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An Attempt to Avoid Exact Jacobian and
Nonlinear Equations in the Numerical Solution
of Stiff Differential Equations

By Trond Steihaug and Arne Wolfbrandt

Abstract. A class of linear implicit methods for numerical solution of stiff ODE’s is
presented. These require only occasional calculation of the Jacobian matrix while
maintaining stability. Especially, an effective second order stable algorithm with
automatic stepsize control is designed and tested.

1. Introduction. During the last decade there has been a considerable amount of
research on the numerical integration of stiff systems of ODE’s. This work indicates
that all efficient integration methods for such problems are implicit in character. This
is due to the fact that only such methods have the required stability properties. Thus,
the practical problem is not the stability restrictions, but the implicitness the need to
avoid these give rise to. The relevant question is now, what is the cheapest type of
implicitness we have to require.

Mainly, two different approaches to the implicitness can be found in the litera-
ture.

The first approach involves the numerical solution of nonlinear algebraic equations
by the simplified Newton iteration. The simplification consists of treating the iteration
matrix as piecewise constant (which means the use of an approximate Jacobian matrix).
Examples of such an approach are semi-implicit Runge-Kutta formulas in Ngrsett [4]
and the formulas based on backward-differences in Gear [3].

Among recent methods proposed for numerical solution of stiff ODE’s are the
class of modified Rosenbrock methods introduced in Wolfbrandt [6]. When solving
the system of equations

(1-1) y’=f(,)))’ y(t0)=y0,
the formulas characterizing these methods are the following:

v
Y1 =Y th Z b;k;,

i=1

' i—1 i
k; =f<yo +h Y a,.,.k,.> +hiy Y dyk;,  i=1,2,...,»,
j=1 j=1

where J, denotes the Jacobian matrix f(y)/0y.
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This is an example of the other approach to handle the implicitness. These meth-
ods maintain computational efficiency, since if such a method is applied to an
m-dimensional system of stiff differential equations, then » uncoupled systems of m
linear equations (with the same matrix if d;; = d, all i) will only have to be solved at
each integration step. However, they suffer from the practical disadvantage of comput-
ing the Jacobian 9f/dy at y = y,,.

A natural question is now, is it possible to replace J;, in the formulas above with
an arbitrary real square matrix 4 (usually approximating J,)? An affirmative answer
to this question will be given in this paper. In fact, the W-method introduced in the
next section, combines the good things of the two approaches mentioned above.

2. The W-Methods. We consider numerical integration of system (1.1) using a
class of methods of the form

v
Yi=Yoth Z bik;,

i=1

i—1 i—1
MMJ%Am=fQO+hZaMO+h4ZdMP i=1,2,...,
=1 =1

where W(h, d;;, A) =1 — hd;A, and A is a real square matrix such that W(h, d;;, A4) is
invertible. The methods above will be called v-stage W-methods.

Remark. We note that if we choose A =0, or A =J,, then the W-methods re-
duce to the classical explicit Runge-Kutta methods and the modified Rosenbrock meth-
ods, respectively.

3. Order Conditions. In this section we will consider the order conditions for
the W-methods.

We confine our attention first to the case A = 0. Thus, the set of order condi-
tions for a W-method includes those for a classical Runge-Kutta method. This demon-
strates clearly the relation between these methods.

Next we turn to the case A = J,, corresponding to the modified Rosenbrock
methods. The order conditions for these methods can originally be found in Wolf-
brandt [6].

We combine these two sets of order conditions and further observe that the
matrices A and J, do not generally commutate. The order conditions for the W-meth-
ods are then readily obtainable. For illustration, the eight conditions for third order
accuracy are given in Table I together with the associated ‘elementary differentials’ and
their orders. To simplify these conditions, we have introduced the following notations:

i—1
M,-=Zaif, i=2,3,...,p
j=1

i
Ny=Ydy, i=1,2,..,v
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TABLE I

Equations of conditions for a v-stage W-method

'elementary Lo
order differential’ condition
v
1 f z bi =1
=1
v
2 f'r -,:52 biMi =1/2
v
2 AF 7;51 bV, =0
v -1
3 r'r's L b, I a,M. =1/6
i=2 * gz W
v -1
3 fIAf L b, I a.N.=0
=2 J=1 g
v 7
3 Af'F L b. I d.M.=0
i=2 © g=2 W
v Z
3 AAF I b. £ d-.N,=0
i=2. F g1 W
e 2
3 rff I b.M.=1/3
jm2 T2

We shall now give an upper bound for the maximum order of a W-method. In
preparation for this the following result in Wolfbrandt [7] is necessary. Let I, =
{polynomials of degree < r} and

Ry, () = N, w)/D,,(u), where N,€ll,and D, €11,,.

