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Dyadotropic Polynomials. II

By Harvey Cohn

Abstract. A computer search is made to test whether independent units of dyadotropic
biquadratic fields (constructed parametrically) are always fundamental. A few excep-

tions are found. Because of the exponential rate of growth of parameters, p-adic meth-
ods are desirable. The feasibility of dyadotropic normed polynomials is also considered

for general cases of degree 2 and special cases of degree 6.

7. Introduction. We shall ask if units given (largely) by a parametrized formula
(in Section 9 below) are always fundamental.

To take a very familiar analogy, consider the real quadratic field k£, = Q(d %)
with d = m? + 4, m a positive integer. Take e, = (m + d"”)/2 the “obvious” unit.

It can scarcely be expected to be “generally” fundamental. For example, if €, should
be fundamental, then ef = (m, + n gdl/’)/2, which corresponds (say for g odd) to

m; - ngd =%4. So form = My, a’g = mé + 4 leads to eél’ The situation can be
improved (for the fundamentality of €,) if we require that d be fundamental. We
could also avoid having €, a perfect square by choosing the sign so that Ne, = —1,
but aside from such devices, we should expect a “free” parameter to produce occasione
nonfundamental units. Our parameters here are not so “free”, however, because of the
parametrization procedures.

We are about to test 84 cases within the reasonable bounds of single-integral and
double-decimal arithmetic, and we find surprisingly few cases where the units, as para-
metrized, fail to be fundamental. They are shown in Table III (see Section 11 below),
and they leave us with the conclusions (11.1) and the conjectures (11.2—3).

8. Local Search Method. We find it computationally convenient to search for
p-fundamental units for primes p > 2. A set of units U of a field & is called “p-funda-
mental” if the multiplicative group (U} (generated by elements of U) contains no ele-
ment of k which is a p-power (to within a factor of a root of unity perhaps) except
trivial ones, i.e., p-powers of elements of the group <U). Thus, a dependent set of
units is never p-fundamental for any p, as the dependency relation is essentially a
nontrivial one. Conversely, any set U which is p-fundamental for all p is fundamental
provided it has the proper Dirichlet rank (see Section 5 above). The group of units of
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k, of course, also require roots of unity (always *1 in the present computation).

There are discriminant and regulator estimates which could limit the range of p
which one must test, and indeed such limits work well in the quadratic case, and some
higher fields [14]. For exponentially growing parameters, however, those bounds are
not helpful in view of the fact that the numerical feasibility of the search seems to
weaken rapidly as p grows.

The computational test consists of finding some well-chosen primes ¢ where the
“Euler totient” ¢(g) = 0 (mod p), and for which the rational prime g splits completely
;0 that all algebraic numbers are congruent to integers modulo a factor of g. Then we

ire testing ordinary integers for presence of p-powers and (hopefully) enough negative
»utcomes will establish p-fundamentality.

9. Main Results. To fix a more convenient notation, particularly for signs of
mits, we recapitulate some formulas of Section 3 (above). For a triple of integers,
e, a,d),(lel = 2T°/2) we define £ by f(§) = 0, and with it certain fields:

9.1) o) =x* + ax3 + (2e + (@® — d)/4)x? + aex + €2,
9.2a) ks = ky(§) D ky = QE™),
9.2b) kg =kod™), d' = (@*-d)8-2e)? -ed

fere kg is the normal closure of k,. The values (e, a, d) were denoted by [2;u, v]
nd [2; u, v, w] (respectively) and are

93a) e=2, a=CDQ*-(CD*/3, d=(@+6)?+(-1)4"8,
93b) e=-2, a=-(CDYQ*+(1P), d=(a-2)* - (-1)*"s.

lere u > 1 and v, w are O or 1; but we exclude [—2; 1,0, 1], where d = 9. There
re exceptional cases

(4’ ls 113)3’ (—43 57 _7)5> (‘45 13 17)3’
9.3(}) (e’ ll, d) =

(-4, 3, 17)4, (-4,1, 33)2, (-4, -3, 73)4.

fere the subscript denotes 7_, where [f(—1)| = 2T=1,(|f(1)| = 2 by contrast). For
ases (9.3a,b), T_, = u + 1. In all but one case kg O k, (strictly). The exception
s (—4, —3,73) where d = 73,d’ = 4d so k, = kg, the uniquely defined (abelian)
riquadratic subfield of Q(exp 2mi/73).

