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Gauss Type Quadrature Rules for
Cauchy Principal Value Integrals

By David Elliott and D. F. Paget

Abstract. Two quadrature rules for the approximate evaluation of Cauchy principal
value integrals, with nodes at the zeros of appropriate orthogonal polynomials, are
discussed. An expression for the truncation error, in terms of higher order derivatives,
is given for each rule. In addition, two theorems, containing sufficient conditions for

the convergence of the sequence of quadrature rules to the integral, are proved.

1. Introduction. For \ € (g, b), let I(f; \) denote the Cauchy principal value
integral
gy = fP zf(X) _ ( b ) W)

1.1 1IN = fa dx = lim f JHG o dx,
where the interval (g, b) may be finite or infinite. The weight function w is nonnega-
tive on (a, b) with 2 w(x) dx > 0, and we shall assume that | Dw(x)x™ dx exists for

=0,1,2,.... Itis well known that for such w, there exists a sequence of orthog-
onal polynomials {p,,} such that p,(x) = k,x" + -+ with k, >0 forn =0, I, 2,00,
so that p,, is of exact degree n; and, furthermore,

(1.2) f: w(x)pn(x)pm(x) dx = hn6m n

It also follows that the zeros x; ,,, i = 1(1)n of p,, are real, simple and lie in (a, b).
In order to obtain an approximate value of 7(f; A) we shall approximate to it by quad-
rature sums Q,, which use the values of the function f at the points x; ,, i = 1(Dn.
Such quadrature rules are said to be of Gauss type (see [S]).

Two closely related Gauss type methods for the approximate evaluation of 7(f; \)
were published in 1972 by Paget and Elliott [14] and Hunter [9]. For a given n,
Paget and Elliott approximated to f by the Lagrange interpolation polynomial L,(f),
say, of degree < (n — 1) and defined by
n p,()f(x; )

(13) L"(f;x)=i§1 P ) (6 = X; ) t_zl in i)

where /; ,,(x; ,) = 8, ; so that f(x; ) = L,(f;x;,) fori =1(1)n. The quadrature sum
Q,,(f; \) is then defined by

(1.4) Q,(f;N) =1L, (NN = Z A4; Nfx; ),
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say. Forn=10,1,2,..., let q, denote the function defined by
b t t
(1.5) a,x) = ! %')’p—dn 2 <x<b.

Since we can write

o -
0, = [2wo(Z0DY 4y g

we see that this set of functions exists provided q, exists, an assumption which is made
throughout this paper. The coefficients A; ,(\) in (1.4) are then given by
4n(x; ) = a4,
p;,(x,',n) (xi,n -N’

A # Xi
(1.6) A4;,N) =
ey P00, A =x,,.

We now consider Hunter’s method. He makes one variation to the method just
described. Suppose first that X is not a zero of p,, then Hunter approximates to f by
the Lagrange interpolation polynomial L}: +1(f), say, of degree < n which is such that
L (fix; ) = £, ), i=1(1)n, and LY, [ (£:3) = £0\). Thus, we find

no(x =N ,(x) p,(x)
T ) — Z =  ‘un¥/ nY
(1.76) bna(f32) = =1 (X, N Tlxi) + p,(\) .

provided p,(A) # 0. Hunter takes for his quadrature sum the (n + 1) point rule
Of . (), say, where

n S a,0000)
&t ST

again provided that p,(A\) # 0. The coefficients M; ,, are the Christoffel numbers of
the corresponding n-point Gaussian quadrature rule and are defined by

(18@)  of (AN =1L], (M N

) _ knhtn
(1.9) b pln(xi,n) kn—lp,n(xi,n)pn—l(xi,n)’

for i = 1(1)n, (see Szegs [20, Eq. (3.4.7)]).

