CORRIGENDA

D. M. Gay, “Modifying singular values: Existence of solutions to systems of non-
linear equations having a possibly singular Jacobian matrix,” Math. Comp., v. 31, 1977,
pp. 962-973.

This note corrects an error pointed out by K. Tanabe [1978]. Theorem (5) of this
paper should have been stated as:

(5) THEOREM. If F: R" — R" is continuous, then for each x € R" and t, €R
there exist a € [, t,), b € (t,, +°°|, and a continuously differentiable function x:
(a, b) — R" such that

(6a) x(ty) =x, and

(6b) x'(t) = F(x(Y)) forall t € (a, b).
If IFGN < c for lIx — xoll <d, then a <ty —dfcand b > t, + dfc. Moreover, if F
is locally Lipschitz continuous, then the solution x(t) of (6) is unique.

In [Gay, 1977] it was erroneously asserted that 4 = — o0 and b = + oo, This has
no effect on the rest of the paper, except that the proof of Theorem (23) must be
revised to show that b = + oo for the F of interest. The revised proof may be stated
as follows:

Proof. Fix x,. As already remarked, the existence of x(f) on some interval
[0, b) follows easily from Theorems (13) and (5). We first show for s, ¢ € [0, b) that

(24.1) IF @ < If (llle®*  and

(24.2) Ix(s) = x(DIl < [If G/ (0€)] le=0S — e07).
Indeed, let ¢(f) = [IF(x(D)II2. Then ¢'() = — 2fTJTf, so (22) implies ¢'(r) <
=20|lf e(D)II? = —20¢(f). Hence, Y(¢) = In ¢(¢) has ¥'(r) <—20, so (for t > 0)

V() = 9O + [ Y@ dr < w() - 201
and
IF N2 = o(t) = e¥ D < |If (xp)lI%e 20,
which establishes (24.1). Because of (9a), we have

whence

(D)l = W LGN < I @)Ife < (I Cxo)llfe)e ™",
lIx(s) — x()ll = ” f : x'(r)dr

ft e 07dr
s
which gives (24.2). _
Now let d = |[f (xo)Il/(0€), ¢ = max{llf (x)Il: x € B(x,, d)}/e, and b, = 0. By
(9a), (24.2), Theorem (5), and induction on k we find:
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b>b,,
llx(®,) = xoll < [1 = exp(- 0b;)]d,
WHreol <c forx e B(x(by), exp(— 0b,)d),
b > by =by + exp(-0by)d/c = g(l +e70P +e70P2 4o 4 o700K),

From this it follows that b = + oo, for if b were finite, then we would have b >
d(1 + ke~ ?%)/c for all k, which is impossible.
From (24.2) it follows that the sequence x(t,), x(¢,), x(t3), . . . is a Cauchy se-
quence for any choice of ¢, ¢,, . .. with lim,, ., #; = + oo, whence x* =
lim,_, ., x(¢) exists. By the continuity of f and (24.1), f(x*) = lim,_, ., f(x(¢)) = 0. O
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On p. 906 of MTE 428 (Math. Comp., v. 22, 1968, pp. 903—907) listing correc-
tions in this set of tables there appears a typographical error in the correction of For-
mula 8.521(4). The emended correction should read

1
\/(2ki1r -2)2 + x2 + 2
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REIIO ERNVALL & TAUNO METSANKYLA, “Cyclotomic invariants and E-irregular
primes,” Math. Comp., v. 32, 1978, pp. 617—629.

On p. 619, the three first lines of the first table should read as follows:

x Tg Tg Tgp mglm Tg/n  Tgpln
2000 121 113 56 0399 0373 0.18
4000 218 213 91 0396 0.387 0.17
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