LEMMA 1. The maximum attainable order of a rational approximation R} (u) to
exp(u) with only real poles is m + 1. O

THEOREM 2. The maximum order for a v-stage W-method is at most v + 1.

Proof. First, it is clear that a W-method produces a rational approximation to
exp(u) with only real poles when applied to the scalar equation y' = Ay.
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Therefore, since the maximum order is attained when A =J,, the theorem fol-
lows from Lemma 1. 0O

We recall from Section 1 that it is desirable from a practical point of view to
choose d;; = d, all i. The following surprising result, which is proved in Nérsett and
Wolfbrandt [5], also shows that this choice is optimal for 4 =J, in the sense of min-
imizing the absolute value of the error constant for a linear problem.

LEMMA 3. Let R}, (u) be a rational approximation to exp(u) of order m + 1
with only real poles, i.e.

R™ (u) — exp(u) = Cu™+? + O™ *?3).

Then the absolute value of the error constant C attains its local minimum values when
all the poles are equal. [

The main conclusion of this discussion is that the ‘best’ we can do is choose
d;; = d, all i. This is also confirmed in Wolfbrandt [6] by computation of acceptability
for the rational approximations mentioned in Lemma 3.

4. Explicit Formulas. Guided by the conclusions in Section 3 we will only con-
sider W-methods with d;; = d, all i. Moreover, we temporarily regard d as fixed.

To match all terms up to second order for a 2-stage W-method, the coefficients
of the formula (with one free parameter) must satisfy the following set of equations:

by +b, =1, bya, =1/2, b,d, =-d.
A natural way is to choose the free parameter, so that the method reduces to the
improved Euler method when 4 =0, i.e.
h
Y1 =Yo + Z (kl + 3k2)a W(h, d, A)kl = f(yo),

W, d, AYk, = f<yo +2 hk1> - % haak,,

where W(h, d, A) = I — hdA. The local truncation error T for this method may be
written as

3
T =" (fFf 3L 'AF + AFT) + 642 AAfY(vg) + O,

We easily see that it is impossible to construct a third order 3-stage W-method. How-
ever, we can obtain a second order 3-stage formula with the local truncation error of
the form

T =5 W (ve) + 0.

It is interesting to note that the matrix A does not occur in the h3-term.

For a 4-stage method, we can of course match up to and including h3-terms. In
fact, the parameters can be chosen so that the method only requires three function
evaluations.
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Remark. We observe that a pstage W-method with less than v different function
evaluations can be seen as a method with powers of W(h, d, 4) in its formula.

We also note that a 4-stage W-method can be based on the classical fourth order
Runge-Kutta method. In order to implement a W-method with variable stepsize it is
necessary to compute the local truncation error. A device, proposed by England [1],
allows us to estimate this error. The basic idea is to add extra stages to the method so
that the new method is a more accurate one.

We consider the 2-stage W-method based on the improved Euler method. A third
order estimate of the local truncation error is then of the form

h
T =3 (ky = Sky + Sky k) + om®),

where the extra stages k5 and k, satisfy
Wi, d, Ay = f(y,), Wk, d, Ak, =f<y1 + %hk3> + hdA (% k, + 6k2>.

We adopt the notation (2, 4)-W for the above method with built-in error estimate. In
a sequence of accepted integration steps of equal size this method will require only
two function evaluations per step.

Our final task in this section is to extend (2, 4)-W to solve the nonautonomous
system ' = f(y, 1), y(t,) = yo- We extend by appending ¢, + ha; to the function
evaluation in each stage k;, i = 1, 2, 3, and 4. The corresponding set of order condi-
tions in Table I has to be supplemented with the following ‘nonautonomous’ one

(f) bya; +bya, =1/2,
(f) cia, +cya, +cyay +cha, =1/2,
(fyr) 1@ +cya5 + c3a} + cuad = 1/3,
() €28510) Fc3(a3,a) +a3,8,) +¢4(a,8, + 500, +4585) = 1/6,
(Af) cydyay +cy(dyay +dsya,y) +cg(dgyay +dgpa, +dgye3) =—df2,
(fytf) c,Mya, +cMiay +c My, = 1/3,

where the associated ‘elementary differentials’ are enclosed in parentheses. Thus, it is
convenient to choose ¢, = 0 and ¢; = M,, i = 2, 3, and 4.