We rewrite some formulas for units in Section 4 to fix the signs (as we no longer
leal only with absolute values!)

a=(a+d'/’)/2, u = a® — de,
9.4) g
o =@-d?2, u=a?-4e,
E=(at+uMf2, £ =(d +u")2,
9.5) " , , ",
SE=(a-u?)/2, S&=(d -u")2,
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(9.6) =01+ +ta y_,=0+e)~q,
T_
.7 €& =" 1/7_1 = teéf,

for e the fundamental unit of k, (¢ > 1) and g € Z. We now test the set of units

(98) U= {6, Ql’ \sz}a
(9.92) Q =@E-DYE + ),
20 _ 1 2 2 ,e=1%
05) Qz:aus /2y, e =% %
HE— 1?2y, e=t4

Thus, the conjugates are related over k, by

(9.10a) 2,50, = ¢,

Q.50 l,e=4%2
9.10b = .
( ) S sgne, e ==*4

The set U is independent to the extent of Theorem 5.4 (above), in particular after the
exclusion of cases where kg is not totally real. (See Table II above.)
For computational convenience, we define

o gs(s—l),enz g
4

9.11
©-112) HE- 1), e =+

so we have the units (of k,)

(/SQ%)?, e = +2
(9.11b) Q,/5Q, = .

Q;/SQ%, e = 4
THEOREM 9.12. For e = +2 the units {e, Q,, Q,} = U will be a 2-funda-

mental system (in k,) unless one of the following exceptions occurs:

(9.12i) 9,820 €k, (g,€Z).

This is possible only when e = 2, u is odd, v = 1. A further necessary condition is th
€, be a perfect square in k,, or, equivalently, ), /8§, be a perfect square in k,. The
other exception is

(9.12ii) ('—'-'Qzego)‘/2 €k, (go €2).

This is possible only when d' is square-equivalent to d, 2d, or 2, i.e., Q(d”, d") =
Q*, 2%).

THEOREM 9.13. Fore = *2 or e = *4 and p odd, the units {€, Q,, Q,} will
be a p-fundamental system (in k,) if and only if
(9.13a) U* = {Q,/59Q,, Q3/8Q3}

is a p-fundamental system (in k,).
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For Theorem 9.12(i), note that if +Q, Q52€°0 = Z?, then (2,/5Q,X(2,/59,)F°
= Zg for some Z and Z, (units) in k,. (Note € disappears.) Thus, by (9.9b), Q,/5Q,
and Q,8Q, = €, are perfect squares. The restriction to e = 2, u odd and v = 1 fol-
lows from the totally positive nature of €,/S$2,; (after some minor calculations on the
asymptotic behavior of £).

For Theorem 9.12(ii) we refer to (9.9b). If iﬂzego is a perfect square in k, so
is N(2y,) =+ 8,(in fact +8 and not — 8 since k, is totally real).

For Theorem 9.13, note that if +Q51Q52e#0 = ZP (for g; € Z) then
(Q,/59,)%1(92,/S2,¥? = ZE for Z, Z,, again in k,. (The exponent 2 introduced by
Q% /SQ% is, of course, immaterial.)

Remark 9.14. Since the search for fundamental units in k, seems to cancel out
€ (= Se) whether or not ¢, is fundamental for k,, or more relevantly for the ring
Z[a], we need not be concerned that d lies outside the range of standard tables of
quadratic units for most cases. The special exceptions in Table III (below) are easily
treated by direct decimal comparison of €, with (say) Ince’s table [6], however.

Remark 9.15. To contrast our p-adic search for fundamental units with an
“archimedean” search (based on absolute values) we should concentrate on n/Sn for n
any unit of k, (with conjugate 1) as in Section 5 (above). Let

(9.16a) L(n) = logln/Sni,  L(n") = login'/S7’l,

(9.16b) V) = L@, L@Y),  IV@I = max(IL()l, IL(M"))).