If X is a zero of p,,, then appropriate modifications must be made to (1.7(a)) and
(1.8(a)). Again, L}: +1(/f) is chosen so that it takes the values of f at the points x; ,,
i=1(1)n;butif A = X; ., then we also require that L}:'H(f; Xjn) = f’(xj’n). We
find, when X\ = x, , that

n>

G =x; )fCe; ) — (x —x; )f(x; )
+ . _ . jn in in j,n
bnea () i=§¢j fin) Cin —%j0)
p,(x)
p,n(xj,n)

1.7(b))

+ lj,n(x)f(xj’n) + f’(xj’n)'

The quadrature sum is now given by
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+1(f X;, n) I(Ln+l(f) X; n)

n qn(xi,,,)f(x,-,n) - qn(xj,n)f(xj,n)
(1.8(6) S PG
+ Oy f(x. )+q"( )f( n)-
p;,(x] W pax ) Fim

It should be pointed out that particular cases of these two quadrature rules, or
minor variants of them, have been given prior to 1972 by many authors, see [6], [8],
[12], [15], [17], [18] and [19]. Hunter [9] described his algorithm in the particular
case of w =1 and the interval (-1, 1), so that the orthogonal polynomials were taken
to be the Legendre polynomials P, , although he did consider the case when the inte-
grand possessed m > 1 simple poles on (=1, 1) and not just one simple pole at the
point X as we have done here. Hunter’s analysis has subsequently been generalized in
various ways, see [3], [10] and [21]. Interpolation of f at the points cos(mi/n), i
0(1)n, in the case when w(x) = 1 has been proposed in [2], [16]. A surprising omis-
sion from all the quoted references is that no one has given an expression for the re-
mainder 7 — Q in terms of higher derivatives of f. It is well known for Gaussian quad-
rature (see [5]), that if g € C2"(a, b), then

110 [Pw@ee dr = 3 w86, + he® @) K201,
=1

where n € (a, b), but no comparable result has been given for Gauss type quadrature
rules for Cauchy principal value integrals. In Section 2, we shall give such forms for
the truncation errors for both the quadrature sums Q,(f; \) and of (i),

The quadrature sum QL. L(£3 N), as given by (1.8(a)), appears at first glance to be
an attractive one since it can be considered as Gaussian quadrature applied to the inte-
grand f(x)/(x — M), plus one extra term. However, it is apparent that if X is close to a
zero of p,, then QI, +1(f; N) is likely to be obtained as the difference of two large num
bers; if A is a zero of p,,, then we have already noted in (1.8(b)) the modifications that
must be made to the quadrature sum. Furthermore, none of the authors who have
written on this method have discussed the computation of g, (\) for a given X and arbi-
trary n. In [14] the authors discussed an algorithm for the evaluation of Q,(f; N)
based on the use of the Clenshaw recurrence algorithm [4]. In Section 3 we shall in-
vestigate how the method of [14] can be used for the evaluation of Q}; RN

Finally, in Section 4, we shall investigate the convergence of both Q,(f; \) and
QI,_,_ L(fsN) to I(f; \) as n —> oo, when the interval (a, b) is finite. Sufficient condi-
tions will be given in each case to guarantee convergence. Although the convergence
of Q,(f; N) to I(f; \) has been discussed for the Jacobi weight function in [7], we
shall first demonstrate convergence of @,(f; A) to I(f; \) for a more general weight
function. The section concludes with a discussion of the convergence of QI, BN
to I(f; \), a problem which does not appear to have been discussed previously (but
see [22]).
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2. Truncation Errors for Q,,(f; \) and Q,L L(f;N). We shall first consider the
quadrature rule Q, (f; A), and let R, (f; N) = I(f; N) — Q,(f; \) denote the truncation
error at the point X € (g, b). In order to obtain the required expression for R, (f; N),
we shall assume that f possesses a continuous derivative of order (2n + 1) on (a, b).

