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Convergence of a Finite Element Method for the
Approximation of Normal Modes of the Oceans

By Mitchell Luskin

Abstract. This paper gives optimal order error estimates for the approximation of the
spectral properties of a variant of the shallow water equations by a finite element pro-
cedure recently proposed by Platzman. General results on the spectral approximation
of unbounded, selfadjoint operators are also given in this paper.

I. Introduction. We analyze in this paper an approximation procedure to com-
pute the normal modes of the oceans. The procedure that we analyze is a finite ele-
ment method proposed by Platzman [16].

Our procedure gives a finite dimensional operator whose properties are shown to
approximate those of the unbounded selfadjoint operator associated with the differential
equations modeling the physical problem. The error estimates given here are optimal
for the procedure considered. The theoretical results on spectral approximation given
in this paper generalize the error estimates of Bramble and Osborn [1] and Osborn
[14] for compact operators and of Descloux, Nassif, and Rappaz [5], [6] for bounded
operators. Results of Descloux, Rappaz, and the author on the spectral convergence of
unbounded, closed (not necessarily selfadjoint) operators will appear in a later paper [4].

We model the time dependent behavior of the oceans by Laplace’s tidal equations,
a variant of the shallow water equations, as discussed by Platzman in [15] where nor-
mal modes of the Atlantic and Indian Oceans calculated by a finite difference proced-
ure are presented. A Lanczos method used to solve the resulting matrix eigenproblem
is discussed in [3]. The frequencies of the normal modes have limit points at 0 and eo.
The spectral properties of the associated unbounded, selfadjoint operator have been
studied by Veltkamp [18].

Platzman [16], Dupont [7] and Scott [17] have found that the standard Galer-
kin method for hyperbolic systems [7], [8] can cause modes with high wavenumber
to have low or zero frequency in time even though corresponding eigenfunctions of
the differential equations with high wavenumber have a high frequency in time. This
behavior is clearly unacceptable in an approximate procedure for finding eigenvalues
and eigenvectors.

In Section 2, we study a hyperbolic system for which both the differential and
Galerkin spectral properties can be computed analytically. The above-mentioned
phenomenon is clearly evident in this example. This example is due to Platzman [16].
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We also study the properties of Platzman’s alternative Galerkin method when
applied to the example of Section 2. We find that eigenfunctions of this Galerkin
method with high wavenumber have a high frequency in time. This agrees with what
is to be expected from the differential problem.

In Section 3, we construct the operator, T, associated with Laplace’s tidal equa-
tions. We also define the finite dimensional operators, { 7"}, associated with our
finite element method.

We prove in Section 5 two properties concerning the convergence of 7% to T.
In Section 4, error estimates for the appproximation of the spectral properties of T by
T" are derived from these two properties.

In Section 6, we improve the eigenvalue estimate given in Section 4. It can be
seen by inspecting the example in Section 2 that the results on the convergence of the
eigenspaces in Theorem 1 and the result on the convergence of the eigenvalues in
Theorem 4 are optimal.

The procedure discussed here for the computation of eigenvalues and eigenfunc-
tions of hyperbolic systems has many applications to time dependent problems. This
is discussed in a later paper by the author [12].

II. An Example. In this section we study the approximation properties of two
Galerkin methods when applied to the solution of a simple hyperbolic system with
two dependent variables defined in one space dimension. This system models a one-
dimensional channel.

We denote by C(J) the space of continuous complex-valued functions on I and
by P, the space of complex-valued, linear functions. Also, for f, g € L2(I), we set
(f, &) = f& fgdx. We denote by H!(I) the Sobolev space of functions with one weak
derivative in L2(/) and norm

"f";l(l) = "f"i2(f) + "fl”z2(1)-
We also set
Hi() = {fEH'U) [f(0) = (1) = 0}.

We consider the hyperbolic system

ou  ov
— + — = €(0,1 0,7),
=0 @DEQDxOT)
ov  du
—+ — = €(0,1 0, 7),

W0, =uv(l,)=0, t€(©,7),
u(x, 0) = uy(x), vlx, 0) =vy(x), x€(0,1).

“The associated eigenvalue problem is to find \ € C, u € H'(I), and v € H}(I) such
that
22) M +v, =0, WwHu, =0.
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If we eliminate u from (2.2), we find that A, v must satisfy
(2.3) Mv=u.., u0)=uv1)=0.

The solutions to (2.3) are well known to be

(24) N = ikm, v =sinkmx, k=0,%1,%2,. .. .
Thus, a complete set of eigenvalues-eigenvectors for (2.2) is

2.5) N = ikm, uy =icos kmx, v, = sin knx

fork=0,%1,%2,... .

We now consider two approximation procedures for (2.2). Let N >0 be a
positive integer, & = 1/N, x; = ih, I = [0, 1], and I; = [x;_,, x;]. Then set
My, = {vecd) i, €P, for i=1,...,N},

@6 M9 = M, N HL(D).

Let the interpolation operator P: C(I) — M,, be defined by the relations
2.7 Pu(x;) = v(x;) for i=0,...,N

A standard Galerkin method to approximately solve (2.1) is to determine U:
[0, T] — M,,V: [0, T] — M} such that

Up W)+ (V, W) =0,  WE M,
(Vp W) + (Ux’ w) = 0, W e Mg.
The associated eigenproblem is to find (I, U, ¥) € C x M,, x Mp such that

28) U »+W,w) =0, WEM,,
T, W)+ U, W) =0, WENM.

A complete set of eigenvalues-eigenvectors for (2.8) is given by

r, = i3 sin khn

=——————, U, = P(i cos kmx),
2.9) h(2 + cos khm) k ( )

Vi = P(Gsin knx) for k=0, #1,..., *N.

Note that T'y; = 0, whereas Ay, = iNm. Clearly, this Galerkin method causes eigen-
functions with high wavenumber to have low or zero frequency in time, even though
eigenfunctions of the differential problem with high wavenumber have a high frequency
in time.

Suppose we examine the graphs of # Im 'y /7 and A Im \;/m as functions of
kh, 0 < kh <1. Itis clear that if this procedure is used to compute modes whose
frequencies are in a given interval of interest, one will also compute spurious modes
due to the spectrum bending.
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GraPH 1 (from Platzman, [16])

In the simple context of (2.1), we can describe our proposed method as follows:
Find U: [0, T] — M,, ¢: [0, T] — M, such that

U W)= (0, W) =0,  WEM,,
(P W) + (U, W) =0, WEM,
f ;vdx =0.

