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Convergence Properties of Some
Nonlinear Sequence Transformations

By Avram Sidi

Abstract. The nonlinear transformations to accelerate the convergence of se-
quences due to Levin are considered and bounds on the errors are derived. Conver-

gence theorems for oscillatory and some monotone sequences are proved.

1. Introduction. Recently, Levin (1973) has developed some very powerful non-
linear transformations to accelerate the convergence of sequences (or series). These
transformations have had remarkable success when applied to certain problems. For ex-
ample, Levin (1973) has applied them to various infinite series, Longman (1973) has
used them to generate rational approximations for Laplace transform inversion, and
Blakemore, Evans, and Hyslop (1976) have used them in the computation of certain in-
finite integrals which come up in certain physical problems. So far, however, the con-
vergence properties of these transformations have not been analyzed. The purpose of
this paper is to partially fill this gap.

In the next section we review the derivation of the transformations of Levin. In
Section 3 we give error bounds for two different limiting processes and state some suf-
ficient conditions for convergence. The results of Section 3 are based on Sidi (1977,
Chapter 5). In Section 4 the application of Levin’s transformations to oscillatory and
monotone sequences is considered. It turns out that for oscillatory sequences the suf-
ficient conditions in the theorems of Section 3 are automatically satisfied, hence there
is always convergence. For monotone sequences, however, in general, we do not know
whether the sufficient conditions above are satisfied, and experience suggests that they
are not. For some monotone sequences though we are able to give a convergence theo-
rem. In Section 5 further convergence properties for some parameters which appear in
the derivation of Levin’s transformations are analyzed. In Section 6 a special case of a
theorem due to Levin and Sidi (1975) is proved which shows under what conditions one
could expect Levin’s transformations to give convergent results.

2. Review of Levin’s Transformations. Let 4,, 4,,... be an infinite convergent
sequence whose limit we denote by A. T ,, the approximation to 4, and the constants

Y1 =0, ..., k—1, are defined as the solution to the k + 1 linear equations
k—1 )

(2.1) A, =T, +R, X vl r=nn+1,..,n+k,
i=0

provided that no R, is zero.
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These equations have a simple solution for T, ,,, which is given by
il k k—
E]"c=0 - 1)’(],>(n + ])k 1An+i/Rn+]'

= (—1)"( ]") (n+ R,

22) T,, =

The expression in (2.2) can be put in a more compact form by using forward differ-

ences. If we define Aa, = o, — o, and A%a, = A(A° 1a,), s = 2,3, ..., then we
have
k Ak
(2.3) Ara, = .Zo(_l)k '<].>an+,..
]=

Making use of (2.3) in (2.2), we can express T} ,, as
A¥(n*714,/IR,)

4 T, , =
2.4) k AR )

N
The ¢, u, and v transformations are defined by letting R, =a,, R, =ra,, and R, =
a,a,.,/(a, ., —a,), respectively, where a;, = A,,a, = AA, ;,r>2. Thetand u
transformations were designed specifically for alternating and monotone series, respec-
tively.

3. Error Bounds and Some Convergence Theorems. As is well known, in order
for a certain convergence acceleration method to work well on a given sequence, the se-
quence in hand has to have certain properties which suit the specific convergence ac-
celeration method. If the sequence does not have those properties, then we should not
expect the method to work well. What then are the properties that the sequence 4,,
r=1,2,...,of Section 2, should have in order for Tk’n to be a good approximation
to the limit A? Another even more important question is: Given that the sequence 4,,
r=1,2, ..., has those favorable properties, how good an approximation is T ,? A
partial answer to both of these questions will be given below.

LEMMA. Let T, , be the approximation to the limit A of the sequence A,,r =
1,2, ...,as given in (2.4). Then

A¥ (4, - A)IR,]
Ak(nk_l /Rn) )
Proof. Subtracting A from both sides of (2.4) we obtain

(3.1) T,,—A=

SN

k(,k—1 — ANK(pE—1
32) I, 4= A*(n* A4, [R,) —AA*(n""'|R,) .
’ Ak(nk_l/Rn)

Using now the fact that A¥ is a linear operator in the numerator of the expression on
the right-hand side of (3.2), the result follows.

We are now going to consider two kinds of limiting processes:

1. kis held fixed and n — oo, (Process I),

2. nis held fixed and k — oo, (Process II).
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Process 1.