Then the fundamentality of the unit set U in (9.8) reduces to the question of whether
or not V(n) lies in the lattice [V(£2,), V(22,)]. If V(n) does not, n can be replaced
(by n — Qi1 Q%2, t; € Z) so that ¥(n) # (0, 0) but

(9.17) V) < (V@I + IV Q)2 = K.

The constant K limits the number of equations for n/Sn to be tested, and thus K limits
the index of the unit subgroup (U (and with it, p). To be practical, we might set

H = n/Sn + Sn/n so H € k,. Then the equation for H, namely H? - AH+A4,=0,
would be limited by conditions of discriminant in k,, namely Af —44, = domf, and
in k,, namely (4 + 4,)* — 442 = dym3. (Here 4,, A,, m;, m, € Z and d,, d,, are
the square-free kernels of d, d'.) Nevertheless, the bounds derived from (9.17) are

very large. Even in one of the simplest cases,e;, =~ 2,2 =1,d =17, d = 38, we
find 14,1 <3000, |4,| < 15002 ; and we have many extraneous H to still eliminate.

10. Computational Procedure. We set up a file of primes, usually p = {2, 3, 5, 7},
for which the case (e, a, d) is being tested. We search for suitable primes g in each
case. Such a prime is one for which ¢ = 1 (mod 2p) so plé(g) and (—1/q) = 1 (for
convenience), and a further “splitting property” is valid. For this, we require that
q°%4 || f(m) for some m € Z so q splits completely in k,, and at the same time,
(d'/q) = 1 so q splits completely in kg. (We take the precaution q } dd' so N and Nu
are prime to q.) For such a g, the roots &, S§, £, St' are congruent to rationals -
(modulo prime qlq in kg). These rationals can be found directly from (9.4) and
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(9.5) by taking square roots in Z/gZ each time. It becomes useful to program an
internal subroutine for tables of indices and powers modulo gq; thus, the square roots
are easy to find. (This involves the machine hunting for a primitive root at the same
time it constructs the tables.)

In this way Q,/SQ,, Q/SQ], Q5/SQ5, Q3/SQ5" are congruent to rationals
from (9.9a, b), which are denoted by the same symbols. Thus, using the index functior
“ind” from our table, we define D(g) mod(g — 1) as follows:

ind ©,/5Q, ind Q%/SQ%
(10.1) D(q) = .
ind Q/SQ, ind Q3'/SQ;’

Now consider Theorem 9.12i (p = 2). Here Q,/SQ, is always a perfect square
so §5/SQ; was a wiser choice! The case 9.12(i) can occur only if §, /S8, is a perfec
square or only if D(g) = 0 (mod 2) for each g chosen. We next compare the deter-
minant to the numerical (regulator) determinant of Section 5 (above). We can apply
Theorem 9.13 (p odd). Here, more simply, U is p-fundamental unless D(q) = 0
(mod p) for each g chosen.

From these tests, we are able to negatively establish the 2-fundamental nature of
the units U for all cases except where e = 4. (There are only five such totally real
cases to check by hand.) The cases of Theorem 9.12(ii) are checked by examining the
square-free kernels of d and d'. (In fact, the only case to consider here was (e, a, d) =
(-2,-9, 113),d’' = 226, which a simple hand calculation eliminates.) In any case, for
p = 2, we can test for the few configurations where * Q51052650 s totally positive
and take square roots. Unless we can assign signs to the (numerical) square roots whic
make integral-looking traces, we know the set U is 2-fundamental.

Otherwise, all p-fundamentality assertions were tested by machine in the cases
u <15in (9.3a, b, ¢) for p = 2 and in a subsequent run for p = 3, 5, 7. The excep-
tions are shown in Table III (below).

TaBLE III
p e a d d' € € new unit
2 4 1 113 4.2 - 776 + 73 - 1131/2 (—eQ,)'?
3 -4 1 33 2237 —1/e 23 + 4 -3312 (Q,9,/e)'3
2,3 -2 —17 353 1922 lle 71264 + 3793 - 3532 (- Q,)V2(Q,/eQ,)!/?
22 -43 9217 271 ~1/e'? 4+ 1712 (€9, 9,)1/?

llustrations of dyadotropic fields k,, which are totally real, (ignoring cases in Table II), and for
which the units U = {e, Q,, 2,} are not p-fundamental (although independent). New units,
not generated by U, are listed.