"Then (U, ¢,) is an approximation to (u, v). The associated eigenproblem is to deter-
mine (I, U, ¢) € C x M, x M, such that

(2.102) U, W)= (o, W) =0, WE My,
(2.10b) Ne, W,) + (U, W,) =0, WENM,,
(2.10¢) f, pdx = 0.

Then we approximate an eigenvalue-eigenvector of (2.2) by (I, U, ¢,). Note that we
have imposed the boundary values for v implicitly in the equations (2.10) rather than
in the trial space as in (2.8). A complete set of eigenvalues-eigenvectors for (2.10) is

~ , kah\ —
T = 1 2 sin(kmnj2) (1 - g_ sm2_12'_> Y2y = P cos knx),
O = Fk)‘lUk = ('I\‘Jk)‘1 PG cos knx) for k=<1,..., N,

To=0, Uy=1, ¢,=0.
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Recall that v, is approximated by Pr -

We see from Graph 1 that the spectrum {Im l"k} does not “bend” as does the
graph of {Im I';}. In fact, it can be seen that [Im I‘kl |Im A | for all k > 0. If
we add T times (2.10a) to (2.10b), we obtain

(2.12) 2o, wy+ U, W,) =0, WEM,.
If we eliminate v from (2.2), we obtain
(2.13) Nu-u,, =0, x€I u,(0)=u,l)=0.

Since (2.12) is the standard Rayleigh-Ritz method for computing the eigenvalues A2

of (2.13), it follows that [Im Fkl = |Im N, | for all k since it is well known that the
approximate eigenvalues will be greater in magnitude than their corresponding differen-
tial eigenvalues.

III. The Problem for the Normal Modes of the Oceans. We shall introduce
Platzman’s procedure [16] to compute the normal modes of a homogeneous ocean
in free motion without friction modeled by Laplace’s “tidal” equations. The time
dependent differential equations are:

(3.1a) %=—v~u’, (x, )€ Q x (0, 7),

(3.1b) D—lg—?—— -gV¢—-D Yk xu (x,HDEQx(0,T),
(3.1¢) Jg §ds =0,

(3.1d) w-n=0, (x,)€¥Ix(O,T),

where 2 is an open set on the sphere in R3, D = D(x) is ocean depth, g = gravity,
f = Coriolis parameter, { = ocean surface elevation above mean level, and & = hori-
zontal velocity. Also, V is the horizontal gradient operator on the sphere,E is the
unit vertical vector, and 7 is the horizontal exterior normal to the ocean domain.

For the sake of simplicity in our analysis we shall always assume that D = 1.
We shall also assume that our units are chosen so that g = 1. The Coriolis parameter,
f, is given by f = 2w cos 6 where w is the angular velocity of the earth and 6 is the
geographical co-latitude. So, fis a smooth function with bounded derivatives of all
orders on 2.

Although , the ocean domain, is an open set on the sphere, we wish henceforth
for simplicity to assume that 2 is a simply connected open set in R? with a smooth
boundary, 2. In this case, we may represent

@x, 1) = (u,(x, 1), uy(x, 1)
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and
k x 7= (—uy,, up).

Also, 7 is now the exterior normal to 3S2. See Section 7 for a discussion of the case
when £ is not simply connected.
The eigenproblem for (3.1) is to find (A, ¢, @) such that

N==-V-4 x€Q,

Xz = - -k x 7, €Q,

(.2) vi-fk x @ x
Q§'dS=0,
u-n=0, x€N.

Since % - 7 = 0 on 9§ and  is simply connected, we can represent u as
T=—-Vo+kxVy, x€EQ,

% _o xeoq,
(33) on
fn 0dS =0,

v=0, x€aQ.

Here, ¢ represents an “irrotational” potential and { represents a “rotational” potential.

By applying the divergence and the operator V - (k x &) = — du,/dx, +
Ou,/0x, to (3.1b), we can derive equations for the time dependent behavior of the
oceans in terms of the dependent variables ({, ¢, V).

For complex-valued functions y, z € L2(Q) we set (, z) = [ Yz dS with the
obvious modification for vector-valued functions. We also denote by H™ (L), for m >
0 an integer, the Sobolev space of functions with m weak derivatives in L2(£2) and norm

WiZm gy = 2 DI 5 -
lal<m

We also set
HY)Q) = {y EHY(Q)|y =0 on 30 }.

To construct equations for the time dependent behavior of (¢, ¢, Y) in weak
form, we first take the L2(£2) inner product of (3.1a) with a smooth function z.
Since V - (k x V{) = 0 and d¢/0n = 0 for x € 952, we obtain

(3.4a) <—g—f > =~=(V-i2)= (V" Vy 2) = - (Vo Vz).

If we take the L2(2)? inner product of (3.1b) with — Vz where z is a smooth
function, we obtain

(3:4b) (Vo —k x VY, V2) = (Vg,, Vz) = (V¢ + Fk x B, V2).

Similarly, if we take the L2(£)? inner product of (3.1b) with k x Vz where z is a
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smooth function such that z = 0 on 9$2, we obtain

(=Vy, +k x V¢, k x Vz)

(3.4c¢)
= (V,, V2) = — (fk x u, k x Vz) = - (fid, Vz2).
Set
LYQ) = {z e 12| zds = 0},
Hy(Q) = H'(Q) N LY,

HBQ) = {z EHQ(Q)| _g_; =0 on aﬂ} N L2(Q).

We can formulate our eigenproblem as follows:
Find (A, §, ¢, ¥) = C x H(Q) x H}(Q) x H{(Q) such that

AE, 2) = — (Vo V2), z € H(Q),
(3.5 MVe, Vz) = (V¢ = fk x Vo —fVy, Vz), z€HY(Q),
NVY, Vz) = (fVp - fk x VY, Vz), z € Hy(Q).

We now define the linear operator, T, whose spectral properties we wish to
approximate. We take H to be the complex Hilbert space defined by H = Li(ﬂ) X
HL() x HL(S) with inner product

o, ¥ = <(‘Ply (2% ‘P3)a (‘pl) Vs, l1/3)) = (‘pl’ lpl) + (V‘Pz, V¢2) + (V‘P3’ Vl[/3)

and norm [lg|| = ¢, P1/2.

We note that H3(£2) and Hy(S2) are closed subspaces of H'(£2) and that
(Vz, vz)'/? defines a norm equivalent to the usual A (£2) norm restricted to these
subspaces. For a state ¢ =(¢;, ¢,, v3) € H, %(p,, ¢,) is the potential energy of the
state, 12(Vy,, Vy,) is the “irrotational” kinetic energy of the state, and %(Vy;, Vi3)
is the “rotational” kinetic energy of the state. Hence, ||¢l|? is twice the sum of the
potential, rotational, and irrotational energies of the state of the system described
by ¢.

