MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 146
APRIL 1979, PAGES 557-561

On the Efficient Implementation of Implicit
Runge-Kutta Methods

By J. M. Varah

Abstract. Extending some recent ideas of Butcher, we show how one can efficiently
implement general implicit Runge-Kutta methods, including those based on Gaussian
quadrature formulas which are particularly useful for stiff equations. With this im-
plementation, it appears that these methods are more efficient than the recently pro-
posed semiexplicit methods and their variants.

L. Introduction. Consider the initial value problem

(1.1) Y =1, v@ =y,
where y is an m-vector. Implicit Runge-Klitta methods for the numerical solution of
(1.1), first proposed by Butcher [1964], have the form

s s
(12) Y41 =¥, +h X b;F;, where F, =f<yn +hy ai]-FI>,i= 1,...,s
=1

i=1

The methods are commonly described by the tableau

4y "t 4y | G

aslass ¢

bl eees h

s
where ¢; = Z‘]‘.zlaij.

Butcher showed that these methods could have order as high as 2s, and subse-
quently several authors have produced classes of formulas which are particularly ap-
propriate for stiff equations. We mention the methods based on Gauss-Legendre
quadrature (Butcher [1964]), those based on Radau quadrature (methods IA and IIA
of Ehle [1969]), and those based on Lobatto quadrature (methods ITIIC of Ehle [1969]
and Chipman [1971]).

However, the implementation difficulties of these methods have precluded their
general use; for each step, (1.2) involves solving a nonlinear algebraic system of order
ms. Instead, other authors have proposed methods of this type with 4 = (ai].) lower
triangular to facilitate their numerical solution—these are the semiexplicit methods of

Received May 23, 1978.

AMS (MOS) subject classifications (1970). Primary 65L05.

© 1979 American Mathematical Society
0025-5718/79/0000-0056/$02.25

5567

558 J. M. VARAH

Norsett [1974]. Unfortunately, methods of this type have maximum order s + 1
(Norsett and Wolfbrandt [1977]) and making them useful for stiff equations restricts
the possibilities even more, so that only a few such methods have been found (see
Alexander [1977]).

The problem of efficient implementation has attracted a lot of attention recently;
see for example Chipman [1973] and Bickhart [1977]. As well, Butcher [1976] has
described an ingenious technique for implementing general implicit Runge-Kutta meth-
ods using a similarity transformation T~'AT = B, where B has a much simpler struc-
ture. In Butcher [1977], he then applies his technique to a class of special methods
of Burrage [1977], which have order s or s + 1, and for which the matrix B is a single
Jordan block.

In this paper, we would like to point out how this technique can be efficiently
applied to general implicit Runge-Kutta methods, and thus (we hope) render the
Gauss-Legendre, Gauss-Radau, the Gauss-Lobatto formulas more effective and com-
petitive. The key is to perform a similarity transformation to Hessenberg form on the
Jacobian matrix, rather than use the LU factorization. We also make a rough estimate
of the work involved per step of the relevant methods.

II. Using the Similarity Transformation. Each step of (1.2) requires the solution
of the nonlinear system

o) =0,

where ¢(F) = (¢,(F), ..., ¢S(F))T and ¢(F) =F; - f(y, + hEaijFI-). Normally,
this is done by a modified form of Newton’s method, one step of which takes F into
F + AF, with AF given by

(2.1) T(AF) = — ¢(F).

Here

I—haJ —haj,J----

7= '—ha.zl.,]_hazzj : =]__h(A ®J),
........ I—ha J

ss

where J is the Jacobian matrix, J,, = 9f,/0 y;, normally evaluated at most once per
ij i j p

step.
’ If we use the similarity transformation T~ AT = B,
T=I-nA®N)=I-WT®NBJNT ' ®I
50 (2.1) reduces to
(I = h(B ® 1)) (AF) = - §(F)
in the transformed coordinate system where X = (T~! ® I)X, for any vector X. Thus,

keeping in the transformed coordinate system as much as possible, one step of New-
ton’s method can be described as follows:

