Table 6.18 that p(©)
defined in (7.2) is also a contravariant vector.

When both x%) and pY are contravariant vectors, it follows from (7.3) that
xU*1) js also one, and from the same entry in Table 6.18, Eq. (7.4) defines pU* 1) asa
contravariant vector.

Consequently, Algorithm N has the property that x¥? is a contravariant vector
forj=0,1,...,N, and so according to Definition 6.18 the algorithm is scale invari-
ant. Theorems 7.6 and 7.13 together establish Theorem 7.5.

The next algorithm, QN, is a simple version of the Davidon-Fletcher-Powell al-
gorithm. This and QNLS described in the next section are discussed in detail in
Fletcher and Powell (1963) and in Powell (1971).
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Definition 7.15. Algorithm QN.

Function calls provide f(x) and g(x).

Parameter list: 1 = {x(©) (®) N3},

No line search: (a®) = 1 in Step 2A and in (7.20)).

Step 1. Make a function call at x(°), obtaining f(°) and g(®). Set

(7.16) p(©) = —p(©)5(0),

Step 2. Carry out Steps 2A, 2B, 2C withj=0,1, ..., N - 1.
Step 2A. [Here o) = 1. In Algorithm QNLS, a¥) is obtained using a line
search.] Set

(7.17) X0+ = 3O 4 gDp®).

Step 2Ba. Make a function call at xU*1) obtaining fU*1) and g0+ D,
Step 2Bb (Omitted when j = N — 1). Calculate U 1) as follows: Set

(7.18) 19 = pDEU+1) - g0y,
) - HT
(7.19) o) = — S
@01 — g0
N DT
(7.20) o P00

pPT(l+ D — gy
(7.21) RO+D = O 4 0) 4 oD

Step 2C (Omitted when j = N — 1).
(7.22) pU+D) = —pU+1)g()

THEOREM 7.23. Algorithm QN is fully scale invariant, the associated parameter
list being

(7.23) M= {47 - a), m 147 n @471, V).

The proof that this is scale invariant under transformations of the group T,f”) ®
T,(:) ® Té”) follows the same lines as the similar proof for Algorithm N, namely Theo-
rem 7.6. Incidentally, the quantities h(j), l(f), e") and ¢® satisfy

KD = m1h0); 10 = (@ 20 = 1), G = 10D,
The proof that this is invariant under transformations of the group TJS") is similar to
the corresponding proof for Algorithm N, namely Theorem 7.13.
We note that 20 here plays the same role as (G9)! in Algorithm N. We have
to show principally that 29 is a contravariant tensor.
From the parameter list, we note that x(°) is a contravariant vector and that

k() is a contravariant tensor. It follows from the third entry of Table 6.18 that
g(®) is a covariant vector and from (6.9) that p(®) defined by (7.16) is a contravariant
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vector. In view of (7.17), x() is a contravariant vector and as before g™ and g -
g(o) are covariant vectors.

We now assume that xU*1) and p@ are contravariant vectors, gf*1) — g@ is
a covariant vector and 49 is a contravariant tensor and show that relations (7.17)—
(7.22) have the consequence that the corresponding updated entities have the same
tensor character. Using (6.9), we see that /00 defined by (7.18) is a contravariant
vector. Using (6.8), the denominators in (7.19) and (7.20) are invariant; and from
(6.7) it then follows that both e%) and ¢U) are contravariant tensors. Thus, #0F1)
defined by (7.21) is a contravariant tensor. The tensor character of pU* 1), x(+2)
and g0*2) — g0+1) follows by the same argument as is applied above for p(®), x(1)
and g(l) -2,

This establishes that throughout the course of the algorithm xU* 1) remains a
contravariant vector, so establishing the Tj(q") scale invariance property.

8. Algorithms with Line Searches. In most implementations of the quasi New-
ton method, an algorithm is used which requires a line search, which is a special pur-
pose one-dimensional minimization algorithm. Following the standard notation, this
line search has the following structure.

Definition 8.1. Algorithm LS.