We define T to be the selfadjoint, unbounded operator with domain D(T) =
HL(Q) x H2(Q) x Hy(Q) such that for (z, B, C) € HA(Q) x HI(Q) x HL(RQ),
T(a, B, C) = (d, E, F) € H satisfies the following equations:

(3.62) @, 2) =iVB, vz) = —i(AB, z),  z € H'(Q),
(3.6b) (VE, Vz) = —i(Va - fk x VB—fVC, Vz), z€H (),
(3.60) (VF, Vz) = —i(fVB - fk x VC, Vz), z € HL\(Q).

If A is an eigenvalue of T with eigenvector (g, B, C), then i\ is an eigenvalue of
(3.2) (and (3.5)) with the corresponding eigenfunction { = g and # = — VB + k x VC.
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We may also define T in terms of the bilinear form
Blo, V) = B(oy, 030 93), (U1, V5. ¥3))
= (Vp,, V¥,) = i(Vp, =k x Vo, = [Ve3, V¥,)
—i(fVe, = fk x Vo, V¥3).

Note that B( -, - ) is not defined on H x H. However, if ¢ € HL(Q) x H3(Q) x
H(I,(Q), then there exists a constant, C(y), depending on ¢, such that

1B(p, VI < CAQIIYIl forall ¢ € H.

In this case, we can define Ty through the Riesz representation theorem so that
(To, ) = By, ¥) forall ¢ €H.

Since there does not exist a constant X > 0 such that C(¢) < Kll¢|| for ¢ € H;(Q) x
H3(S2) x H)(Q), B is not a continuous form on H x H.

We shall now show that T is selfadjoint and unbounded. We define the operator
Ty: HYQ) x HX(Q) x HY(Q) — H by

(3'7) T] (‘pl > ‘pzr ‘103) = (- iA‘Pz, l‘pl H o)‘

It is easily checked that T, is an unbounded, selfadjoint operator.
We also define the bilinear form B,( -, -)on H x H by

By(e, ¥) = ifk x Vo, + Ve, V) = i(fVe, = fk x Vo, TYs).
Since there exists a constant K > 0 such that

B2(Soa ll/) < K”‘P” “l[/”a VSD, ‘/j € H, and B2(‘p5 w) = B2(w? 80)5

there exists a bounded, selfadjoint operator T,: H — H defined by the relations
(Tyo, w) = By(o, w), YwEH.

Now T'=T, + T,,so T is an unbounded, selfadjoint operator. Note that T,
is the “zero-rotation” operator, i.e., if w = 0, then T = T,.

We now consider how the spectral properties of 7' may be approximated by the
spectral properties of operators, 7", defined by means of a finite element approximation.
We assume the existence of spaces of functions, M,,, parametrized by %, such that the
following properties hold:

(1) dim M, <ee.

2 M, c H'(Q).

(3) There exists a positive integer > 1 and a constant K, independent of 4,
such that for 1 <s <r + 1 and z € F5(Q),

(3.82) xienﬂljh Uz =xllp2 gy + Allz = Xllg1 (g, < Kn'lzll s -

We define the spaces
Mp = My NHYQ), My = M, N HYQ).
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We also assume that for 1 <s <r + 1, if z € HS() N H}(S2), then
(3.8b) Xér}dfg {lz =Xl 2¢q) + hllz = Xllg1 gy} < KR Izlgysq),
and if z € H5(Q) N H(), then

(3.8¢) én:* {lz = Xl 2(q) * Allz = Xllg1q)} S KR Nzllgs(q)-
X=Mn

4) Ifse C*(Q), then there exists a constant K = K(s) such that for all £ € My

(3.8d) Afh ”SE - X”HI(Q) < Kh"gll‘ql(n).

xXe

This is a version of the Nitsche-Schatz property [13].
(5) There exists a constant K, independent of 4, such that the inverse property

(3.88) "X”Hl(ﬂ) < Kh_l”X"L2(Q)> VX € Mh,

holds.

The above properties for M,,, with the exception of (3.8b), are satisfied by spaces
of continuous, piecewise polynomials of degree r defined over a regular, quasi-uniform
triangulation of  with the diameter of the largest triangle bounded by & [2]. How-
ever, if the spaces M,, are spaces of piecewise polynomials, then (3.8b) is impossible
to verify for a smooth boundary, 8. If the boundary, 3, is a polygon, then (3.8b)
can be achieved by spaces of piecewise polynomials. However, in the case of a poly-
gonal domain, §2, the components of the eigenfunctions of T will not even be in
H?(S2) unless £ is convex. Isoparametric elements [2] are often used to obtain zero
values on the boundaries of approximating domains for finite element spaces with a
high order of approximation. However, we feel that the analysis of these elements
in the present context would obscure the main ideas of this paper.

We define the operator T%: M% x M¥ x M9 — M} x My x M) by
T"(a,, By, Cp) = (dy, Ey, Fp) if

(3.92) (dp, 2) = i(VBy, Vz), Vz €M},

(3.9b) (VE,, vz2) = i(- Va, + fk x VB, + fVC,, Vz), Vz € MZ-

(3.9¢) (VFy, V2) = (- fVB,, + fk x VC,, Vz), Vz€ MQ.
We note that by (3.8¢) there exists a constant K such that
||VX||L2(Q) < Kh"llxlle(m, VX EM,.
Hence, there exists d,, € M, such that
(dh; Z) = l(vBha VZ)3 VZ € M:

We can also define 7" in terms of our bilinear form B. We note that B(: , )
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is defined on (M} x M} x M) x (M} x M} x M2) and that there exists a constant
K > 0 such that

1B(o, ¥)I < Kh~ gl 1yl

for ¢, Y € M¥ x M¥ x M9. Hence, for ¢ € M¥ x M} x M9, there exists T"¢p €
M x M x M2 such that

Tho, ¥y = Blo, ¥), Vv € My x Mj x Mj.

Note that D(T*) ¢ D(T) and D(T) ¢ D(T"). Also, if Tp(rhy is the orthogonal
projection of # onto M} x M# x My, then T # m, -, T. However, it is easily
checked that T" is a selfadjoint linear operator when M¥ x M x MJ is given the
inner product of H.

In [18], Veltkamp has analyzed the spectral properties of T by studying T as a
perturbation of T;. The spectral properties of T, are easily discovered. The eigen-
value \ = 0 is an eigenvalue of infinite multiplicity for T',. All elements (0, 0, y;),
@3 € H}(S2), are eigenfunctions. Thus, the modes with zero frequency have only
rotational energy. These are the vorticity modes.