THEOREM 3.1. Let the sequence A,,r =1, 2, ..., have the limit A, and let the
A, be of the form
(3.3) A, =A+R,f(r), r=12...,

where f(x), considered as a function of the continuous variable x, is continuous for all
x = n, including x = %, and as x —> *, has a Poincaré-type asymptotic expansion in in-
verse powers of x, given by

(3.4) fG) ~ X Bx', as x — oo, fy # 0.
i=0

Define w(x) by

k—1 )

(-5 wex) = f(x) = X Bl
i=0

Then Tk’n satisfies

K[,k—1
(3.6) - =

\h

Ak(nk_l / Rn)
where Aw,(x) = wi(x + 1) — wi(x).
Remark. The case 8, = 0 will be dealt with in Section 6. There we shall see

that B, # 0 is not a serious limitation.
Proof. Substituting (3.3) in (3.1), we obtain

A f))

3.7 T, —-A=
( ) k Ak(nk_l/Rn)

Now, using the fact that A¥( p(x)) = O whenever p(x) is a polynomial in x of degree at
most k — 1 and Ap(x) = p(x + 1) — p(x), we have

(3.8) Ak <xk—l kil 6i/xi> =0.
=0

Subtracting the left-hand side of (3.8), with x replaced by n, from the numerator of
the right-hand side of (3.7), and using (3.5), the result follows.
COROLLARY 1. Define the a®" by

(o + 1R,

3.9 a;c,n= T , §=0,1,...,k
2o CY(5) o+ DR,
Then, T, , satisfies the inequality
K
(3.10) Ty ,, —AlI< <Z la]’-""l> sup |Rl sup [w(s)l.
’ j=o0 s=n s>n

Proof. Making use of (2.3) in (3.6) and using (3.9), (3.6) can be written as
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k k,n
(3.11) Tyen—A= 3 a R, wi(n+s).
§=0
Now since 4, — A and f(x) is nonzero at x = oo, then R, — 0 as r — . Hence,
ﬁn = sup,-, |R,| exists and is finite. Similarly, Wi, n = SUPgs, [wi(s)l also exists and
is finite. The result in (3.10) now follows by taking the absolute value of both sides
and using the inequality

k
2 Did;

i=1

(3.12)

k
< max lp,-|<Z|qj|>-
o

<i<k =1

COROLLARY 2. T, , satisfies the inequality

k
(3.13) Ty, — Al <<Z |a;c,n|> .
=0

where 1, = 0(n™%) as n — oo} and if
k
(3.19) sup ( > Ia;""l < oo,
n ]'=0
then, as n — o,
(3.15) Typ=A+om™).
Proof. Since R, — 0 asr —> o, R, — 0 as n —> o, hence R, = o(1). Simi-
larly, using (3.4) in (3.5), we have that
(3.16) wi(x) ~ 3 By/x’ asx — oo,
i=k

hence w, (x) = O(x¥); therefore, Win = O(n™%) as n — . Defining now Mg =
R, W, . the results in (3.13) and (3.15) follow easily.

Process 11.

THEOREM 3.2. Let the sequence A, r=1,2,..., beasin Theorem 3.1. Using
the transformation & = n/x, map the infinite interval n < x < o to the finite interval
0< &< 1. Define F(£) = f(x) and let

k—1
(3.17) F®= 3 ¢ &
i=o

be the best polynomial approximation of degree k — 1 to F(£) on the interval [0, 1];
define also f,(x) = F,(§). Further, let
(3.18) 2 (%) = £(x) = f,,),
and define Z,(§) = z,(x). Then
A¥[n*1z (n)]
(3.19) Typ—A=—
Ak(nk_l / Rn)

where Az, (x) =z, (x + 1) — 2, (x).
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Proof.  Since f(x) is continuous for all x > n, including x = o0, F(§) is contin-
uous on [0, 1]; therefore, best polynomial approximations of all orders to F(£) exist on
[0, 1]; in particular, F,(£) exists there. Now

k_
(3.20) fix) = 21 ey XY
i=0

therefore, x*~' £, (x) being a polynomial of degree k — 1 in x, we have, as in the proof
of Theorem 3.1,

(3.21) A¥[x*71f, ()] = 0.
Subtracting now the left-hand side of (3.21), with x replaced by n, from the numerator

of the right-hand side of (3.7) again, and using (3.18), the result follows.
COROLLARY 1. Ty n satisfies the inequality