Let the function s, be defined on (g, b) by

_f(x) _Ln(f;x) _ n f(x)—f(xi'n)
Pn(x) E1 ) = x; )
from (1.3), since L,(1;x) =1. We observe that boths, and s, are defined even when

x is a zero of p,, by taking the appropriate limits. Now, since L ,(f) is the Lagrange
interpolation polynomial to f at the zeros of p,,, we also have (see [5S]),

f6) = Ly(f3 %) = [, )™ G/ ey,
where £ € (a, b) and also depends on x. Thus, in particular,
22 5,0 = F™ ) k,n!],
say for some &, € (g, b). From (1.4), (1.5) and (2.1) we can write

2.1 5,(x)

b W), (x)s,(x)
R, (fiN) = )Ea T
n(X) = 5,(N)
(2.3) =5,Mg, M) + f : W(x)pn(x)(s—);_—-;—*)dx

=Ry (fiN) + RAUS V) say,
where, from (2.2),
(24) RN = 5,(0q,(N) = (0,07 (1) (k).

In order to obtain a similar expression for Rf,(f; ) we apply the n-point Gauss quad-
rature rule (1.10) to the integral. Since the integrand vanishes at each node point (even
when A is a zero of p,), we obtain

h, q2n $,(x) =5,
(25) RA(fN) = K2 (2n)! 3 dx2" [” A0 (T—_x—ﬂ §x=n’

where n € (@, b). Let P,_,(x; \) denote the polynomial of degree < (n — 1) in x de-
fined by

P, 1650 = [fN) = L, (f; ) = p,(x)s5,(N]/(x = D).
t is readily verified that the numerator is a polynomial of degree < n in x which is
rero when x = \. Then we can write

$,(x) - sn(k)>

2.6) &) - =P, N+ [ (- N,
A X —A / Y

he integral being simply (f(x) — f(\))/(x — \). Substituting (2.6) into (2.5) gives

hn d2n ,
2.7) RN = ! % T [ f SO - k)é)dé]sx

=n



RULES FOR CAUCHY PRINCIPAL VALUE INTEGRALS 305

On inverting the order of differentiation and integration, and applying the mean value
theorem to the resulting integral, we find

(2.8) R2(f;N) = (B, fP" T D)) [(K2(2n + 1)),

where £, € (q, b). Combining (2.4) and (2.8) gives us our first required result, that is

h,,
(2.9) R A q"( ) (n) ___n___ 2n+1)
AN =T R 5 +1)'f< &),

where &, £, € (a, b) and depend upon A.

The truncation error R}, (f; ) = I(f; \) = QL , ,(f; A) for the quadrature sum
QIH. L(f; \) may now be readily obtained. Let us suppose first that X is not a zero of
p,- From (2.3) we can write

(2.10) I(f; 0 = Z Ay nNFCx; ) + 5,000, + RASN).

On substituting for s, () from (2.1), recalling the definition of 4; ,(\) from (1.6), and
using the definition of sz+ L(f5N) from (1.8(a)), we find from (2.8) that

h,
2.11) 10 =0, (i + aa Ty e
where £, € (¢, b). If \is a zero of p,,, then it can be verified, on using (1.8(b)), that
(2.11) is again valid, thus completing our analysis.

We see from (2.9) and (2.11), respectively, that Q, (f; \) is exact whenever f'is a
polynomial of degree < (n — 1) and Qn +1(f; \) is exact whenever f is a polynomial of
degree < 2n. This follows from the construction of the quadrature rules and has been
observed previously. From (2.10) we see that the quadrature rules are the same if X is
chosen so that it is a zero of ¢q,,.

3. An Algorithm for Evaluating Q;Tl +1(/5N). We shall first outline the algorithm
described in [14], for the evaluation of the quadrature sum Q,,(f; A). This depended
upon the observation that both p, and g, satisfy the same linear three term recurrence
relation, which we shall suppose is given by

(3.1) Up () = Apx + B u(x) — Ceuye (%), Ay =k [k,

fork=0,1,2,... . In [14], this recurrence relation was used to set up a codiagonal
in 1= 1(1n, of the
polynomial p,,. To each Xin the corresponding eigenvector p; is given by p,-T =