11. Machine Program. The file of test primes, and the few cases where e = £4
were fed in individually (from a remote terminal), while the cases where e = 2 were
generated internally in order of increasing u, as parametrized in (9.3a, b, ¢). Thus, the
coefficients of f(x) are known.
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The machine successively generates f(0), f(1), f(-=1), f(2), f(=2), ..., keeping a
record of [f(m)| = 2Tm (as an error check on the dyadotropic property). The machine
examines for each m, the odd ¢ for which ¢°%¢||f(m), while g ¥ dd’. Such a q is re-
tained if ¢ = 1 (mod 2p) for some p in the file of test primes for p-fundamentality. If
D(q) ¥ 0 (mod p), then p is dropped from the file (as shown in printouts, see Table
IV) and U is declared “p-fundamental” for the particular (e, 4, d).

If D(q) = 0 (mod p) for some p and ten values of g, the machine “reluctantly”
admits that U might not be p-fundamental. In any case, the values of D(q) are always
printed. (Actually, |m| < 100 is maintained to avoid overflow.) The output of the
second case of Table III is indicative. (See Table IV.) Here the file {p = 3, 5, 7} was
run, and we can see how p = 3 survives.

TABLE IV

e=-4,a=1,d=33,d'=2%-37,p,={3,5,7},
fx) =x% +x3 — 16x? — 4x + 16, ¢°Y || fx), 37/q) = 1

line x fx) q r q-1 D(q) p
6 —25 365,116 2467 2 3-822 3.234 {3,5,7}
7 35 1,523,776 821 2 5-164 522 {3,5,7}
8 39 2348284 379 2 3.7-18 3-36 {3, 5}
9 —-45 3977296 751 2 3-:5-50 3-52 {3}

Output used in reducing the file {- - -} of test primes by eliminat-
ing p for which U is p-fundamental. Here r is the smallest primitive
root (mod q) from which a table of indices is constructed internally.
Lines 8 and 9 eliminate p = 7 and 5 (respectively), but p = 3 sur-
vives each test (whether or not a factor of g — 1).

For the cases that were not totally real, (actually those in Table II), the calcula-
tion still makes sense since u” can exist modulo q even if u < 0! This gives us a
valuable check on the method, since all D(q) = 0 (mod p), as we are dealing with
necessarily dependent units €, Q,, Q, in U. Actually; for e = +4 there were five
cases and for e = £2 there were 79 cases with k, totally real. Overflow did not
occur in single precision integral arithmetic, (approximately 12 digits).

In two cases, the numerical evidence indicated U might not be 3-fundamental.
The machine computed in a separate run the numerical values of

(Q,/59, ¥ 13 @i/sa)®? =z

as (g,, &,) takes all pairs modulo 3. Since Z and Z —1 satisfy the same equation, it
suffices to find (g,, g,) which make the traces of Z and Z 2 integral. Of course, two
such pairs occur, (g,, £,) and (3 — g,, 3 — g,), (ignoring the trivial (0, 0)). The
results appear in Table III as new units whose index is a multiple of three.
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CoNcCLUSION 11.1. With certainty, when le| = 4 and |le|l = 2 (u < 15), the
units U are p-fundamental for p = 2, 3, 5, 7 except in cases of Table 11 (dependency)
or Table 111.

CoNJECTURE 11.2. If we modify U by changing 2, to the new unit of Table
111, then U becomes fundamental for each case tested here.

Clearly, this conjecture can be answered by a finite but (for now) very long
computation (see Remark 9.15). The following is more precarious:

CONJECTURE 11.3. For the fields parametrized in Section 9, fundamental units
are those listed in the set U, except for the cases cited in Tables 11 and 111.

12. Normed Dyadotropics of Various Degrees. The ideas do not trivialize in the
quadratic case if we define a dyadotropic quadratic consistently, (as a monic integral
quadratic polynomial with three consecutive values which are absolute powers of 2).

THEOREM 12.1. The most general dyadotropic quadratic polynomial has the
form: f,(m % x), (m € Z), where

(12.2) f00) = x% +x(1 = 24(=1)%) + 2*(=1)".
The ring Z[£] for a root f,(§) = O has discriminant

(12.3) d=1-6(-1)2% +2%, 0<u, v (mod?2),
and the readily available unit

(12.4) €, =(E+DIE-D**,  Ne, = (1.