5. Stability. A(a)-stability, L(a)-stability (or stiff stability) and its weaker associ-
ate strong stability, have become generally accepted as appropriate properties of numer-
ical methods suitable for solving stiff ODE’s.

Definition. A numerical method is said to be A(«)-stable, € (0, 7/2), if all its
solutions {y,,} tend to zero, as m — oo, when the method is applied with fixed posi-
tive 22 to the test equation



526 TROND STEIHAUG AND ARNE WOLFBRANDT

(1.2) Y =N,
where S(a) = {z € C: z # 0, |arg(~2)| < a}.
A numerical method is said to be A-stable (A(0)-stable), if it is A(c)-stable for
all (some) a € (0, n/2).*
Definition. An A(a)-stable method, a € (0, 7/2), is said to be strongly stable at
infinity if all its solutions {y, }, when the method is applied with fixed positive 4 to
the test equation (1.2), satisfy

A € S(0),

lim |y, /Y, <c<1 when X € S(w.

IN|—>oe0

If the real constant c is equal to zero, then the method is called L(a)-stable or stiffly
stable. A numerical method is said to be L-stable (L(0)-stable), if it is L(a)-stable for
all (some) a € (0, 7/2).

We shall now discuss stability properties of the W-methods. For simplicity, we
assume that the matrices 4 and J, commutate and that they are diagonalizable. Then
the archetypical initial value problem is that in (1.2).

As mentioned before, a W-method results in a rational approximation to the
exponential function with only real poles when applied to (1.2). Therefore, we first
present in Table II some of the stability results for the modified Rosenbrock methods,
i.e. the case 4 =J, given in Wolfbrandt [6]. We have listed in this table acceptability
angles and error constants for rational approximations.

R,’j‘l(u) =N,_,@)/D,(u), where D,(u) = (u —v)",

to exp(u) of maximum order (which means that v is a zero to the Laguerre polynomial
of degree v and d;; = 1/7). The entries in the table represent the pair (acceptability
angle; error constant) corresponding to *y,(,"), the kth zero of the Laguerre polynomial
of degree v (the zeros are assumed to be ordered in increasing value).

TABLE II

L-acceptability angles and error constants

, 1 2 3 4
\Y
1 (m/2;50E-2)
(T/2;14E-1) (m/2;40E-3)
(1.56;6LE-1) (1/2;26E-3) (1.32;39E-4)
(1.54;42E+0) (n/2;27E-3) (1.56;11E-4) (-536E-5)

It would be nice to be able to derive the stability properties also for the case A differ-
ent from J,. We shall content ourselves to discuss the W-method based on the
improved Euler method.

* ¥, is an approximation to y(t,,), where t,, =t3 + mh, m=0,1, ....
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We consider the scalar equation (1.2). Let the eigenvalue of A be denoted by a.
Then the following constraints for this method yield

A(0)-stable if and only if |da| = |N/4 — 1/(2h),
L(0)-stable if and only if |da| = (1 £ +/1/2)IAl.

It seems possible to handle these stability requirements by examining the local trunca-
tion error. Numerical experience shows that this works well for problems with transient
to smooth components, while perhaps a more sophisticated control is necessary for
problems with smooth to transient components.

6. A Comparison. The equations defining a semi-implicit Runge-Kutta method
are
v
Yy =Yo T h 2 bk

i=1

-1
k; =f<yo +h ) ak +hdiiki>’ i=1,2,...,v
j=1

This method, as well as a W-method with 4 =J,, produces a rational approximation to
exp(h\) with only real poles when applied to the test equation y' = Ay. In view of
this relation a brief comparison between these methods will be done in this section.
The semi-implicit Runge-Kutta methods are implicit in character involving solu-
tion of » uncoupled nonlinear equations of the form
i—1

F(k) =k —f<y0 +hY ayk + hd,.,.k,> =0, i=1,2,...,
j=1

by the simplified Newton iteration

i—1 ]
Wk, dy;, J k™ = f<y0 +hY gk + hd,.,.k,("'—D) — hdyJ im0,
j=1

m=1,2,... Miandi=1,2,...,p,
where k§°) is some suitable starting value and M; is the maximum number of iterations
required.

