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An Inductive Algorithm to Construct Finite Lattices

By Shoji Kyuno

Abstract. G. Birkhoff [1] proposed the following problem: Enumerate all finite
lattices which are uniquely determined (up to isomorphism) by their diagram, con-
sidered as a graph.

It is not known how many lattices of order n exist, except when the value of
n is quite small. The aim of this note is to give an algorithm to construct inductively
all finite lattices of order n. Using this algorithm, we have found that there exist 222
lattices for n = 8 and 1078 lattices for n = 9. All lattices of order n < 8 are shown

at the end of this note.

1. A Graphical Representation. Since a lattice is an ordered set, it can be repre-
sented by a Hasse diagram. To represent a lattice here, we transform slightly its usual
Hasse diagram, writing one of the longest chains straight up, and we “locate all ele-
ments upward closely.” To “locate all elements upward closely” means that for any
element a, except the maximal element, there exists at least one element which domi-
nates g and is one level above a, where a level means the set of all points having equal
Y-coordinates. Such a diagram is briefly called a ‘“‘diagram closed upward.”

Example. A lattice having the chains f<e<d<c<b<a, f<h<d f<h<
g <b,and e <i<a, is represented in the following diagram closed upward:

FIGURE 1

In Figure 1, a is the maximal element. For any element x except ¢ we can find
an element which dominates x with one level-difference.

The following theorem assures the possibility of representing a lattice by such a
diagram closed upward.

THEOREM 1. A lattice L can be represented by a diagram closed upward.

Received March 2, 1977.
AMS (MOS) subject classifications (1970). Primary 06A20, 05C30, 02E10.
© 1979 American Mathematical Society
0025-5718/79/0000-0031/$04.50
409



410 SHOJI KYUNO

Proof. First make a Hasse diagram of a given lattice L. Let E(L) be the element
set of L. Denote the maximal element by m. Let the elements dominated by m be
a,, a,, ..., a, Let the elements dominated by ¢, ( = 1,2, ... ,s) be by (=1,
2,...,8j@0)=1,2,...,¢t).

We now transform the Hasse diagram into a diagram closed upward. Locate a,
a,, ..., ag at one level downward from m keeping invariant all connection relations.
For an element bi].(i), if

xXx€EWL)Ib,  <x}C {ma;i=1,2,...,s},
i@y * !

then we replace b;;;y by a;;(;y; otherwise we leave by;(,y standing. Do this test for all
byj(sy’s and locate all a;;;)’s at one level downward from the level of 4;’s, keeping in-
variant all connection relations.

The set of a;;(;y’s is not empty. For if b, is one of the elements left alone, let
one chain which is not a subset of {m,a;;i =1, 2, ..., s} be the following:

by S Sbpg S S m

If there is no chain upward from b, q except b, < a, < m, then we can replace
bpq by dpq and our statement will then be true. Hence, we assume that there exists
the following chain upward from b, ,:

bpg S ShuySa, S

If there is no chain from b,,, except b, < a,, < m, then our statement will be true.

Uuv = “w —+«
By continuing this argument, we obtain the following chain:

bll S»bpnguv—g... gam ﬁm

However, the finiteness of b;; i=1,2,...,87/(G)=1,2,...,t;) shows that the
length of the above chain must be finite. Therefore, our statement is true.

Repeat the same procedures for the elements dominated by all a;;(;y’s and so on.
By the finiteness of the lattice we get to the minimal element. We draw one of the
longest chains straight, and thus obtain the diagram. This completes the proof.

In the following we mean by ‘lattice’ the diagram closed upward.

2. To Construct the Lattice. Construction of all lattices of given order n will be
accomplished by an inductive method. For this we prepare the following theorem:

THEOREM 2. From an n-element lattice we can construct an (n — 1)-element
lattice by removing an element dominated by the maximal element and by rearranging
the rest to make a lattice.

Proof. Let m be the maximal element of a given n-element lattice. Let a, be an
element dominated by m. Leta; (i =1,2,...,s) be the elements dominated by a,.