It can be seen by eliminating ¢, from the eigenvalue equations associated with
(3.7) that (p, — ip/\, 0) is an eigenvector with eigenvalue \ if

Ap=—2Ny, x€Q,

(3.10) Jqvas=o,
d
a—‘—’: =0, xe€o.

Thus, the eigenfunctions of T, corresponding to nonzero frequency have only poten-
tial and irrotational energy. These are the gravity modes.

So, the spectrum of T, consists of isolated eigenvalues with a limit point at
— oo and oo. All the nonzero eigenvalues have finite multiplicity and zero is an eigen-
value of infinite multiplicity. We assume that the addition of T, to T, perturbs the spec-
trum of T, so that the spectrum of T consists of isolated eigenvalues of finite multiplicity
with limit points at 0, oo, and —oo; This is proven in a special case and conjectured in gen-
eral in [18]. All modes now have both rotational and irrotational energy. We also note
that even if T is one-to-one, 7~ ! will not be a bounded operator.

IV. The Approximation of Unbounded Operators. We now study how two prop-
erties concerning the convergence of 7% to T imply the convergence of the spectral
properties of 7" to T. These properties for the ocean equations will be verified in
Section V.

We let H be a separable Hilbert space and T be a selfadjoint operator in H with a
pure point spectrum of eigenvalues of finite multiplicity. Let {\,};— _., be the eigen-
values of T listed according to multiplicity with corresponding orthonormal eigenvectors
{v, }. We also suppose T" to be a finite dimensional operator on a subspace D(T") C
such that T%: D(T") — D(T™), dim D(T"*) < %, and T" is selfadjoint in D(T™) when
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D(T") is given the inner product of H. Let {)\2}1,21 be the eigenvalues of T " with corre-

sponding orthonormal eigenvectors, {v’,: fli 1

The basic properties of spectral approximation of T by T" will be shown to
follow from the following two properties:

Property A. If v, is one of the above eigenvectors of T and A, # 0, then
3 v" € D(T™) such that

(“.1) oy = V"Il + IITvy, = Tkl < K,

where K = K(\;).
Property B. There exists K |, independent of 4 and N}, such that if vl is one of
the above eigenvectors of 7" with eigenvalue \?, then there exists v € D(T) such that

42 v = vl <K NElk, 1T = Tl <K (N2] + D
If x € H and N is a subspace of H, define
dist(x, N) = inf |Ix = y|l.
yeN
As in [10], given two closed subspaces M and N of H we define

(M, N) = sup  dist(x, N),  8(M, N) = max[s(M, N), (N, M)].

xEM,|Ix||=1

We also wish to define two quantities measuring the separation of eigenvalues.
We set

Q
4
I

inf{)\]_)\kl a]l ] Such that 7\]-7\k>0},
Gy = inf{X; —Nj| all j such that N\, —2; >0},
G, = min{G{, Gi}.

We assume that G, # 0 for A, # 0.
THEOREM 1. Suppose T and T" are as above and satisfy Property A and
Property B. Let N # 0 be an eigenvalue of T of multiplicity n. We may assume with-

out loss of generality that X\ = \; = - - + = \,, (reorder the eigenvalues, if necessary).
Let

A, = (jNF€ N\ = GT/2, N + GT /2] }.

Also set
V=span{v,,...,v,}, V"=span{v]|j€4,}.

Then there exists K = K(\) > 0 such that

() max{I\ -\ €4,} <KW,

() (v, V") <Kw.

Remarks. Tt follows from (ii) of Theorem 1 that for 4 sufficiently small dim V'
= dim V". Hence, the cardinality of the set 4, = n for A sufficiently small.
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In what follows, K will denote a positive constant which may depend on A,
but which is always independent of 4. We allow K to vary from equation to equation.
Note that it follows from Property A that to {v,, ..., v,} we can associate
{17’1’, e, 17;'} _C_D(T") such that

4.3) v, =0 + 1TV, - T*0 R <KW for m=1,...,n.

Hence, we can define a linear map, L,: V — D(T"), such that

=97 for m=1,...,n

th m

m

We can then deduce from (4.3) and the finite dimensionality of ¥ that
“44 o = Lol + ITv = T"L,vll < KW'l for v € V.

If M is a closed subspace of H{, we shall denote the orthogonal projection onto
M by m,,. We shall divide the proof of Theorem 1 into a series of lemmas.

ILEMMA 1. Let )\Z be an eigenvalue of T" and let ez = minjl)\]- - kﬁl. Then
there exists K, (independent of h and \{) such that

(4.5) e <K, QD + (ML + 2y
(1 =K\ Ir)

Furthermore, if k € Ay, then

(4.6) dist(v?, V) < Kh.

Remark. Note that it does not follow from (4.6) that §(V*, V) < Kh until
we verify that dim V" = dim V.
Proof. By Property B, there exists v € D(T) such that

@.7 o= vfll <K, iR, 1ITv = TR0 < K (1 + DEDA
Let v =Z;Z_,7;7;. Then

(4.8) Tv =3 v Ny,
7

and
Tv = (Tv~T"}) + Tho}
(4.9) = (Tv = T"}) + Nif —v) + Now

=(Tv- T"vﬁ) + AZ(Uz ~v) +Z.)\,l«177j Y;.
]

After subtracting (4.8) from (4.9), we obtain
(4.10) ]Z_O\j - AZ)’Y;U,- = (Tv~T"2) + \e @] - v).

Hence, it follows from the orthonormality of the family {v,} and (4.7) that
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(4.11) Z(?\ = NP2 < KRR + 17 + ().
Thus,
(4.12) (D)2 = (ek)22 < KIRZ[(NG+ 1)2 + (B4

The result (4.5) follows from (4.12) and the estimate
(4.13) oll > Il = K INEh =1 = K, I\ |,

We now assume that k € 4,,,i.e., A} € [\ = G7/2,\ + G} /2]. It follows
from (4.5) that for 4 sufficiently small

4.14) =N >Gy 2 for j#1,...,n
Hence, we can obtain from (4.11) that

(4.15) (G,/2) . 12 v <Z(>\ - N2y <Kn?.
] seeeshl

So, by (4.7) and (4.15)

h _
(4.16) v Z WY S Ik~ ol + L 2. )| <Kn QED.
seees
LemMA 2. 8(V, VP <KW
Proof. letm€ {1,...,n}. By (44)
4.17) Wy = Lpvmll + T, = T"Ly,, || < KK llv,, | = Kh'.

