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A Search for Large Twin Prime Pairs

By R. E. Crandall and M. A. Penk

Abstract. Two methods are discussed for finding large integers m such that m — 1
and m + 1 are both primes. Eight such mumbers m of magnitudes 22, 22, 32, 64,
136, 154, 203, and 303 digits are listed; together with primitive roots (for m + 1)
and Lucas-Lehmer parameters (for m — 1). The Hardy-Littlewood twin prime
conjecture is supported by a statistical test involving the generation of 249 twin
prime pairs in the 50-to-54 digit region.

1. Asymptotic Estimates. We define a twin prime mean (TPM) to be any
positive integer m such that (m — 1, m + 1) is a pair of primes. It is unknown
whether M(x), the number of TPMs not exceeding x, is bounded as x increases. How-
ever, in 1919 V. Brun [1], by showing in effect that for some positive constant C,
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established that the sum of the reciprocals of all TPMs must converge. Twin prime
pairs (m — 1, m + 1) are, therefore, significantly sparser than the primes themselves,
so the task of discovering large TPMs is both interesting and challenging.

For the computer search reported here, we have made practical use of certain
asymptotic estimates concerning the distribution of TPMs. Evidently, if m is a TPM,
then for any prime p <m — 1, we have m? #1 (mod p). In particular, if m > 4, then
m =0 (mod 6). We define a sieving set with sieve limit x to be the set of all primes
p with 5 < p < x; this set is denoted as P,. Then a function Q(x) is defined
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where K is a positive constant. For an integer n = 0 (mod 6), much larger than x
but otherwise “random”, we loosely interpret Q(x) as the “probability” that

n? — 1 is prime to all primes in P. In 1923 Hardy and Littlewood used functions
similar to Q to derive an heuristic estimate [2]
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where C, is a constant 0.66016181. . . related to K and Euler’s constant y by C, =
Ke*? |4, The Hardy-Littlewood estimate is apparently in good agreement with
actual counts of TPMs [3], [4], [5].
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To test whether some m = 0 (mod 6) is a TPM it is natural to first choose a sieve
limit x and test both m + 1 and m — 1 for divisors in P,. In the absence of any such
divisors we then apply Fermat tests, that is to determine whether 2™ =1 (mod m + 1)
and 2™~2 =1 (mod m — 1) as must both be true if m *+ 1 are both primes. In
practice, these tests are virtually conclusive; and we assume in computer time calcula-
tions that almost all pairs m * 1 which pass the Fermat tests are twin prime pairs.
From these considerations the mean time to locate a TPM can be estimated from
Q(x), which is used to derive sieving times and the frequency of required Fermat tests;
and from the Hardy-Littlewood estimate, which estimates the probability of a
successful pair of Fermat tests. The problem of determining the most efficient sieve
limit x is, thus, reduced to a straightforward minimization problem involving the
relevant asymptotic formulas.

2. Primality Tests. Once a possible TPM m is located using the sieve and
Fermat tests we can test m + 1 for true primality as follows. If b is an integer such
that 5™ =1 (mod m + 1) but for every prime factor ¢ of m we have b™/9 # 1
(mod m + 1), then b is a primitive root of the prime m + 1 [5].

The number m — 1 can be tested using a Lucas-Lehmer test [7]. Let Q be
chosen so that D = 1 — 4Q satisfies D™ ~2)/2 = — 1 (mod m — 1) and
g.c.d(m —1,0D) = 1. Define Uy =0,U; =1 and for n > 2, v, =0, ,-0QU0,_,.
If U,, =0 (mod m — 1) but for every prime factor g of m we have U q 0
(mod m — 1), then m — 1 is prime. We call Q a Lucas-Lehmer parameter
for the prime m — 1.

For these primality tests to be directly applicable it is necessary to know the
prime factors of m. In the present search a useful factorization algorithm has been
Pollard’s rho method [8], [9]. The method was used, for example, to find the two
ten-digit factors of the second TPM listed in Table 1.