Function calls provide ¢(a) and ¢'(c).

Parameter list 1} g = {«, oy, Ny, €, }.

Algorithm provides a result a,,.

Here ¢(e) is the one-dimensional function being treated. The parameters o, and a;
are the zeroth and first iterates. Such an algorithm proceeds by calculating a sequence
of iterates

(8.2) Qg Qps Ogy o v v s Qs

and terminates when either j = N, or, if sooner, when

(8.3) 19 ()/9' (@) <ep.

We are now in a position to define a quasi Newton algorithm with a line search.

Definition 8.4. Algorithm QNLS. This is identical with Algorithm QN (Defini-
tion 7.15) with the following modifications:

(i) The parameter list is [T = {x(®), K®, N, N, €, }.

(ii) Step 2A is replaced by:

Define

(8.5) (@) = fD + ap®),
(86) Qy = 0,

0‘1 = min{l, _2(f(j_l) _f(j))/(p'(ao)}a j> la

a =1, j=0.

(8.7)
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Apply Algorithm LS to ¢(a) using
(8.8) HLS = {ao, a],NL) eL}-

Set o) = a,, the result returned by this algorithm and set
(89) X(i+1) = x(]) + a(])p(])

THEOREM 8.10. Algorithm QNLS is fully scale invariant so long as its compo-
nent line search LS is scale invariant under TS ® TV, the associated parameter list
being

(8.10) HLSz{aO’ a;, Ny, GL}’

The difference between QNLS and QN occurs only in Step 2A. Thus we need
only show that, when we assume

(8.11) XD = 471D —q), PP =a71pD, g0 =maTg®,
fGED) = n+ mf(xD),
it follows that xU* 1) calculated by means of (8.5)—(8.9), satisfies
(8.12) FU+D = 4710+ D) — g,
We first note that in view of (8.11)
f(]'—l) _f(i) f(f—l) _f(f)
0T LOT,M

and so
(8.13) Qg =0,=0; a =aq.
Second we find that the function 5 is related to ¢ by

(8.14) 9 = [GO + D) =h + mfa7 &P = d) + p?)
| =h +mfe + pP) = b + me(r).

Consequently, in all cases, QNLS applies its line search with the same first two iterates
o, and a; to functions ¢(¢) which are related to each other using only transformations
of groups T,(Il) and T,(nl). The line search will yield an identical result ay = &y so
long as it is scale invariant under T,(ll) and T,(n‘). In this case a@) = o) and
615 ¥0+D =530 4 G050 = 471 (xD) - g) + D4~ 1pD)

. =A471(xD + opD — gy = 471 (x0+ D — @)
establishing (8.12) as a consequence of (8.11).

Up to this point, all the n-dimensional algorithms we have considered have turned
out to be fully scale invariant. We now treat some conjugate direction algorithms. It
will appear that these are not fully scale invariant.

We shall treat in the first instance the algorithm of Fletcher and Reeves (1964)
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using a line search LS of the structure of Definition 8.1. Afterwards we shall general-
ize the validity of the result to variants associated with Polak-Ribiere (1969) and
Hestenes-Stiefel (1952) and to variants of all these involving resetting (Fletcher 1972).

Definition 8.16. Algorithm CGLS.

Function calls provide f(x) and g(x).

Parameter list {x(o), Af(o), N, Ny, €.}

Step 1. Make a function call at x(®)_ obtaining f(o) and g(o). Set

(8.17) p© = —g(®

Step 2. Carry out Steps 2A, 2B and 2C withj=0,1,...,N - 1.
Step 2A (Line Search). Define

(8.18) #(0) = f&x9 + ap®),

(8.19) ay =0,

620 o, = =205V = fNg' ), 7= 1,
= —201/¢' (e, j=o.
Apply Algorithm LS to ¢(a) using
(8.21) Mg ={ay o, Ny, €1
Set o) = oy, the result returned by this algorithm and set
(8.22) x0T+ = x0) 4 oDp),

Step 2B. Make a function call at xU* 1), obtaining fU*1) and gi+th,
Step 2C (Omitted when j = N —1). Set

(8.23) pU*1) = —gl+1 4 pUt DG/
where

(8.24) pU+D) = 1

(8.25) U+ = 1) = g+ DTl+1) o DT(),

(In variants of this algorithm, »U+1) may be defined differently to induce resetting
and ¢U*1) may be defined according to (8.40) and (8.41) below.)