The proof is left as an exercise, as it follows Theorem 3.5 (above) but in a
simpler way. We observe that, again, if f(m) = (- l)S'”ZT’”, T, >0 form=-1,0,
1 then we can normalize so that 7, = 1 and u = T_, —1. The first two polynomials
u=0,v==1 are

(12.5) L&) =x2-x+2, f,(x)=x>+3x-2
with d = —7,d = 17. They represent powers of 2 for an extraordinary range of x,
ie, =2 <x < 3,-6 <x < 3 (respectively) so translates of these polynomials reappear

several times in the form of (12.2). For u < 8, the units were small enough to check
by pocket computer. They are fundamental except for

(12.6a) @ v)=(3,0), d=113, e=€p,

(12.6b) (,v)=(50), d=833=17-49, e=ell8

Actually, the values of d are familiar, as they arise from special cases [—2; u,
0, 0] and [-2;u, 1, 1] of Table I (above) or (9.3b). Also, €, is precisely the unit
in (6.2). Thus, in some sense, biquadratic dyadotropics are related to quadratics.

More generally, we should consider a field k, of degree r with an integer a, and
e =+2' (t+ > 0). Then set

(12.7) gx)=x*>+ax+e f,,(x)=Ng,(x),

where we form the norm polynomial over all conjugates of « in k,. Thus, Part I, [12],
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was concerned with the cases f = f, (where r = 2, the normed dyadotropic biqua-
dratics). We made the restricting assumption that dy (= disc k,) = 1 (mod 8) for con-
venience of unit calculation, (e.g., so that f(1) = +2). There are certainly other cases
which we do not attempt to list completely here. A sample case is

(12.8) f300) =x* = 9x? + 4 = N(x? + 5%x +2).
THEOREM 12.9. The most general normed biquadratic dyadotropic polynomial
is f4(x) = Ng,(x) with
(12.9a) e=-2; -X-Ya+@X+Y-1)=0,
(12.9b) e=+2; - (X-Y)Da+X+Y-9)=0,

and X, Y denoting +2%, t > 0.
The cases where e = *4 are those given earlier in (9.3c). No other cases occur
(although this is conjectural for e # —4).
Case (12.8) arises withe =2, X = Y = 2.
The proof is omitted as it is quite mechanical and it is based on (say) these
values of f,(x) = f(x):
e fC2) D f0) f(1) Q)
(12.10) -2 8Y 2X 4 2Y 8X
2 8y 2Y 42X 8&X
(We note the resemblance of Lemma 3.1 which is more special.)
For the bicubic case (r = 3) the dyadotropics resist parametrization. It is simply
too hard to make seven consecutive values of f(m) equal to (*) powers of 2. A
manual search seems to lead to only the two following cases (e = —2):

(12.11a) fex) =x8 = 21x5 + 17x* + 113x3 — 34x? — 84x - 8,
(12.11b)  f¢(=3 to +3) = (4096, 128, — 32, — 8, — 16, 256, — 512),
(12.11¢) o3 +21a® + 230 - 29 =0,

(12.11d) ky =Q(), disc ky =31%,  disc kg/k, = 40609,

so k5 is abelian; and the other case,

(12.122)  f(x) = x® + 81x® = 271x* - 157x3 + 542x% + 324x - 8,
(12.12b)  f4(=3 to +3) = (—32768, 4096, 16, -8, 512, — 128, 64),
(12.12¢) o® — 81a® - 2650 — 167 = 0,

(12.12d) k3 = Q(a), disc k5 = 31 - 14479, disc kg/k, = 132 - 59 - 83.

Here disc k4/k3 = N(o? + 8) is generated by the radical in the root of g5(x) = x2 +
ox — 2. (The factor 132 is seen to be nonremovable as 13 has no factor of degree 1
in kj.)

These results can certainly not be “explained away”, but there seems little pos-
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sibility of parametrizing normed dyadotropics of degree 2r > 4. The unnormed
dyadotropic cubics are, however, readily parametrized (as seen in [13]).
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