It is a common practice to employ a linear combination of known iterated values
to provide k,(o) which we write as

0 _ 5 % o
k; ]; a, kil
Thus, the modified Rosenbrock method in Wolfbrandt [6] can be regarded as a linear-
ization of a semi-implicit Runge-Kutta method with the above choice of k,(.o). More-
over, replacing J,, by A4 in the iteration formula above we obtain a W-method.

The traditional motivation behind the choice of the parameters in the expression
for k,(o) is based on obtaining a good initial approximation to k;. A somewhat more
attractive approach, in our opinion, is to avoid the necessity to iterate. This will be
illustrated in the following example.
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Example. We consider the generalized midpoint-rule, alias the §-method

Y1 =Yo thk,  k=f(y, + hok).

After two iterations it yields
Wh, 6, Jok, =f(»o), W, 0, Tk, =f(y, + hOk,) - hoJ \k

where k,, = kK™ m =1 and 2 (kgo) =0). Puttingy, =y, + hk,, we obtain a 2-
stage W-method.

We recall from Section 3 that the order of ¥ is less than 2 for 6 # 1/2, other-
wise 2.

First, we will assume that an exact Jacobian matrix J, is used in the simplified
Newton iteration. Then there is no gain in stability to iterate. Moreover, numerical
experiments indicate that only a small number of iterations are required in the §-meth-
od. We easily verify that the dominating local truncation error terms for this method
are independent of the number of iterations. In fact, the local truncation error can be
expressed as

T= h2<e - -;-) (e + h3{<02 - %) i+ <02 - %) f’f’f}(yo) + o).

This shows again that it becomes no great benefit in making several iterations when an
exact Jacobian matrix J,, is used.

We observe that the W-method based on the improved Euler method has a local
truncation error of the form

r= ”3<% —d+ d2> Fff(yo) + O*) when 4 =J,.

In the asymptotic region many stiff systems behave as linear systems. Therefore, an
approximation to the Jacobian matrix J,, in the simplified Newton iteration can be
used for a large number of integration steps. Accordingly, we next assume that Jy is
replaced by an approximation 4 and consider the effect of iterations in the §-method.
As noted previously, this method with M iterations may be regarded as an M-stage W-
method withaij = —d,-]- =0,forj=i-1,i=1,2,... ,Mand b;=1fori=M,
otherwise zero. This method will in the following be called the degenerated W-method.

In contrast to the case of exact Jacobian the dominating local truncation error
constants are now dependent of the first two iterations, but only of these. The error
constants together with the associated ‘elementary differentials’ and the number of
iterations are listed in Table III below.

From this important result we conclude that iteration is one way to eliminate
the influence on accuracy of an approximate Jacobian matrix. However, the special
3-stage W-method in Section 4 has order 2 for all d and share the above-mentioned
properties of the degenerated 3-stage method too.

The changes due to iterations of the 4(0)-stability contour for the §-method is
illustrated in Figures 6.1—6.2 for § = 1/2 (maximum order) and 6 = 1 (L-stability),
respectively. In these figures the convergence constraint is also drawn. To
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interpret the figures we note that the stability regions are to the left of the contours.

TaBLE III

Error constants

m f'f Af f'f'f Af'f | fAf | AAf fff
1 -2 8 -1/6 0 o | 6% | e%1/3
2 | e-12| o -1/6 o2 82 | -62 | 0%-1/3
3 | e-12] o | e%ise 0 0 o | 6?13
w | 8-1/2] 0 62-1/6 0 0 o | e%-1/3

From these figures we conclude that ‘convergence’ is stronger (weaker) than ‘stability’
for 8 =1 (1/2). Further, the ‘stability’ region for the 2-stage W-method based on the
improved Euler method contains the regions in the figures ford > 1/2.

-a -a m=2 (conv)
/ _ A _ m=7
N e b e s
1.5} 1.5 } m=3
m=3 m=1
m=5
m=7
1.0p m=2 (conv) r.or
0.51 0.5 F
i 3 A A = -2 ! } : >—)\
1 2 3 4 5 1 2 3 4 5
FIGURE 6.1 FIGURE 6.2
A(0)-stability contour A(O)-stability contour

Finally, for the §-method with 6 = 1 it is possible to iterate with an approxi-
mate Jacobian and yet obtain L-stability, while this is not the case for a W-method.