Step 3. Return xF', the element of the set xD j=0,1,...,N -1, for which
) is smallest.

THEOREM 8.26. Algorithm CDLS is scale invariant under transformations of the
group T @ T ™™ @ TS | the associated parameter list being

(8.26) 0={A7'6® -a), mAf©O N, N, , €, }

so long as its component line search LS is scale invariant under transformations of the
group T;(zl) ® T,(,,l) ®T, ﬂ) with associated parameter list
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M = (2,1 -2
8.27) g ={a *m ‘ay,a ’m lal, Ny, el

In view of Definitions 3.10 and 3.9, for all elements of 7&”,2, A is a scalar
multiple of I, say A = al. Thus we have to show that, when

(8.28) f@®=h+mfx); x=ax+d,
the iterates are related by

(8.29) D =g 1xD-q), j=0,1,...,N
We shall also show that

(8.30) gD =mag?®, j=01,.. . N
(8.31) P =map®?, j=o01,... . N

This will be established by induction.

To anchor the induction, we note that for j = O the associated parameter list
establishes (8.29). Differentiation of (8.28) then established (8.30); (8.17) then estab-
lishes (8.31). We now assume that (8.29), (8.30) and (8.31) are valid forj =0, 1,
...,k Then, from (8.20) we find

(8.32) R e A Ay A W

a =—— — = =
p(k)Tg(k) m2a2p(k)Tg(k) ma?

and, using (8.18), (8.28) and (8.29) we find

¢@) = F&E® + ip®) = 7@ x® ~ d) + tmap®)
(8.32) =h + mfla{a ' () - d) + tmap®} + q)
= +mf® + tma’p®y = b + mp(ma’s).

Thus 5 is related to ¢ by a transformation of the one-dimensional group mentioned
in the theorem, and the parameter list is set in accordance with (8.27). Consequently,
the result if applying the line search algorithm is also scale invariant, i.e.,

(8:34) & = o) /g2,

The rest of the induction is straightforward. From (8.22) we find

(8.35) XU = 50 4 U = g1 (5 — gy 4 41 p(K)
=g 1D — gy

by differentiation of (8.28) we find

(8.36) gETD = pggle+1),
It follows from (8.25) that

(8.37) ckt1) — o(k+1)

and from (8.23) since vY* 1) =30+ it follows that
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(8.38) pEED = pgptet 1),

This completes the inductive proof of the validity of (8.29)—(8.31) for all j and so
establishes the theorem.

Unlike Algorithm QNLS, this algorithm is not Tfi")-scale invariant. One suspects
this immediately when one notices quantities like g(k)Tg(k ), occurring in the defini-
tions (8.25) as the inner product is not generally invariant. To show conclusively
that it is not Tﬁ") scale invariant, a single numerical counterexample is required using
an element ¢t € Tf4") and a single function f(x). However, Algorithm CDLS does enjoy
more limited scale invariance properties in that it is Tlg"}\)o-scale invariant. We have al-
ready shown that it is Tf‘"}\)-scale invariant.

THEOREM 8.39. Algorithm CDLS is Tﬁ”o)-scale invariant, the associated parameter
list being

(8.39) M={4"%O, A N N, €, 3,

when its component line search LS satisfies the conditions stated in Theorem 8.26.

The proof is very similar in structure to, and simpler than, the corresponding
proof for Algorithm QN. Clearly x(®) is a contravariant vector and g{®) is a covariant
vector. Thus, p{®) defined by (8.17) is a covariant vector (and not as in the QN case
a contravariant vector). However, since for all elements of T&"g the transformation
matrix B = A~ ! is orthogonal, the distinction between covariant and contravariant
quantities disappears. The proof may then proceed in the same way as in the case of
Algorithm QN, and the theorem is readily established.

