CORRIGENDA

D. M. GAY, "Modifying singular values: Existence of solutions to systems of non-linear equations having a possibly singular Jacobian matrix," *Math. Comp.*, v. 31, 1977, pp. 962–973.

This note corrects an error pointed out by K. Tanabe [1978]. Theorem (5) of this paper should have been stated as:

(5) THEOREM. If $F: \mathbf{R}^n \to \mathbf{R}^n$ is continuous, then for each $x \in \mathbf{R}^n$ and $t_0 \in \mathbf{R}$ there exist $a \in [-\infty, t_0)$, $b \in (t_0, +\infty]$, and a continuously differentiable function $x: (a, b) \to \mathbf{R}^n$ such that

$$(6a) x(t_0) = x_0 and$$

(6b)
$$x'(t) = F(x(t)) \quad \text{for all } t \in (a, b).$$

If $||F(x)|| \le c$ for $||x - x_0|| \le d$, then $a < t_0 - d/c$ and $b > t_0 + d/c$. Moreover, if F is locally Lipschitz continuous, then the solution x(t) of (6) is unique.

In [Gay, 1977] it was erroneously asserted that $a = -\infty$ and $b = +\infty$. This has no effect on the rest of the paper, except that the proof of Theorem (23) must be revised to show that $b = +\infty$ for the F of interest. The revised proof may be stated as follows:

Proof. Fix x_0 . As already remarked, the existence of x(t) on some interval [0, b) follows easily from Theorems (13) and (5). We first show for $s, t \in [0, b)$ that

$$||f(x(t))|| \le ||f(x_0)||e^{-\theta t} \quad and$$

$$||x(s) - x(t)|| \le [||f(x_0)||/(\theta\epsilon)||e^{-\theta s} - e^{-\theta t}|.$$

Indeed, let $\phi(t) = ||f(x(t))||^2$. Then $\phi'(t) = -2f^T J \hat{J}^+ f$, so (22) implies $\phi'(t) \le -2\theta ||f(x(t))||^2 = -2\theta \phi(t)$. Hence, $\psi(t) \equiv \ln \phi(t)$ has $\psi'(t) \le -2\theta$, so (for $t \ge 0$)

$$\psi(t) = \psi(0) + \int_0^t \psi'(\tau) d\tau \le \psi(0) - 2\theta t$$

and

$$||f(x(t))||^2 = \phi(t) = e^{\psi(t)} \le ||f(x_0)||^2 e^{-2\theta t},$$

which establishes (24.1). Because of (9a), we have

$$||x'(t)|| = ||\hat{J}^+ f(x(t))|| \le ||f(x(t))||/\epsilon \le (||f(x_0)||/\epsilon)e^{-\theta t},$$

whence

$$||x(s) - x(t)|| = \left\| \int_{s}^{t} x'(\tau) d\tau \right\| \le \left| \int_{s}^{t} ||x'(\tau)|| d\tau \right| \le \frac{||f(x_0)||}{\epsilon} \left| \int_{s}^{\tau} e^{-\theta \tau} d\tau \right|,$$

which gives (24.2).

Now let $d = ||f(x_0)||/(\theta \epsilon)$, $c = \max\{||f(x)|| : x \in \overline{B}(x_0, d)\}/\epsilon$, and $b_0 = 0$. By (9a), (24.2), Theorem (5), and induction on k we find:

© 1979 American Mathematical Society 0025-5718/79/0000-0035/\$01.50

$$\begin{split} b > b_k, \\ \|x(b_k) - x_0\| &\leq \left[1 - \exp(-\theta b_k)\right] d, \\ \|\hat{J}^+ f(x)\| &\leq c \quad \text{for } x \in \overline{B}(x(b_k), \exp(-\theta b_k) d), \\ b > b_{k+1} &\equiv b_k + \exp(-\theta b_k) d/c = \frac{d}{c} (1 + e^{-\theta b_1} + e^{-\theta b_2} + \dots + e^{-\theta b_k}). \end{split}$$

From this it follows that $b = + \infty$, for if b were finite, then we would have $b > d(1 + ke^{-\theta b})/c$ for all k, which is impossible.

From (24.2) it follows that the sequence $x(t_1), x(t_2), x(t_3), \ldots$ is a Cauchy sequence for any choice of t_1, t_2, \ldots with $\lim_{t\to\infty} t_i = +\infty$, whence $x^* = \lim_{t\to\infty} x(t)$ exists. By the continuity of f and (24.1), $f(x^*) = \lim_{t\to\infty} f(x(t)) = 0$. \Box

MIT Center for Computational Research in Economics and Management Science 575 Technology Square-9th Floor Cambridge, Massachusetts 02139

K. TANABE, (1978), "Global analysis of continuous analogues of the Levenberg-Marquardt and Newton-Raphson methods for solving nonlinear equations." (Preprint.)

I. S. Gradshteyn & I. M. Ryzhik, *Table of Integrals, Series, and Products*, 4th ed., Academic Press, New York, 1965.

On p. 906 of MTE 428 (*Math. Comp.*, v. 22, 1968, pp. 903–907) listing corrections in this set of tables there appears a typographical error in the correction of Formula 8.521(4). The emended correction should read

$$-\frac{1}{\sqrt{(2ki\pi-z)^2+x^2+y^2}} \ .$$

MICHAEL ANDERSON

Department of Physics The University of Michigan Ann Arbor, Michigan 48109

REIJO ERNVALL & TAUNO METSÄNKYLÄ, "Cyclotomic invariants and *E*-irregular primes," *Math. Comp.*, v. 32, 1978, pp. 617–629.

On p. 619, the three first lines of the first table should read as follows:

x	π_B	π_E	π_{BE}	π_B/π	π_E/π	π_{BE}/π
		113	56	0.399	0.373	0.18
4000	218	213	91	0.396	0.387	0.17

REIJO ERNVALL

Department of Mathematics University of Turku SF-20500 Turku 50, Finland