7. Numerical Examples. The intention of this section is to present an algorithm
for solving stiff ODE’s. The underlying method is the (2, 4)-W-method with d = 1 —
V172, ie.d = 1/4§?) (see Table II). The design of such an algorithm is a very com-
plex work involving numerous choices in equation solver, error estimation and stepsize
control as well as features of detailed programming. We have not attempted to con-
struct a complete algorithm. However, we have concentrated on some of the difficul-
ties associated with the stepsize control and the reevaluation of the matrix 4.
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The linear systems in the method have the form

W(h, d, Ak = f, where W(h, d, A) =1 — dhA.

These are solved by Gaussian elimination, i.e. LU-decomposition and back-substitution.
Therefore, during the computation the W-matrix is kept as long as possible and is re-
evaluated only after a failure of a specified accuracy requirement for the local trunca-
tion error.

The purpose of the control of stepsize is to integrate as efficiently as possible
keeping the error under a prescribed level. The optimal stepsize is not available as it
depends on the entire solution. Therefore, the stepsize is based on the local truncation
error. The algorithm tests that the error-per-step is less than a tolerance requested. The
strategy for optimal stepsize is calculated as shown below.

We denote the norm of the error estimate with current stepsize by E(k). Then
the optimal stepsize is ph, p > 0, satisfying E(ph) = 7, where 7 is the error tolerance.
Since the method is of order 2, then p = (7/E(h))'/3. This strategy is critical to the
efficiency, since changes in stepsize will lead to extra LU-decompositions, Jacobian
evaluations and function evaluations. Therefore, an increase in the stepsize should
only be attempted unless p > g > 1. Also, when changing stepsize upward or down-
ward, the new value would be set at rh, for some r < p. Finally, before increasing the
stepsize it is very economical to retain the old value one step further without making
any error estimation.

The strategy we have adopted is based on a combination of heuristics and numer-
ical experiments. The matrix W is recalculated only when the stepsize is changed or
when the matrix A4 is altered and set equal to the Jacobian matrix. The latter happens
only when E(h) > 0.77 and A # J,. The table below gives the appropriate actions.

TABLE IV

Values of the parameter r

Error A=d 0 AEJ 0

E(h)<t

max{1,0.9[p1}
Accepted step

{1,0.9[p1}
Accepted step

T<E(h)<2t

0.85p
Rejected step

1
Accepted step

E(h)>21

0.85p
Rejected step

0.80p
Rejected step

In order to avoid rejection of steps and for stability reasons we have also found it con-
venient to change the stepsize to 0.9ph when 0.87 < E(h) < 27 in the first step with
an ‘old’ Jacobian matrix. Numerical results for the (2, 4)-W-method on four problems
are given below. For comparison we have also included results from Nersett [4],
Enright, Hull and Lindberg [2].
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Problem 1.

¥} =001 - (1 +(, +1000)(y, + D)0.01 +y, +y,), »,(0)=0,
¥, =001~ (1 +¥2)(0.01 +y, +y,), »,(00=0, € [0,100].

A relative error measure based on a weighted Euclidean norm is used with a vector of
weights made up of the numerically greatest solution points so far encountered for

each component.

TABLE V
Number of function evaluations, Jacobian evaluations
and steps for Problem 1

T EhlelA3 GEAR IRKSUBY
1E-3 892/50/66 181/20/69 185/12/30
1E-5 1908/97/144 380/36/136 367/25/54

1 SIRSPN (2,4)-w
1E-3 250/40/- 92/1L4/45
1E-5 568/39/- 378/34/181

Problem 2.

y'=UBUy + Uw, y(0)=[0,-2,-1,-1]7,

where

-10* 10* o0 0
-10* -10* 0 0

0 0o -1 0
0 0 o -1073

U is the unitary matrix with diagonal elements equal to —1/2 and all other elements
equal to 1/2,

w= [(zf —z%)/Z, Z,2,, zg, zﬁ] T z=Uy, t€ [0, 100].

The same relative error measure as in Problem 1 is used.
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TABLE VI

Number of function evaluations and Jacobian evaluations for Problem 2

T GEAR IMPEX2 IRKSUB4 | SIRSPN | (2,4)-W

1E-3 581/40 548/22 479723 334726 | 190/29

1E-5 959/45 1032/24 | 1095/34 | 1202/27| 694/33

Problem 3.
¥, =-0.04y, +0.01y,y;,, », 0 =1,
¥y =400y, — 100y,p5 = 30003,  »,(0) =0,

y'3 = 30y22’, y3(0)=0, t€][0,40].