Theorems 8.26 and 8.39 are valid for many variants of CDLS as defined in
Definition 8.16. For example, the Hestenes-Stiefel (1952) algorithm or the Polak-
Ribiere (1969) algorithm are described by this definition if one replaces Eq. (8.25) by

(840)  (U+1) = (E1) = gUet DT (g(k+1) _ glh)) ()T gk +1) ON

or
(8.41) clUt1) = i) = gkt DTk +1) — g(R))jg(Tg (k)
respectively. The proof of the theorem requires only that (8.37) is valid, that is
(8.42) gkt 1) = (k+ 1)

and this follows in precisely the same manner as it does for c%"]{r D In Fletcher

((1972), page 81), certain resetting procedures are described. Definition 8.16 may be

adapted to take these into account by altering Eq. (8.24) appropriately. In place of

vU*1) = 1 one could perhaps define

(8.43) petr+)) = ¢=1,2,...
p0) = 1, otherwise.

Since »U*1) is invariant, this change does not affect the scale invariant properties of
the algorithm.
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9. Concluding Remarks. So far as the author is aware, there is no direct con-
nection between an algorithm’s scale invariance properties and its ability to locate a
minimum expeditiously. For example, one can construct ridiculous algorithms which
have full scale invariance but which proceed in a general uphill direction.

This theoretical property is of interest when considering some of the countless
modifications which are made to standard algorithms. If such a modification has the
effect of reducing the group T for which the algorithm is scale invariant, serious
questions about the modification’s utility are in order. The implication is that two
different objective functions, f(x) and f(x) = h + mf(Ax + d), which had previously
been treated in a precisely corresponding manner, are now to be treated differently
from one another. If the modification improves the performance for f(x), why cannot
it be introduced in a scale invariant manner so that it improves the performance also
for f(x)?

There may be quite satisfactory answers to this question. For example, in Sec-
tion 5 we noted that Brent wanted his algorithm to terminate when / > u and so
abandoned Tél)-scale invariance retaining only Téi)-scale invariance. He also wanted
his algorithm to behave in general differently for f(x) = (x — 1)* than for f(x) =
(x — 10%)# and abandoned Tél)-scale invariance.

Another case in which it may be clearly advantageous to abandon scale invar-
iance is in an implementation in a situation where the use of finite length arithmetic
may introduce numerical instability. Thus a particular approach may be eminently
suitable for both f(x) and ]—’(x) using exact arithmetic, but suitable for one and disas-
trous for the other using finite length arithmetic.

However, the purpose for which this theory of scale invariance has been con-
structed is quite different. It plays a key role in a particular method of evaluating and
comparing the efficiency of different competing algorithms. Such comparisons are
based on numerical experiments, whose purpose is to obtain information about the
behavior of the algorithm. This testing method is described in Lyness (1979). The
role of scale invariance stems from the observation that, when the algorithm is scale
invariant, numerical experiments using f(x) need not be repeated using ]—”(x) as the re-
sults (under proper circumstances) will be identical. It appears that these experiments
are cheaper to run, and provide results that are easier to interpret, if the algorithms
involved enjoy as high a degree of scale invariance as is feasible. It is important to
know in advance the scale invariance properties of the algorithm when one plans in
detail the somewhat expensive testing procedure to be applied.

The ideas associated with affine scale invariance of algorithms are certainly not
new. It is obvious that these ideas have guided the constructors of all successful al-
gorithms either implicitly or explicitly. It is only in modifications to well-known al-
gorithms or in termination conditions that one finds any serious departure from opti-
mal scale invariance, which is not clearly justifiable.

However, the purpose of this paper is to provide a set of rigorous definitions,
making precise statements about the behavior of algorithms possible. While the use of
tensor algebra in verifying the scale invariance properties is, of course, optional, the
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author has found that this has provided him with a useful insight into their underlying
structure, an insight which he hopes that the reader will share and exploit.
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