The battery of computer algorithms used in this search is comprised of:

(1) sieve algorithm, sieve limit x;

(2) power algorithm »” (mod z);

(3) Lucas-Lehmer test U, (mod z), parameter Q;

(4) Pollard’s rho algorithm.

Fermat testing is of, course, a special case of (2), and is assumed to be a process
of order O(log>z).

3. Method of Interval-Sieving. This search method finds in principle all TPMs
in an interval, though at the expense of necessitating factorization of any suspected
TPMs. Choose some large integer n = 0 (mod 6) as the first member of an arithmetic
progression {n, n + 6,...,n + 6(u — 1)}. We establish a binary array of bits b(1),
-+ ., b(u) all set initially to zero and choose a sieve limit x. For each prime p € P,
we compute 7*(n, p) as the least positive values of +6~! — 1 + (1/6) (mod p). Then,
we set bits b(r*(n, p) + Lp) = 1 for all nonnegative L such that the array argument
does not exceed u. The result of this sieve operation is that the only possible TPMs
in the progression are of the form m = n + 6(j — 1) where b() = 0. Approximately
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u - Q(x) numbers m will so survive the sieve, and these m are to be Fermat-tested.

With a sieve limit x = 2000 the two 22-digit TPMs in Table 1 were found. There
are no TPMs lying strictly between these two.

With sieve limit x = 10000 the 32-digit TPM of the table was found. For
numbers of this size and smaller, a small sieve and Pollard rho method in conjunction
are generally sufficient for factorization of m. On the idea that perhaps 60-digit
factorizations are beyond the reach of present techniques [8], it is clear that an
alternative search method is required for TPMs having, say, hundreds of digits.

4. A Monte Carlo Method. One of us (M.P.) has refined a search method which
circumvents factorization altogether. The idea is to establish an a priori form

m=2.3.sl...sj.ql...qk,

where the s; are (possibly) manually chosen small primes, and the primes g, are
generated randomly subject to the constraints that g; < 2", where W is a machine
arithmetic word length; and m is in some predetermined region.

The procedure is to choose a sieve limit x and possible factors s; then to
perform these steps:

(1) generate the g; and form m;

(2) sieve m % 1 with all primes in P_;

(3) Fermat-test m + 1;

(4) Fermat-test m — 1.

On failure at any step, one reverts back to step (1). When a trial m survives all
four steps it is a likely TPM, and true primality tests are to follow.

The procedure was programmed on a PDP 11/70 computer with the outer loops
written in the language C and the inner loops in assembly language. The word length
of the machine is W = 15; and the basic arithmetic process, a W-by-W bit multiply
and two adds, consumed 12 microseconds.

A formula was derived for the expected time to find an m which survives all
four steps in terms of the rough magnitude of m and the sieve limit x. In the case
that no s; are chosen, the formula arises as follows. Enumerate the consecutive primes
inP_ asp,,...,p, and denote for convenience Q(py) = 1. The probability that p,
is the smallest prime dividing m? — 1 is taken to be (2/p,)Q(p;_,). An estimate for
the expectation of the number of sieve divisions at step (2), per choice of m in step

(1), is
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where A is a constant. The actual time spent for a sieve division of m + 1 is assumed
to be proportional to log m but essentially independent of k, so that the expected
time spent at step (2), per choice of m in step (1), is estimated as
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for a machine-dependent constant B. Since a fraction Q(x) of the m chosen in step
(1) will pass step (2), the expected time spent at step (3), per choice of m, is
estimated as

CO(x)logm,
where C is another machine constant. The time spent at step (4) is assumed to be
negligible relative to that spent at step (3). From the Hardy-Littlewood formula we
expect O(log?m) choices of m in step (1) before we find a number which passes all
four steps. Such a number will be found, therefore, in an expected time

_ Hxlog’m " L logsm

log4x log’x
where H, L are machine constants.

T

>

A good choice for x which essentially minimizes T is that for which

m(x) = (2L/H)log*m.
This implies that the number of primes in the most efficient sieving set P, is
proportional to the square of the number of digits in m.