For this problem the error tolerance 7 = 7(¢) is defined by 7(r) = 6he/(t — t,), where
€ is the global tolerance and ¢ — ¢, is the distance from the initial point to the end of
the current step (see Enright et al. [2]). Moreover, the maximum norm is used.

TABLE VII

Number of function evaluations, Jacobian evaluations,
LU-decompositions, and steps for Problem 3

€ GEAR SDBASIC TRAPEX

1E-2 131/14/14/55 241/176/92/28 237/29/29/11
€ GENRK IMPRK (2,b4)-w

1E-2 99/9/27/9 387/89/89/11 91/15/15/ 41

Problem 4. This arises from solving parabolic partial differential equations. Con-

sider the parabolic equation
w2 [ (ow\aw\ _
ar  ox \"\ax ) ox

in the region [0, 1] x [0, ] subject to the initial condition u(x, 0) = uy(x), x €

(0, 1) and the boundary condition u(0, £) = u(1,£) = 0, ¢ > 0. Let a(z) = vz? + 1,
v = 0and uy, = 1. Finite element approximation in the space variable x results in the
semidiscrete Galerkin approximation, which is a stiff system of N ODE’s of the form
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BZ—:I+K(U)U=O, £>0, UO)=U,

where B and Kare the mass- and stiffness-finite element matrices, respectively. Here we
use linear splines with equidistant knots. An appropriate norm is the weighted Euclidean
norm with all weights equal to Ax, where Ax = 1/(N + 1).

Numerical results for the (2, 4)-W-method on this problem are shown in Table
VIII and Table IX for » = O (which corresponds to a linear problem) and v = 1, re-
spectively. For illustration we have presented the numerical solution in the following
adequate points (x, ¢): x = 0.1, 0.3 and ¢ = 0.01, 1, 0.

Remark. The number of LU-decompositions and the number of Jacobian evalua-
tions is nearly identical for the (2, 4)-W-method on the problems given. In addition,
no extra function evaluations are spent on the stepsize control. The only price to be
paid for the stepsize control is the cost of one back-substitution.

8. Conclusions. The aim was to introduce a new class of linear implicit methods
without exact Jacobian for solving stiff ODE’s. We do not claim to have found an
ideal algorithm for such problems, but the theoretical and numerical results achieved for

the introduced (2, 4)-W-method merit a further investigation of higher order W-methods.
TaBLE VIII

Results for (2, 4)-W on Problem 4 with v =0

Numerical Solution

t=0.01 t=1.0
Ax T z=0.1 x=0.3 x=0.1 x=0.3
1/10 | 1E-3 | 0.4910 0.9646 0.11ME-4 0.2991E-4
1720 1E-3 | 0.5100 0.9656 0.1364E-4 0.3570E-4
1E-5 | 0.5101 0.9653 0.2163E-4 0.566LE-4
1740 1E-5 | 0.5167 0.9655 0.2237E-4 0.5857E-4
/ 1E-6 | 0.5185 0.9662 0.2126E-4 0.5565E-4

Exact Solution

0.5187 0.9669 .2035E-4 0.5328E-4

o

Number of Function Evaluations, Jacobian Evaluation and Steps

Ax T

1/10 | 1E-3 | 18/3/8 61/10/30

1/20 1E-3 | 25/4/12, 71/11/25
1E-5 | 100/5/49 280/14/139

b0 | 1E-S 136/8/67 318/17/158
1E-6 | 282/8/140 658/17/328
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TaBLE IX
Results for (2, 4)-W on Problem 4 with v = 1

Numerical Solution

t=0.01 t=1.0
Ax T z=0.1 x=0.3 x=0.1 x=0.3
1/10 | 1E-3 0.3023 0.9508 0.6531E-5 0.1662E-4
1720 1E-3 0.3034 0.8066 0.4835E-5 0.1267E-4
1E-5 0.3020 0.8041 0.1503E-4 0.3935E-4
1740 1E-5 0.3023 0.8041 0.1344E-4 0.3518E-4
1E-6 0.3026 0.8045 0.1266E-4 0.3315E-4

Number of Function Evaluations, Jacobian evaluations and Steps

Az T t=0.01 t=1.0

1/10 { 1E-3 38/6/18 85/14/42

1720 | 1E-3 56/10/27 99/17/49
1E-5 264/14/130 476/23/236

1740 1E-5 380/20/186 610/29/301
1E-6 851/17/423 1309/27/652
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