(3.22) I Ty — <Z Iak "|> sup |R| sup |z,(s)l.

ji= s=Zn s=n
The proof of this corollary is similar to that of Corollary 1 of Theorem 3.1 and
will be omitted.
CoROLLARY 2. If f(x), in addition to being continuous, is also infinitely differ-
entiable for x = n, including x = >, then T, Ko satisfies the inequality

k
(3.23) IT , —Al< <Z Ia}""l> €
j=0

where €, — 0 as kK —> oo, more rapidly than any negative power of k; and if

(3.24) sup < Z Iak "|> < oo,

k
then as k — oo,

(3.25) Ty =A+o0k™),

forany N> 0,as k —> oo.

Proof. Since f(x) is infinitely differentiable for x > n including x = oo, F(§) is
infinitely differentiable for 0 < £ < 1. As is known from the theory of best polynom-
ial approximations, {; = maxg<;<; |Z4(§)l, as k —> o, tends to zero more rapidly than
any negative power of k. Now

sup |z, ()l = sup | Z,(n/s)l < max |Z, (&) = ¢,.

s=n s=n 0<¢(<1
Setting €, = R, {4, where R, = sup-, |R,| as in Corollary 1 to Theorem 3.1 (3.23)
follows from (3.22). Now, using (3.24) in (3.23), (3.25) follows easily.

4. Some Special Cases. In Corollary 2 to Theorem 3.1 and also in Corollary 2
to Theorem 3.2 the conditions (3.14) and (3.24) are sufficient for convergence. When
Process I and Process II are viewed as summability methods, by the Silverman-Toeplitz
theorem (see Powell and Shah (1972, pp. 23—27)), these conditions are necessary (but
not sufficient) for both processes to be regular summability methods. It is clear that
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these conditions can be weakened by assuming that El’.‘zo la]’-""l grows less rapidly than
l/nk’n as n — oo and than 1/e, as k — . However, in certain cases convergence does
take place in spite of E}‘—_-o Ia;""l growing faster than 1/n, , and 1/e,. An example of
this will be given below. Although it is not easy to see how E]’-"zo Ia]’.""l behaves as
n — o or k — o for general R,, in one instance at least, the convergence of T} , to
A can be proved easily, and this is done below.

THEOREM 4.1. Suppose that the sequence A,,r =1, 2, ..., is as described in
Theorem 3.1 and in addition

4.1 R,=(1YIR,l, r=1,2,....

Then T, , = A + o(n %) as n — . If, in addition, f(x) is infinitely differentiable
for x = n including x = =, then T, , = A + o(k™™), for any X >0, as k —> o,
Proof. Using (4.1) in (3.9), we see that

(5)n + /1R,

4.2) |a;c,n|= T , §=0,1,...,k
E/";o(i)(" + IR, 4
Therefore,
Kk
(4.3) > laft=1.
j=0

Hence, the result follows from Corollary 2 of Theorem 3.1 and Corollary 2 of Theorem
3.2.

It has been shown by Levin (1973) that for an oscillatory convergent sequence 4, =
L, (<) a; witha; >0, g, >a, >+, and lim, _,,,
mations, both in Process I and in Process II, satisfy all the conditions of the Silverman-
Toeplitz theorem (see Powell and Shah (1972, pp. 23—27)) and, hence, are regular.
Therefore, T , — A. Now for the #-transformation, which has been designed specifi-
cally for oscillatory sequences, R, = (—=1)"'a,. Hence, we see from Theorem 4.1 that
the condition @; > a, > - is not necessary for convergence.

Another instance in which the convergence of T} , to 4 as n — (Process I)
can be shown is that of some monotone sequences. This we give in the following theo-

a, = 0, the ¢- and u-transfor-

rem.
THEOREM 4.2. Suppose the sequence A,,r = 1,2, ..., is as described in Theo-
rem 3.1. If, in addition, R, are all of the same sign as r — =, and
0o 6.
(4.9) R,~ > —— asr—o,0>0,
i=o roti

where the right-hand side of (4.4) is a Poincaré-type asymptotic expansion, then T, ,
—> A such that

4.5) Tpn—A=00""°) asn— o

Remark. ¢ > 0 is necessary for R, —> 0 as r —> .
Proof. In Eq. (3.6) of Theorem 3.1, n*™* w,(n) and nk1 IR,,, by (4.4), have
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Poincaré-type asymptotic expansions in inverse powers of n. In fact, n* ! wy(n) =
O(m™) and n*! IR, = O(n*1%9) as n — o, Therefore, A*[n*~! w,(m)] = om* 1)
and A¥(n¥7'/R,)) = O(n~'*) as n — oo. The result now follows from (3.6).