Since L,v,, € D(T"), we can expand L,v,, = E " Bvf. Then
(4.18) T"L v, =28 Nv]
and ]
T"L,v,, = (T"Ly,, —Tv,) + Ty,
(4.19) = (T"L,v,, = Tv,) + N, = Lyv,y,) + Ay,
= (T"Ly0p = To) + NV = LyVs) + 228, N}
i
So, after subtracting (4.19) from (4.18) we obtain

@20) B0 =N = (T7L,u,, = Tu,) + MLpby, = v,).
]

From (4.17), we obtain from (4.20) and the orthonormality of {v]’-‘},
@21) 2B\ =N < KR?'.
It follows from Lemma 1 that for 4 sufficiently small,

NP =X >Gyf2 for j& Ay

505
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Hence,
4.22) G,/2* X g < ZEN - N2 <Kh*".
IEZYH J
So, as in Lemma 1, we find from (4.17) and (4.22) that
(4.23) O = 2 BV <M = Lyvnfl + | X 807 || < K1
J€AR JEAR

Note that Zica hﬂiv;‘ = m,nLpv,,. Thus, we have proved that form =1,...,n,
v, = TynLyv, |l < Kh". Hence, by the finite dimensionality of V,

(4.24) lo=m,nLyvll <KWl for vE V. Q.ED.

LEMMA 3. 8(V, V*) <KW

Proof. If we can show that dim V" = dim V for h sufficiently small, then
(4.6) implies that 8(V", V) < Kh for h sufficiently small. The above result and the
bound 8(V, V*) < Kn" imply that §(V, V") < 1 for h sufficiently small.

However, if M and N are two closed subspaces of a Hilbert space H and 3(M, N)
< 1, then 8(M, N) = (N, M) = 5(M, N) (see [10, p. 200]). Hence, for h sufficiently
small §(V, V7) = 8(V, V") <Kn'.

Now it follows from Lemma 2 that §(V, V*) < 1 for h sufficiently small.

This implies that dim ¥ < dim V' for 4 sufficiently small. It remains to show that
dim V" <dim V.

We let nj, = dim V" and suppose that n, >n = dim V. We may assume with-
out loss of generality that 4, = {1, ..., n,} (renumber eigenvalues, if necessary).

By Lemma 1, for each j € 4, there exists w, €V such that

25 Iof = w,ll < K.

Since n,, > n, there exists {ag}7—, such that

n
(4.26) Wpp1 = 3, OWg.
s=1
So,
427 ™ o o 4+ (o <
(4.27) vﬁ+1=Zl:asvs t Onyr = Wai1) + 2 awg —v)).
1
Let r be such that |o,| = max{lag|ls = 1,...,n}. We may assume without loss of

generality that a, > 0.
If we take the inner product of (4.27) with v”, we obtain from the orthonor-
mality of {v/}
n
0= a,+ 0k + 2 la |0(h)

(4.28) -
= a, + O(h) + na,O(h).
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So,
(4.29) o, < Kh,
But since

1-Kh <|wll < 1+Kh for s=1, , h,

we see from (4.26) that
n

(4.30) 1=K <|w,ll <3 laglllwgll < na, (1 + Kh).
1

So for & sufficiently small
(@31) o> (=K
n(l +Kn) =

However, (4.31) contradicts (4.29). Q.E.D.

We now state the following easily proved lemma [6].

LeMMA 4. Let Y and Z be two subspaces of H such that dim Y = dim Z.
Let P: 'Y — Z be a linear operator such that

(4.32) Py =yl <271y, VyeY.
Then P is bijective and

(4.33) P~z <2l|zll, VzeZ

We wish to apply Lemma 4 to the map n,,L,: V — vh. 1t follows from
(4.24) that for & sufficiently small,

(4.34) 7y nLyv = vl < %lbll, Yo eV

Hence, it follows by (4.33) that by choosing a new orthonormal basis for V, we may
assume that there exist scalars {a,, };,—; such that

(4.35) TyhLpVp = @pvh, lo,|>% for m=1,..., n

LEMMA 5. max{|\ — )\;'| lj €EA,} <Kh

Proof. We follow the proof of Lemma 2. Let m € {1,...,n} and represent
Lyv,, = T Bf. Then, as in Lemma 2, we shall obtain ZE2(\' ~ \)* < Kh?".
However, 1t follows from (4.35) that |8,,| = |a,, | > %. Thus,

CAP (N, = N? < ZB O - 02 < Kh?

So, N, =N <KW forme {1,...,n} =4,. QED.
Lemmas 4 and 5 complete the proof of the theorem.

V. Analysis of the Finite Element Procedure. In this section, we shall show
that Property A and Property B hold for the operators T and T” defined in Section
3. We first prove a lemma concerning the regularity of the eigenfunctions of T.
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LEMMA 6. If v, = (a, B, C) is an eigenvector of T with eigenvalue \;, # 0,
then a, B, C € C“(S—Z).

Proof. 1t suffices to show that 4, B, C €[, ,H™ (). We show that B €
H**1(Q), a, C € H*(Q) implies that B € H**2(Q), ¢, C € H**1(Q). Since B €
H3(Q), a, C € H'(Q), this will prove the lemma by induction.

By the definition of 7, C € H}(Q) satisfies

G.1) M (VC, yw) = (if VB + ifk x VC, Vw)
for w € Hy(Q). Since A, # 0 is real and B € H¥*+1(Q), it follows by elliptic regu-

larity [11] that C € H*+1(Q).
Now ¢ satisfies

(2) i(Va, Yw) = (= \ VB + ifk x VB + if VC, Vw)
for w € H'(Q). So, since B, C € H**1(Q), it follows by elliptic regularity that a €
Hk +1 (9)

Also, B satisfies

(5.3) i(VB, Vz) = Mg, 2), z € H'(Q).

Since @ © H**1(Q), it follows that B € H**2(Q). Q.E.D.

THEOREM 2. Property A holds for the operators T, T" of Section 3.

Proof of Theorem 2. Let v, = (a, B, C). Then we shall show that (4.1) is
valid for some constant K(\,) if we take v% = Tp(rh)yVk where Tp(Th) is the orthog-
onal projection of H onto D(T") = M} x M} x M2. Now Ty = @y By, Cp)
satisfies

(5.42) (@a—a,2)=0, Vz€EM;,
(5.4b) (VB - By), v2) =0, VzeM,
(5.4¢) (V(C-Cy),vz) =0, VYzeM).