With the computer actually used for the search, the ratio L/H was empirically
determined to be 0.02, implying that searching in, say, the 100-digit region should
involve an x with m(x) about equal to 2100. Thus, the choice x = 25, m(x) =
3512, an extremely convenient one for the programmer, turned out to be an efficient
one as well. The 64, 136, 154, 203, and 303 digit TPMs in Table 1 were found with
this method. Though x = 2'% is highly efficient only for 100 to 150 digits the same
value for x was maintained in the searches for the largest TPMs with only a moderate
degradation of efficiency.

5. A Statistical Test in the 50-54 Digit Region. A test of the Hardy-Littlewood
formula was carried out using 132947 trial values for m in the method of the last
section. These values were constrained by s, = 5,5, = 7,53 = 11,5, =13,¢; <
215 and 10*° <m < 10%%.

The Hardy-Littlewood formula predicts that such a computer run should produce
about

2-3 26,

<5(1—3)> 132947 2
TPMs, where z is some real number between 10*° and 10%%. The correction factor
(2 - 3)/Q(13) arises from the special form for the trial m values. The correction factor
for the less specialized g; constraint is assumed to be negligible. Assuming Poisson
statistics for the experimental occurrence of TPMs, this prediction amounts to 245 +
25 TPMs, with the error corresponding to the ambiguity in z combined with one
standard deviation (245)%.

The results of the actual computer run are as follows. Exactly 249 numbers m
passed all four steps of the Monte Carlo procedure. Each one of these m was shown
to be a TPM in subsequent primality tests. The Monte Carlo procedure consumed a
total of five hours C.P.U. time, and the required 498 primality tests took another five
hours.
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It is of interest that this statistical test gives an experimental value for C, which

is within 2% of the Hardy-Littlewood prediction.
digits b Q

m= 2:2:2+-3-3-3-19-23:-487-117998390827927 22 7 -4
m= 2-3-5-17-1630555079-6522807839 22 3 -13
m= 2-3:5-31-61-197947-1077403318801219090697 32 3 -10
m= 2:2:3-3-7+1453:2969-5779-7589-7603-10039" 64 2 -3

10937-11887-12239-20297-24103:25583-26237-
26423-31513

m= 2-3-3-11179-953-1223-1481-2791-4153-6197- 136 2 -28
6217-8101-8219-10627-11161-12841-13099-
16493-16993-17027-17489-17863-19433-19463-
20681-21031-21859°22051°23549-27277°27961"
28549-28631-28909-29077-32561

m= 2-3:5-7-11-13-29-101-1543-3917-4889-5011- 154 2 -17
5261:-5503-6521-9833°11657-12241-13109-
13291-13441-13523-14891-16183:17599-17659-
17789-19421-19699-19709-20063°21157-21503"
21523-23993-24043-25469-27631-28181-28909"
29633-30223-32479

m= 2-3:5-7-11°13-631-691-1193-1367-1451-1931- 203 6 -32
1999-3257:3539-4703-4967-4987+5113:5639-
6067-6949-7451-8363-8689°9161-9887-10181"
10501-11171-11471-11701-11821-12541-13421"
13709-14341-16007-17317-17863-18587-19031-
19379-20773-21283-25243-25819-26669-27737-
27751-28513-29209°29327-29611-30803-30983

m= 2-3-5-7-11-13-241-433-773-811-1301-1301" 303 3 -14
1493-2383-4007-4327-4409-4597-4783-5431-
5519-5581°5851°5987-6679°7297°7481*7589"
7817-8737-8999-10061-10433-10663-11117-
11243-11677-11807-13121-13553-14479-14771-
15031-15101-15149-15199-15607:16231-16607:
16979-17053-17417-17881-18523-19013-19087-
19531°21713°21997-22153-23071-23143:24659-
24733-24821-25367°26267-26573-26759-27803
27893-28001-28433-29411-29537-29753-29837
30649-31849-31981

TABLE 1.
Twin primes m * 1 with primitive roots b for m + 1; and Lucas-Lehmer param-
eters O for m — 1. All factors listed are primes. The first three m values were
found using interval-sieving, so these factorizations required implementation of
factoring algorithms. For the remaining five m values, the factors were chosen a
priori as explained in the text.
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