In spite of the result in (4.5), Corollary 2 of Theorem 3.1 does not apply to this
case as is shown below.

THEOREM 4.3. When the sequence A,,r = 1,2, ..., is as in Theorem 4.2 Pro-
cess 1 is not a regular summability method.

Proof. Tt is enough to show that E}‘: o 1af" is not bounded as n —> . Now

25-‘=°<¢>(” FDTHIR, | BRI,
IAk(nk_l/Rn)I IAk(nk_l/Rn)l ’

From the proof of Theorem 4.2 we have A¥(n*™'/R,) = O(n™'*?) as n — oo, Since
(n + k)*1/ IR, 4+ il = O(n*~179), we can see that the right-hand side of the inequality
in (4.6) is O(n¥) as n —> . Therefore, T)_ laf>""| —> o0 as n —> °° and the result
follows.

k
(4‘6) Zo |a]l_‘7yn| =
’ =

For the monotone sequences as given in Theorem 4.2, we have not been able to
obtain results for Process II comparable to the ones presented for Process I. However,
for one case it is quite easy to prove the following:

THEOREM 4.4. IfR, = rl r=1,2,..., then Process Il is not a regular sum-
mability method.

Proof. Again, all we need to show is that Z‘}‘zo Ia;""l is not bounded as k — °°.
Now

“7 5 Ef"c=°(l;>(” 0t EJIF=°<’;>(” AT
’ > laf" = = 1 > o

i=o0 IAk(nk)I k! k!
The right-hand side of the inequality in (4.7), by using Stirling’s formula, k! ~
kke"k\/m as k — o0, is 0(e*) as k — . Therefore, El’.‘zo Ia]’-""l —> 0 g5 k —> oo,
and the result follows.

5. Further Results. Until now we have been concerned solely with the approxi-
mation T, ,. Now we want to investigate the ’s in Egs. (2.1). First of all, they can
be computed easily without having to solve Egs. (2.1) as is shown below. As a matter
of convenience, we shall write T for T, kon

THEOREM 5.1. The v’s in Egs. (2.1) can be computed recursively by using the
formulas

i
(.1) A [RE*i4, - DIR,] = X 7A@, i=0,1,... k-1
j=0
Remark. If we set i = —1 in (5.1), we obtain T, as can be seen from (2.4).
Proof. Let us multiply each of the equations in (2.1) by rk”/Rr, r=n,n+1,
.,n + k. Now let us operate on the first equation (r = n)

k—1 L.
(52) n¥*ig IR, =n**TR, + ZO y i
I=
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with the operator A¥. Using the fact that A¥p(x) = 0 when p(x) is a polynomial of
degree k — 1 or less, we obtain (5.1). Now assuming that T has been computed (using
(2.4)), we set i = 0 in (5.1), and using A¥x* = k!, we obtain

(53) v, = %17 AF[n*(4,, - T)R,].

Setting i = 1 next in (5.1) and using the values of T and v,, we compute v, from the
formula

1
!

5.4 v, = P {Ak[nk+1(An - T)R,] - 'yOAk(nk'Fl)}'

Now set i = 2 and so forthup toi =k — 1.

It turns out the y’s too have certain interesting convergence properties as numeri-
cal experiments show. It has been observed numerically that, both for Process I and
Process 11, v ﬁj,]' =0,1,..., whenever f(x) is as in Theorem 3.1. Unfortunately,
it seems to be difficult to obtain meaningful results for arbitrary sequences. However,
for the monotone sequences described in Theorem 4.2, and for Process I, it is possible
to state an interesting convergence theorem for the ;.

THEOREM 5.2. If the sequence A,,r = 1,2, ..., is as described in Theorem 4.2,
with the same notation, then
(5.5 v =B =0n7*) asn—oi=01,..., k-1

Proof. We shall prove (5.5) by induction on i. Let us first put Eq. (5.1) in a
more manageable form. Using Eq. (3.3), we can write (5.1) as

(A _T)Ak(nk+i/Rn) + Ak[nk-l-if(n)] — IZ ’)’]-Ak(nk+i_i),
j=0

(5.6)
i=0,1,...,k-1.