Now by Lemma 6, a € H"*1(Q) N L%(Q). Since g, is the L2(£2) projection of a
onto My, we have for 0 <s <r + 1 that

(5.53) lla = apll; 20y = xeh;l.{f;‘,”a —Xllp2¢q) < KhsIIaIIHs(Q).
It then follows from (3.8¢) that for x € My
lla = apllg1 gy <lla = Xlg1 gy + IX =~ axly1q)
<lla = Xllgg1 gy + KA~ X = @5l 2 g,
<lla = Xlig1 gy + Kh e = Xll 2.y + Kh™ e = ayll 2 g
Thus, we can obtain from (3.8¢) that forl <s<r+ 1,

(5.5b) la = apllg1 gy < KA~ Hlallys g
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We also have from Lemma 6 that B € H"*1(Q) N H2() and C € H"*1(Q)
N HY(S2). We obtain from (5.4b) and (5.4c) the result that for 1 <s <r + 1

(5.5¢)  IVB =Byl 2.q,y = Xiean; IV(B =0l < Kh*~Bll s g,

(55 NVE=Cllp2q) = inf 0 19(C =)l < KEHICllys g
So, by (5.5a), (5.5¢) and (5.5d) we see that
(5.6) llog — vpll < KA.
Let Tv, = (d, E, F) and T"" = (4, E,, Fy,).
By (5.4b), it follows that
@-dy,2)=(Na—dy2)=0, VzeME
Hence, by (5.4a), d), = \;a,. So, we obtain from (5.5a) that

5.7 ld = dyll 20y = Nelle = ayll 2y <KR'.

Now by the definition of T and T” we see that
(VE - Ey), vz) = (- iV(a = a,) + ifk x V(B ~ B,) + ifV(C - C}), Vz)
- for z € M,,.
Hence, if £ € M,
59 (VE - Ey,), v2) = (VE - E) = iV(a ~ a,) + ifk x V(B - B,)
+ifv(C-Cp,), vz) for z €M,.

If we take z = E — E, € M, in the above and use the Cauchy-Schwarz inequality, we

obtain
"V(E _Eh)"l,z(ﬂ) < |IV(E _E)||L2(Q) + ||V(a _ah)”LZ(n)
59

Hence, by the triangle equality and (5.5), if we let E approximate F, we can obtain

by (3.8a)
65.10) I9E = Epll 2 (g, < 21VE = Bl 2(q) + V@ = all 2,
5.

Note that since E = \,B, E € H'*1(Q).
We also have that

(VF - Fy), vz) = (- ifv(B - By) + ifk x V(C - Cp), Vz)
forz e M?,. A similar argument to the previous one shows that

(5.11) IV = Filly 2, < KA.
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Hence, the result (5.7), (5.10), and (5.11) shows that
(5.12) ITv, = TP < Kh'.

THEOREM 3. Property B holds for the operators T, T of Section 3.

Proof. In the following proof K, will denote a constant which is independent
of )\ﬁ and %, but which may vary from equation to equation.

Let v} = (a,, B, C,) and T"v} = (d,, E,, F,). We set B € H2(2) to be the
solution to

(5.13) ~AB = id,,.
Note that f,d, dS = 0 since d,, € M;}. By elliptic regularity,
1Blly2 () < Killdpll,2(q)-

We set v = (g, B, C},). Then v € D(T) and
(5.14) o = vEll = 1V(B = Bl 2(g)-

However, by (5.13)

(5.15) (V(B-By), Vz) =0 for z € M,.

So, since [[V%]l = 1,
IVB = BpllL2(q) < K AllBllg2 gy < Kihlldyll 2 g

(5.16) ; o
<K N lagll 2 gy < K RINGL

Thus, we have verified that [[v} = vll < K, hNE|.
Set Tv = (d, E, F). By (5.13),d = d,.
Now

(5.17) (V(E = E}), Vz) = i(fk x V(B = By,), Vz) for z € M,,.
By the argument used to obtain (5.9) from (5.8) we see that for £ € M h
IVEE = Epllp2(qy < IVE = )l 2(gy + K1 IVB = Bl 2(q)
(5.18) <IIVE = Bllp2.q) + K AlBlly2 g
< IVE = Bl 2.q) + Kihlldyll 2q)-

So, we must estimate how well we can approximate £ by members of M,, in the
H'() norm.
Now E satisfies

(5.19) (VE, Vz) = (- iVa,, + ifk x VB + ifVC,, Vz)

for z € H'(2). Note that in general E is only in H' ().
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Since C,, € MY, by (3.8d) there exists x € M,, such that

m’g=5+iah—ix. Then

(5.21) (VE, Vz) = (ifk x VB + iV(fCy = x) = i(V)Cy, V2)

forz € le(Q).
Let E € HL(Q) satisfy

(5.22) (Vg, Vz) = (ifk x VB = i(Vf)Cy, Vz) for z € H'(Q).

Then

523) (W —B), v2) = (VGC, - x), v2) for z € H'(S),

SO

(524  vE - §)||Lz(m <IVEC, = Wl 2(q) S K AV 2(q)-
From (5.22), we see that l%l € H*(Q) and

B2 0y < Ky OBlg2 ) + 1Clg1 )

< Kl("dh“L2(n,) + ||VChllL2(Q)).
Hence, there exists i € M,, such that

(5.25)

(5:26) |IE = Yl gy < K hlEll g2 gy < K14l 2 gy + 17Chl2(0y)-

«)
So, let £ = - ia, +ix + ¢. Then
E-E=@F-ig, +ix)-Ciay +ix+9)=F-E)+E - ).
Thus, - -
IE = Bllg gy < IE = Ellg gy + IE = ¥l g,
S K HIVCL2 gy + Kkl 2 gy + 1VCulL2 qy)-
We shall now estimate ||V(F' — F)| L2(q)- Since C = C,, F — F), satisfies

(5.27)

(5:28) (V(F = Fp), Vz) = (- if (B — B), Vz) for all z € Mj.
So, for F € M9,
IVE = Fl 20y < 200F =Fl 2gy + K119 = Bl 2q)

(5.29) -
<2)v@F - F)I

L2y + Kildall 2 q)-

Therefore, we must approximate F by an element of MJ in the H () norm. Now F
satisfies

(5.30) (VF, Vz) = (- ifVB + ifk x VC,, Vz) for z € H)\(Q).
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However, if z € C§ (),
(fk x VCy, Vz) =(Cy, V * (fk x V2))

(5.31)
= (C,Vf, k x Vz) = = (k x C,Vf, Vz).

So, (5.31) is satisfied for all z € H}(2). From (5.30) we obtain
(5.32) (VF, Vz) = (- if VB = iC,k x Vf, Vz) for z € H\(Q).
Therefore, F € H?*(R2) and
(6:33) IFly2(0) <K (IBly2 ) + ICullg1(qy) <K (dul 200y +1VCL 2 q)-
Hence, there exists ¥ € M9 such that
(5.34) 19 = F)l 2 < K Ayl 2 ) + 19Chiip2(q)-
It follows from (5.29) and (5.34) that
(5.35) IVEE = Fll 2 gy < Kih(ldpli 2 (qy + 1VCIL2 )
Therefore, since d = d;, = N\a,, by (5.27) and (5.35), we obtain
(5.36) ITv =T} I| <K, (A}l + Dh. QED.