ON THE EFFICIENT IMPLEMENTATION OF IMPLICIT RUNGE-KUTTA METHODS 559

(A) given F, compute —¢,(F) =f(yn + hZa,-,-Fj> -F, i=1,...,s,

(B) solve (I — h(B ® J))(AF) = —(F), and form F + AF.
Thus, we can avoid explicitly calculating F; we iterate for a fixed number of steps or
until l¢(F)|l is small, and finally form

Yn+1 =Vn +hzbiFj
via
(2.3) Yn+1 =Vn +th_,F,-,

where b = TTb.
We now describe the work involved in (A) and (B). In (A), to get the new argu-

ments z; =y, + hZaiI-Fj, i=1,...,s, we need to compute

Z=y,®I+hA®NDF=y, ®I+hTB® IF,

evaluate f(z;),i =1, ..., s, and compute f@=T'® Df(Z). Each transforma-
tion takes ms? multiplications, which we use as our basic measure of time; thus, the
total is (2ms? + smf) where £ denotes the equivalent number of multiplications needed
to evaluate one component of the function f(z).

This first step (A) is the same for all methods; (B), however, will depend on the
particular method used. For the Butcher/Burrage scheme mentioned earlier, which
uses Laguerre polynomials and has order s or s + 1,

A I—h\J O
B=|-2 x\ , sol-hB®J)= th\ I—h)\J\
A A O wv I-h\J

This is lower block-triangular, so we can use a forward block recurrence to solve it.
Expressed efficiently (as in Butcher [1977]), the recurrence is

- h)\J)(A—F—)l =- W)l >

(= EN)(AF), - (BF);_,) = - ¢(F); - (AF);

1> i=2,...,s

The work involved here is one LU factorization of (I — AAJ), plus the solution of s
right-hand sides for each Newton iteration. Thus, if we assume g Newton iterations
are performed, the total work (in multiplications) per step is

m?

(2.4 w, =m*J + 3

+ q(2ms? + m?s + smf).

Here J is the equivalent number of multiplications to evaluate one component of the

560 J. M. VARAH

Jacobian. We hasten to add that these estimates only involve the highest order terms.
For example, other ms multiplications are needed to form y, , from (2.3).

A second way of coping with the problem, which applies to any implicit Runge-
Kutta method, is to effect a transformation to diagonal form:

A

T-'AT=B= Cl)\o
A

s

For the useful methods (like Gauss-Legendre), the eigenvalues are complex, so the
operations involved are complex. If programmed directly, a complex multiplication
involves four real ones, but in a language with complex type declarations it may be
much less. In Fortran on IBM 370 machines for example, a factor of two is more
realistic.

Thus, in (B), (I — A(B ® J)) is block-diagonal, with the ith block (I — ANJ). If
the usual LU decomposition is used on each block, it would involve sm3/3 multiplica-
tions, which would be very expensive. Instead, one can use a triangular similarity
transformation to Hessenberg form on the matrix J: LJL™' = H. This involves 5m>/6
multiplications and need only be done once. This is used as a basic step in solution of
the general eigenproblem (see Chapter 7 of Wilkinson [1965]) and has also been sug-
gested in connection with multistep methods by Enright [1976].

Using this transformation, I — AN,J = L= — W\H)L, so the systems we must
solve,

a- h7\,-J)(A_F)i =" 5(—15);‘,
become
(2.5) (I = K\H)(L(AF),) =~ L@$F));,
or in product form

(- hB ® H)@BF) = - o(F),

where X = (I ® L)X. The transformations ¢(F) — #(F) and AF — AF involve s
multiplications by L or linear system solutions with L; each of these requires sm?/[2
complex multiplications. And, since H is Hessenberg, (2.5) requires only sm? multipli-
cations. Thus, if we again assume q Newton iterations are performed, the total work
(in multiplications) per step is

(2.6) we =m2J + % m® + q(2ms%c + 2sm*c + smf).

Here ¢ denotes the effective factor to reflect complex multiplications.