From (4.4) n*ti{/R, = O(n***9), therefore A¥(n**//R,) = O(n'*?). Using this
with (4.5) we then have

(5.7 (A - TA*W* M R) = 0(n**) asn — oo,

By (3.4) we have

w
n*Tifmy ~ 3 BT asn — oo,
j=0
Therefore

(5.8) A*[n*tif(n)] = z B Ty + 0(nTF 1) asn— o,
j=0

Combining (5.7) and (5.8), Eq. (5.6) becomes
i L .
(5.9) X (v, - BA*R* Ty =0 F*) asn— e, i=0,1,..., k-1
j=0

Now let us set i = 0 in (5.9). We obtain
(5.10) Kl(vg —By) = O0(n~%) asn— oo
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so (5.5) is true for i = 0. Next let us assume that (5.5) is true fori =0, 1, ... ,m—1,
m < k. Then for i = m (5.9) gives

1 ml -
(5.11) Ym ~ B = 2 (= BA Ty + 0 TFY ™) asn— oo,
<o
Using now the induction hypothesis that y, = 8; = 0(n**/), 0 <j <m -1, togeth-
er with AK(n**™7) = O(n™ /) as n — oo, (5.11) becomes

(5.12) Ym ~ B =0 *T™) asn —> oo,

and this proves the theorem.

Remark. As can be seen from (5.5), the convergence of v, to §; is strongest for
i=0 (yg— By = O(n %)), and becomes weaker gradually as i increases, and is weakest
fori=k—1(v,_, = Bxy = O(n™")). This phenomenon has indeed been observed
numerically.

6. Concluding Remarks. So far we have proved some convergence theorems for
the nonlinear sequence transformations of Levin. These theorems are based mainly on
the assumption that the sequence {4,},_, satisfies (3.3) together with (3.4). Until now
however, nothing has been said about when these conditions are satisfied. This point
will be clarified by the following theorem which is a special case of a more general theo-
rem proved by Levin and Sidi (1975).

THEOREM 6.1. Let the sequence A, = 25:1 a,,k=1,2,..., be such that the
terms a, satisfy a linear first order homogeneous difference equation of the form

(6.1) ,=p(Mla,, r=1,2,...,

where p(x), considered as a function of the continuous variable x, as x —> °, has a
Poincaré-type asymptotic expansion in inverse powers of x, of the form

. p
(6.2) () ~x* <p0 + __l + 2 1. )
x2
for i an integer < 1. Letlim,_ . A, = A, A finite. Assume
(6.3) lim p(r)a, = 0
and e
(6.4) b#1l, 1=-1,1,2,3,...,

where p = lim_, ., p(x)/x. Then A — Ag_,, as R — %, has an asymptotic expansion
of the form

B, 8
(6.5) A-Ag = Za ~apR’ <Bo+-—+}£+"'>.

Remark. For monotonic sequences, it turns out usually that ;i = 1. This is ex-
actly what is given in the u-transformation of Levin, which is designed for monotonic
sequences. For oscillatory sequences on the other hand it turns out usually that i < 0.
The #-transformation of Levin, which is good for oscillatory sequences, has i = 0.
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Since the proof of Theorem 6.1 is by construction, it provides us with a
method for finding the asymptotic expansion in (6.5), we give it below.
Proof of Theorem 6.1. Using (6.1) in A — Ap_,, we can write

(6.6) A-Ap = X a,= 2, p(Ag,.
r=R r=R
Making use of the formula for “summation by parts”

(6.7) Z gAh, =—gp_thp +gheyy — Z (Ag,_)hy,
r=R

and the condition (6.3), Eq. (6.6) becomes

(6.8) > a,=-p(R-1ag— Y aAp(r-1).
r=R r=R
Now, from (6.2) and the fact that i <1 and the definition of p, we have
_ 17 p,
6.9) p(r) ~pr+p, + +— +, asr—o
Therefore,
(6.10) Apr-1)=p+c;(r), c,(N=00"2% asr— o

Substituting (6.10) into (6.8), defining o; = p + 1 and using (6.4) with I = —1 (hence
a, # 0), we can write

(6.11) i a,=d,(R)ap + i b,()a,,
r=R r=R
where
(6.12) diR)=-a'p(R-1), b,(»)=—a7'c,).