VI. Improved Eigenvalue Estimates. In this section we get improved eigen-
value estimates for the approximation of T by T". These estimates cannot be deduced
from Property A and Property B, but require addition analysis of the operators T and
T" defined in Section III. Our technique is to represent the eigenvalues in terms of
Rayleigh quotients.

THEOREM 4. Let \ # 0 be an eigenvalue of T of multiplicity n. We may as-
sume as in Theorem 1 that \=\; = - - = N,. Also, set

Ay = {iN' € M= GT/2,\ + GT/2]}.
Then there exists K > 0, independent of h, such that
(6.1) N =N <Kh?" fordll jEA,.

Proof. As in the proof of Theorem 1, we may assume for 4 sufficiently small
that

(62) A, =1{1,...,n)
and
(6.3) TynLpVy, = o, o, |>% for m=1,...,n

Recall that in Section V we were able to verify Property A with L h = Tp(rhy- So,
we then have that Tynly, = TyhTp(rhy = Tyh-
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We shall estimate
(6.4) Nt = T V) T Ty Tyhbm)
K m (vm, Um> <7Tthm9 ﬂthm)

for m € 4, (recall from (6.3) that 7,0, = a,,v") by estimating

(Tv,,, v,,) (T"L,v,, Lyv,)

(6.5) ,
W, V) Ly, Ly,
and
66) (T"Lpv,,, Ly, _ Vi ST I

Lpv,,, Lyv,) My nUpys Ty nUy)

We first estimate the term (6.6). Represent as in Lemma 2,

©67) o
’ Lyv,, = Z‘; ﬂjv;‘.
]:
Then
n
(6.8) TynLpv, = 3 Bl
j=1

It follows from (4.22) and the orthonormality of the family {v}‘} that

— 2 2r
KL,v,,, Lyv, )=t pv, , T, 50, = Z B < Kh*'.
(6.9) hYm> LrVm vhVUm> "yhUm ]$Ah={l,...,n} j

Similarly, it follows from (4.21), (4.22) and the Cauchy-Schwarz inequality that
KT"L 0y L) = T P70, 100,01

(6.10) - T g << > @)‘/’( )3 (x;'m]?)'/‘ < KR

JEAR JEAR JEAp

Since [IL,v,,,1l = v, || = v, = Lyv,ll =1 - Kh" by (4.4) and |7 4L, || =
7 hop, Il = % by (6.3), it follows from (6.9) and (6.10) that

(T"L,v,,, Lyv,, (T 1V, TynVy)

(6.11) < Kn?'.

Ly, Lyvy,) Ty hV,,, Ty hUp,)
We now turn to the term (6.5) and again recall that L, = Tpcrhy Lot Uy, =

@@, B, C), Tv,, =\, = (d, E, F), Ly, = (a,, By, C,) and T"L,v,, = (d,, E,, F),).
Then
Wy V) = Lpvy,, Lpvy,) = (g, @) + (VB, VB) + (VC, VO)
(6.12) _
(a3, ay) = (VBy, VBy,) = (VCy, VCy).

In order to show that the left-hand side of (6.12) is O(h2"), we need the negative
norm estimates for the terms estimated in (5.5).
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For ¢ € L%(R2) and s > 0, we define the norms

ol ,—s = su ,
Pa s \pem(n?an(n) . )
1Y s =1
and )
lloll ;—s = sup (o, ¥).
"wlle(Q):l

Then it follows by well-known negative norm estimates for the L2 and H! projec-
tions [1, pp. 538—539] that

a — _s <Knt? for 0<s<r+1,0<t<r+1
II ahllH‘s < Kh "a"H'(n) or 0<s<r ,0<t<r ,
IB = Byl y—s <Kh~‘+‘llBIIHt(m for 0<s<r—-1,1<tr<r+1,

IC = Cpll—s < KRSTECN,, for 0<s<r—-1,1<t<r+1.
nllg HY(Q)

Note that if ¢ € H5(Q2) N L2(R2), then by (5.4a), (5.52), and (3.8¢c) for 0 <s<r+1,
l@—ay, )| = xen;‘fh l@—ay, o=l <lla- ayll 2 (o KNl s -

Hence, for 0 <s<r+1,0<t<r+1,
la = ayll,y—s< Khlla = ayll 2(q) < KA+ lallye .
By our definition of 4, as the L?(2) projection of a on M,
(@ a)—(ay, a,) = (@, a - a).

Since a € H'(2) and |la = a|l < Kh”llallH,(m, it follows that

Q)

6.13 a, a) — (a,, < Kh?"||all? < Kh?'.
(6.13) I(a, @) — (ay, a,)| < [ IIHrm) <

Similarly, using negative norm estimates on the H!(£2) projections, we obtain

|(vB, VB) = (VB,, VB))|
(6.14) = |(VB, V(B = Bp))| <IBligr+1q)lB = Bully-r+1(q)
< Kh2'I|B||§r+1(Q) < Kn?"

and
I(VC, VC) — (VCy,, VC)I

(6.15) 2P 2
= |(VC, V(C = C )| S KR*IICN 11 (q) < KR r

Hence, it follows from (6.13), (6.14), and (6.15) that

(6.16) KVyy»> U = L0y, Lyv, )| < KR,
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We now consider
(Tvp,, V) =<T"Lyv,,, Loy,
6.17
©ID _ @ &) -, a,) + (VE, 9B) ~ (VE,, UB,) + (VE, VC) = (VFy, VCy).

It follows from (3.6a) and (3.9a) that
d, a) = (dy, ay) = VB, Va) — i(VBy, Vay).
Now by (5.4b) and the negative norm estimate for a — a,,,

(6.18) (VB, Va) = (VBy, Vay) = (VB, V(a = )

= — (AB, a — a,,) < Kn*"|BI| < Kh?".

Hr+ 1(9)"0"Hr+ l(Q)
So,

(6.19) Id, @) — (dp, ap)l < Kn?".

Continuing to the next term in (6.17),

; (VE, VB) = (VE,, VB,) = (V(E — E}), VB)
20
©29) = (V(E = Ep), V(B = By)) + (V(E — Ep), VB)).