Pox; ), P (x; ) - - ,pn_l(x, »)) from which the Christoffel numbers ; , may be
computed since y; , = (ZL, p] (xl D)7 ! for i = 1(1)n. If the Lagrange interpolation
polynomial L, (f; x) is wrltten as

matrix M, say, of order n, whose eigenvalues are the zeros x;

n—1
(3.2) L,(f;x)= ijo @ Pi(x),
where

B3 @ = b WL P dx = it B P ),
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for k = 0(1) (n — 1), then the quadrature sum Q,(f; \) is given by
n—1
(3.4) 01N = 2 @ n@x )

Since the functions g, satisfy the recurrence relation (3.1), Clenshaw’s algorithm [4]
may be used to evaluate the sum in (3.4), for a given value of X. If we put g_,(0)
= 0, then all that is required to implement this algorithm is an explicit expression
for g, ().

We now consider a similar algorithm for the evaluation of Q,L. (). If we

z;rlg +1(f x) = Z ”k n+1P(),
where
(3.6) ”k n+1 = Mg f W(X)Ln+1(f§x)l’k(x)dx’

then we find, on using (1.10) and the orthogonality of the {p, }, that
(3.7) af pi1 =g fork=0(1)(n - 1).
Suppose first that A is not a zero of p,. Since
B [T we) [ - NG —x, )2 dx = 1, fori = 1(1)n,
it follows from (3.6) and (1.7(a)) that
u 1 <f(7\) fx; n)>

(3.8(a)) nn+1 ; pn(xl ) = x;

On the other hand, if X is a zero x; ,, of p,,, then again, from (3.6) and (1.7(b)), we
find that

(3.8(b)) @nrr = 2

=i Pn(*;,)

1 <f(xj,n) _f(xi,n)> fl(xj,n)
+ = .
pn(xj’n)

Xin " Xin
The values of l/p'n(x,-’n), i = 1(1)n, may be readily obtained from the eigenvectors p;
of the matrix M,,, since we have l/p'n(xi'n) = My pPp_ 1O Ay _ By ). Thus

(39) o (N = Z, CHI )

which again may be summed by means of the Clenshaw algorithm. Compared with the
evaluation of Q,(f; N), the quadrature sum QJ . | (f;\) requires the computation of
one extra coefficient a};’ n+1- Once a procedure has been provided for the evaluation
of (f(\) — f(xl.,n))/()\ - x,.'n), particularly when X is either close to, or equal to, a zero
of p,,, then we have an algorithm for the evaluation of Q,L (/5 A) which will be com-
parable to that for Q,(f; ).

4. Convergence Theorems for Q, and Qn +1- Throughout this section we assume
that the interval (g, b) is finite and, without any loss of generality, we shall take it to
be (-1, 1).

Firstly, we shall consider the convergence of Q,(f, A) to I(f; \) for a given
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A€ (-1, 1). In order to do this we need to make an assumption concerning the be-
havior of the functions q,(X). We assume that

(4.1) lg (VI <AMRE, k=0,1,2,...,
where 4 depends upon A, but is independent of k. This assumption does not appear
to be very restrictive. It is readily verified that it is satisfied by the Chebyshev polyno-
mials of both kinds, and the Legendre polynomials. Furthermore, following an analysis
given by Barrett [1], Paget [13] has obtained the asymptotic form of g, ()) for large
k under the fairly general assumption that both w and logw are integrable on (-1, 1).
From this asymptotic analysis, it can be shown that (4.1) is satisfied for the resulting g, .
A function fis said to be Holder continuous of order u on [-1, 1] if |f(x,) —
f(x)I <Alx; —x,|* for any pair of points x, x, € [-1, 1], where 4 is independent
of x, and x,.
THEOREM 4.1. Suppose w is such that q, exist fork =0, 1,2, .. .and further-
more that (4.1) is satisfied. If f is Holder continuous of order 1 on [~1, 1] with % <
u <1, then for a given \ € (-1, 1),

(42) lim 0, (/M) =1(f; M)