Since d,(R) « p(R — 1) and p(R) = O(R") as R — o, d,(R) = O(R') too. Similarly,
since ¢, (r) = O(r™?) as r — oo, we have b, (r) = O(r"2) as r — oo; hence, the series
Z7_ g by(Na, converges to zero faster than 3;Zp 4, as R — <.

We now apply all the steps that led to (6.11) and (6.12) to =, b,(r)a,. Mak-
ing use of (6.1) again, we can write

(6.13) > b,(Ma, = Y by(p(MAg, = 3 q()Aa,
r=R r=R r=R

where q(r) = b,(r) p(r). Using summation by parts, again we have

(6.14) 2 b(Ma,=—qR-Dag - Y a,0q( - 1).
r=R r=R

Since

p
(6.15) q®) =b,(Np(r) ~ bl(r)<ﬁr +py + 7}- + ) as r —> oo,
we have

(6.16) Aq(r—1) = 8,b,(r) + c,(), c,(N =003 asr—>e
where

6.17) 6, =-D.
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Substituting (6.16) into (6.14), defining a, = 1 + &, and using (6.4) with [ = 1
(hence a, # 0), we can write

(6.18) 3 b,(R)a, = dy(R)ag + iR b,(Pa,,
r=R r=

where

(6.19) d,(R) =-az'qR 1), by(n =-0a3'c,(».

Since ¢(R) = b,(R)p(R) and b, (R) = O(R2) and p(R) = O(R") as R —> o, we have
d,(R) = O(R™2) as R — oo. Similarly, b,(r) = O(r~3) as r — oo. Therefore, the
series 75 b,(r)a, converges to zero faster than X7 o b,(r)a, as R — . Continuing

in this manner, we can define the functions d,(R) and b,(r), k = 3,4, 5, ... , such tha
(6.20) 2 by, =d(Ryag + 3 by(r)a,,
r=R r=R

where d,(R) = O(R'™%) as R — o and b,(r) = O(~*1) as r — o. Adding the equ:
tions (6.11), (6.18) and (6.20) with k = 3, 4, ..., n, we obtain

n

6.21) i a, =[: > dk(R)] ap + i b,(Ma,.
r=R r=R

k=1
Since d,(R) = O(R'™%) as R — oo, it is clear that in the asymptotic expansion

n . B B
(622 » dk(R)~R’[Bo o b b — o< ! >] as R — oo,
k=1 R R" Rn+1
the coefficients By, ... , B; are fixed for k <n. Also, since b,(r) = O(r_"_l) and a, =

0(1) as r —> oo, we have

(6.23) i b,(Na, =0o(R™) as R— o,
r=R

Therefore, 2~ a, has a true Poincaré-type asymptotic expansion as given in (6.5),
thus proving the theorem.

We note here that in all the numerical examples given in Levin (1973) the se-
quences satisfy all the conditions given in Theorem 6.1.

Finally, the condition $, # 0 in (3.4), Theorem 3.1, is not too restrictive and has
been imposed mainly to simplify the notation and results. The results of Section 3 re-
main essentially the same if §, = 0 and so do their proofs. In general, if §,, (m = 0),
is the first nonzero coefficient in (3.4), then 4, — A4 as r — oo implies R,/r'™ — 0 as
r — oo, Theorem 3.1 stays the same. Inequality (3.10) in Corollary 1 has to be re-
placed by

K

3.10) T, , —Al< < Ia]'."”|> sup |R,/s™| sup [s"w, ()| if k> m.
’ i=0 s=n s=n
Consequently, in Corollary 2, ny ,, = O(n~**™y if k > m, and Eq. (3.15) has to be re-

placed by
(3.15)' Tk,n =4+ O(n—k+m)‘

The changes in Theorem 3.2 are more complicated. Equation (3.19) now reads
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Ak(nk—l /Rn)
where Z,(n/¢) = f (n/¢) - ]7,(n/§), f,(n/¢) is the best polynomial approximation (in ¢) of

degree I — 1 to f(n/¢) on [0, 1] and f(x) = x™f(x). Inequality (3.22) in Corollary 1
now reads

(3.19) Tim —A=

k
(3.22)' 1Ty —AI< [ 3 1aF"1 ) sup IR/s™ SUP 12 (9)]-

j=o0 s=n

The results of Corollary 2, however, stay the same. Similar changes have to be made in
Sections 4 and 5, but we shall omit them.
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