It follows from (5.5c) and (5.10) that
I(V(E = Ep), V(B = By))| < Kh?*".
Now from (3.6b) and (3.9b)
(V(E - Ey), VBy) = — i(V(a - ay), VBp)

+i(fk x V(B = By), VBy) + i(f V(C ~ Cp), VB,).
However, by (5.5) and (6.18),

(6.21)

(V(@ - ap), VB,) = (V@ - a,), V(B, — B)) + (V(a — a,), VB),
I(V(a = a,), V(B, — B))| < Kh?",
I(V(a - a,,), VB)| < Kh?".
Also
(fk x V(B = By), VB,)
= (fk x V(B = By), V(B = B)) + (fk x V(B — By), VB),
I(fk x V(B - By), V(B, — B))| < Kh?".

(6.22)

Observe that

(6.23) (fk x V(B = By), VB) = — (V(B ~ By,), fk x VB).
Now define ¢ € HL() to be the solution to

Ap=—V - -(fk x VB), x€Q,
(6.24) 3y

%=(-kaVB)'n, x €912,
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where 7 is the exterior normal to the boundary of Q. Then by elliptic regularity,
¢ € H'T1(Q) and

(6.25) IISD"H""I(SZ) < K"B"Hr+l(g)'

Furthermore, for z € M},
= (V(B - By), fk x VB) = (V(B = B,), V) = (V(B ~ By), V(¢ — 2))-
Thus, by (3.8a)

I(Fk x V@B = By), VB) < Kh¥"IBll gyt (g Wellpgrs1 )

< KRB 41y < KR

(6.26)

We now bound the last term in (6.21). We have by (5.5) and the negative norm
estimates for C — C,

(fv(C = Cp), VBy) = (fV(C = Cy), V(B — B)) + (fV(C ~ Cp), VB),
(6.27) I(f V(C = Cp), V(By, = B)| < KR?",
IFV(C = Cp), VB) = I(C = Cy, V * fYB)| < Kh?".
Hence, from (6.20)—(6.27) we obtain
(628) \(VE, VB) = (VE,,, VB,)| < Kn?".
Now by (5.4c)
6.29) (VF, vC) = (VFy,, VCp,) = (V(F = F), VC)
= (V(F — Fp), V(C = C) + (V(F — Fy), VCp).
It follows from (5.11) and (5.5d) that
(6.30) I(V(F = Fy), V(C = Cp)| < KR?".

By (3.6¢) and (3.9c¢),

(6.31) (V(F = Fy), VC,) = —i(f V(B — By), VC},) + i(fk x V(C = Cp), V().

Now by (5.5)
632) (f V(B = By), VCy) = (f V(B = B), V(C, = C)) + (fV(B = B,), VC),
’ (PO - B,), V(C, ~ O))| < KH?".

Also, by an adjoint argument similar to that of (6.24)—(6.26) it follows that
I(f V(B = By), VO < Kn?".
Turning to the final term in (6.31), we have
(fk x V(C = Cp), VCp)

6.33
(6.33) =(fk x V(C - Cp), V(C, = C) + (fk x V(C = C},), VC)
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and by (5.5)
Ik x V(C = Cy), V(C, — C))I < Kh?".

Also, since C € Hy(2) and by the negative norm estimates for C — G,

634) Ik x V(C = Cp), VO = [(V(C - Cp), fk x VO)|

=|(C—-Cy, Vv - (fk x VO))| < Kh?".
Hence, it follows from (6.29)—(6.34) that

(6.35) I(VF, VC) = (VF,, VC)| < Kh?',
Thus, from (6.19), (6.28) and (6.35) we obtain
(6.36) KTv,,,, v,,) = T"Lyv,,, Ly, < Kh?'.

Hence, it follows from (6.16) and (6.36) that
(Tv,,, v, (T"Lyv,,, Ly,

W,,, v, Ly, Lyv,,)

< Kh?®'. QED.

VII. Remarks. It is easily seen that the estimates given here are uniform for
parts of the spectrum of 7 in finite intervals not containing 0. However, the bounds
degenerate for eigenvalues whose absolute value approaches 0 and o. This can be
understood by considering the operator T,. The eigenspace of zero frequency,
{(0,0, Y)IY € H{ ()}, does not contain only smooth functions (in C*(Q)) and by
(3.10) it is seen that the eigenspaces for high frequencies contain spatially highly
oscillatory functions. Since T is a bounded perturbation of T,, we can thus expect
“rough” eigenfunctions for low and high frequencies which can only be resolved for
small . Also, note that since 0 is a limit point of eigenvalues of T, the gap between
eigenvalues is small near 0.

It is clear that the first Galerkin method described in Section II will not satisfy
Property A and Property B due to the “spectrum bending”. Thus, one could not use
that method to approximate the spectrum in some finite interval.

That there is no spectrum bending for the proposed method can be seen as fol-
lows. We define the operator T/': D(T,) — D(T},) by T"a,, By, Cp) = (dy, — iay,
0) where (d,, z) = i(VBy,, Vz) for z € M. Then, if \, is a nonzero eigenvalue of
T, we see by eliminating B, from the eigenvalue equations that

(7.1) A% @, z) = (Va,, vz) for z € My.

Thus, (7.1) is a Rayleigh-Ritz approximation to (3.10). Recall that the Rayleigh-Ritz
eigenvalues are larger in magnitude than their corresponding differential eigenvalues.
So, we see in the absence of the Coriolis terms why our proposed method does not
exhibit spectrum bending and why it yields good spectral approximation results.

Set T' = T" ~ TP. Define

0 750l
2N, = sup ——.
vE0 ol



518 MITCHELL LUSKIN

Then the above properties are shared by the approximation of T by 7" since 7 =
T, + T,, where T, is a bounded linear operator in H, and Th = Tl” + T2” where
IT71l,, is bounded independently of .

We have seen that the use of the Stokes-Helmholtz potentials as dependent
variables in place of the horizontal transport vector leads to an improved procedure
for calculating normal modes. The Stokes-Helmholtz potentials also have the advan-
tage of being “coordinate free”. In addition, since by (3.3)

Jomras = [ _veras+ [ ivuras,

by determining whether the greater part of the kinetic energy is “rotational” or “irro-
tational” one can classify normal modes as vorticity modes or gravity modes [16].
If  is not simply connected and 0K has a finite number of connected compo-

nents {3Q};_,, then we have to allow ¥ in (3.3) to have arbitrary constant values

{¢;}i—, on the components, i.e.,
Y(x) =c¢; forx €0Q;.

We then have to modify the definition of 7% by replacing Mg with the space
My, = {W € M,, | there exists constants {c;}_, such that W(x) = ¢, for x € 0%;}.

If we assume optimal order approximation properties for My, then all of the previous
results remain valid in this case.
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