For eachi € {1, 2, ..., s}, if there exists at least another chain upward from
a; except a; < ay < m, then take out the line segment connecting a,, to a;. If there
exists no other chain upward except a; < @, < m, then take out the line segment
connecting a,, to a; and connect m with a; by a new line segment. At last, take out
the element a,, and the line segment connecting m with a,. Then we can obtain a
lattice of order (n — 1).
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From Theorem 2, we can see how to construct the set of all lattices of order n.
It will be derived from the set of all lattices of order (» — 1) by applying the inverses
of all possible procedures to make an (# — 1)-element lattice from an n-element lattice,
as stated in the proof of Theorem 2.
In the following, we show the detail of the procedure to construct the set of all
lattices of order n.
Algorithm to produce from an (n — 1)-element lattice L a set of n-element lattices:
Let E(L) be the element set of L.
Let m be the maximal element of L.
Let the elements dominated by m be a, - * * a;.
Let the elements of E(L) — {m, a,, ... ,a,} bee, * - ¢,
We shall produce a list of n-element lattices, LIST(n).
1. Let LIST(n) = &.
2. In L, add an element @, which dominates m. Add this lattice to LIST(n).
3. If k> 1 do:
For each g-subset 5, * « * Sq ofa, +++ ay,in turn for 1 < ¢q <k, do:
for all s;, let m no longer dominate s;.
for all s;, let a, dominate s;.
Let m dominate a,.
For each result obtained above, check for all a; of {ay, ..., a3 {5y, ..., sq} whethe:
all a, A a; are unique, where a, A a; denotes the g1.b. of 4y and a;. Append any result
for which all a, A\ a; are unique to LIST(n).
4. For each ¢; (1 <i <) do:
Let m dominate a,.
Let a, dominate e;.
Append the result to LIST(n).
5. For each lattice M except the one obtained in 2 in the list LIST(n) created
thus far, do:

Let ag, x, * * * x,, be the elements dominated by m in M.

Let Lao = {g; CEM)| a; S a,}.

Let P = E(M) —La0 —{moayx,,...,x,}

Let p, - -+ p, be the elements of P.

For each p; (1 <i <) do:
If ay A\ p, is not dominated by a,, and moreover if for any 4 €L,
a;\/ p; =m ora;\/ p; = p;, then let a, dominate p; and append this
lattice to LIST(n).

6. For each lattice M newly constructed in 5 in the list LIST(x), do: the same
procedures stated in 5.

7. For each lattice constructed in 6 in the list LIST(n), do: the same procedures
stated in 5.

8. Repeat the same procedures stated as in 7 for each lattice M newly constructec
in the previous step until the set P becomes empty.
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3. A Matrix Representation. To find all isomorphic lattices we consider a matrix
representation. For a given diagram closed upward, denote the maximal element by 1
and number the levels 1, 2, 3, ..., from the top to bottom. Denote the elements on
the same level by the same numbers and distinguish different elements by the suffixes
a, b, c ....

Examples.
1
2 2p
3 3
4
FIGURE A FiGURrRE B

Make a matrix whose columns represent all chains from the maximal element to
the minimal element. Put 0’s between two nonadjacent integers to make the lengths
of all columns the same.

Examples. Matrices corresponding to Figures A and B.

1
111

2 2, 2,
2 2, 2,

A= , B=|3, 3, 0
3, 3, 3,

@ b 0 4 0
4 4 4

5 5 5

We may define the equality of two such ! x m-matrices P, Q as follows:

If some permutation of all columns of P and some replacements of all suffixes
on each row of P transform P to Q, then we say that P and Q are equal.

By this definition, for a lattice we have a unique matrix representation. Con-
versely, if a matrix is given, the suffixes of each row determine the elements which
should be located on the corresponding level, and each column shows which element
should be connected with which element. Thus a matrix determines a unique lattice.

Acknowledgements. The author wishes to thank the referee for his valuable
suggestions and in particular for giving a concise description of the algorithm.
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