Proof. Let p%_ | denote the polynomial, of degree < (n — 1), of best uniform
approximation to fon [-1, 1]. Write r}_ (x) = f(x) - p}_,(x), and

LI

It is well known that £, _,(f) < Cn™*, but Kalandiya [11] has further shown that
r;',‘_l is Holder continuous of order v say where 0 < v < u/2. Furthermore, for any
Xy, x, € [-1,1],
(4.3) I Ge) =1 ) SB@)(n— D™ ®#=2) x, —x P,
where B(v) is independent of n, x, and x,. Since

1 R 3 Rl ol 0N

Ru(fi N = f_,w(x)( ) A M/
(44) —:fl W(X)Ln(r;l;_l;X)
-1 x—A ’

then from (4.3), the first integral on the right of (4.4) exists and tends to zero in the
limit as # — oo. The second term on the right of (4.4) also tends to zero as n —> %o,

so that the convergence of R, to zero will depend on

T, =1 GL, 0506 = V)] d.

Now L, (r%_,;x) is a polynomial of degree < (n — 1); if we write
n—1

4.5) Ly(ry_y5%) = kz-‘b prPr(x),

then we shall have

n—1
(4.6) T, = kgo (% py) (i % q, (V).
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By Holder’s inequality,
n—1 % /n—1 Y2
17,0 << > hkp,§> < > h;‘q,%(k)) ;
k=0 k=0 '

since
n—1

fil w(x)LZ(r;,"_ 13 X)dx = k;O hkp,":,
and using (4.1), we obtain
7,001 < (fil w)L2(rE | x) dx)l/z AQ)n*.
On evaluating the integral using (1.10), recalling that
La i) = L, G,

noting that [, 0 )| <E, (), for i = 1(1)n, and Z_ou, , = 1, w(x) dx, we
find

@7) a1 <am (1 wen dx)l”n"’En_ICf).

Since E,,_,(f) < Cn™*, where C is some constant, and u > % we have lim,_, ..J,,(\)
= 0, and the theorem is proved. O

It is worth noting that convergence of Q,(f; \) to I(f; \) has previously been dis-
cussed by Elliott and Paget [7] in the particular case when w(x) = (1 =x)*(1 + x)#,
o, 8>~ 1. They found, using an asymptotic analysis, that there was convergence for
all Holder continuous f such that 0 < u < 1. Since L, (r¥_,;x)is a polynomial of
degree < (n — 1), one can write

Ta0) = 32 A4, 0075 (5,)

so that |J,(MI<E,_,(HZL, 14; ,(M)I. In [7], the authors showed that for large n,
zh l4; ,()| <K + Llogn, where K, L are independent of n. We have not attempted
an asymptotic analysis in this more general case.

We shall now consider convergence of the sequence {Qf, (F; N} to I(f; \) for a
given A € (-1, 1) as n — o, From the construction of the rules Q}:(f; A) it is obvious
that we need to assume differentiability of f;

THEOREM 4.2. Suppose f is continuous on [~1, 1], then for any given \ €
-1,1),
(4.8) lim QF(f; \) = I(f; N).

n—> oo

Proof. Let g(x, A\) be defined by
F&) = O/ =N, x #1,

'), x=A

From (1.1), (1.8(a)), (1.8(b)) it can be verified that if we write R};+ LN =I0N
- QI}+ 1(f; M), then

4.10) Ri, (N = f 11 w(x)g(x, \) dx — kgnl My n8Gy o M) + FOORE L (15 0),

(4.9) glx, N) =



RULES FOR CAUCHY PRINCIPAL VALUE INTEGRALS 309

this result being valid irrespective of whether X is or is not a zero of p,. From (2.11),
we have trivially that R}:H(l ;A) = 0. Thus, RIH_ L(f5 ) is given by the remainder
when n-point Gauss quadrature (based on the zeros of P,.), is applied to the function
g Since under the stated conditions on f, the function g is continuous it follows (see,
for example, [5]) that lim,_, ., R, ,(f;\) = 0, as required. OJ
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