A third alternative for those schemes derived from Gaussian quadrature formulas,
which keeps operations in the real domain, is to transform 4 into tridiagonal form B.
This uses a T whose values are obtained from the relevant orthogonal polynomials,
much as in Butcher [1977] for the Laguerre polynomials. Then I/ —h(B ® J) is a
real block-tridiagonal matrix, and one can proceed with a block-tridiagonal LU
factorization. Unfortunately the Hessenberg structure is not maintained, so it seems
impossible to avoid doing O(sm>) multiplications, making this too costly.

ON THE EFFICIENT IMPLEMENTATION OF IMPLICIT RUNGE-KUTTA METHODS 561

III. Comparison of Methods. It is difficult to give meaningful comparisons of a
quantitative nature on the basis of rough estimates like (2.4) and (2.6). However, since
the Butcher/Burrage methods have order s or s + 1, whereas the Gauss methods have
order 2s or 2s — 1, it seems clear that the Gauss methods require less work per step
for the same order method. As well, it appears as though the error constants for the
Butcher/Burrage methods are larger, especially for A-stable methods, so more steps
would be required for the same accuracy.

It is even more difficult to compare these methods with stiff multistep methods
like those of Gear. A direct estimate of work per step for an r-step method gives

3
— 2f M 2 2
wys =mJ + 3 + rm + q(m* + mf).

These methods would seem to have a clear advantage over either type of Runge-Kutta
scheme of the same order. However, this only applies to the basic implicit multistep
schemes which have order < 6. Higher order multistep methods have been proposed
(see for example Enright [1973], Varah [1978]) but they involve more work. In any
case, because of the intricacies of error estimation and stepsize control which must be
included in any useful code, it is much more meaningful to compare methods empiri-
cally on a suitable set of test problems.

Department of Computer Science
The University of British Columbia
Vancouver, B. C. V6T 1W5, Canada

R. ALEXANDER [1977], “Diagonally implicit Runge-Kutta methods for stiff ODE’s,” SIAM
J. Numer. Anal., v. 14, pp. 1006—1021.

KEVIN BURRAGE [1977], A Special Family of Runge-Kutta Methods for Solving Stiff
Differential Equations, Tech. Rep. 122, Math. Dept., University of Auckland.

T. A. BICKHART [1977], “An efficient solution process for implicit Runge-Kutta methods,”’
SIAM J. Numer. Anal., v. 14, pp. 1022—1027.

J. C. BUTCHER [1964], “Implicit Runge-Kutta processes,” Math. Comp., v. 18, pp. 50—64.

J. C. BUTCHER [1976], “On the implementation of implicit Runge-Kutta methods,” BIT,
v. 16, pp. 237-240.

J. C. BUTCHER [1977], A Transformed Implicit Runge-Kutta Method, Tech. Rep. 111,
Math. Dept., University of Auckland.

F. H. CHIPMAN [1971], “A-stable Runge-Kutta processes,” BIT, v. 11, pp. 384—388.

F. H. CHIPMAN [1973], “The implementation of Runge-Kutta implicit processes,” BIT,

v. 13, pp. 391-393.

B. L. EHLE [1969], On Padé Approximations to the Exponential Function and A-Stable
Methods for the Numerical Solution of Initial Value Problems, Res. Rep. CSRR 2010, Computer
Science Dept., University of Waterloo.

W. H. ENRIGHT [1973], “Second derivative multistep methods for stiff ordinary differen-
tial equations,” SIAM J. Numer. Anal., v. 11, pp. 321—331.

W. H. ENRIGHT [1976], Improving the Efficiency of Matrix Operations in the Numerical
Solution of Stiff ODE’s, Tech. Rep. 98, Computer Science Dept., Univ. of Toronto.

S. P. NORSETT [1974], Semi-Explicit Runge-Kutta Methods, Report 6/74, Math. Dept.,
University of Trondheim, Norway.

S. P. NORSETT & A. WOLFBRANDT [1977], “Attainable order of rational approximations
to the exponential function with only real poles,” BIT, v. 17, pp. 200—208.

J. M. VARAH [1978], “Stiffly stable linear multistep methods of extended order,” SIAM
J. Numer. Anal., v. 15, pp. 1234—1246.

J. H. WILKINSON [1965], The Algebraic Eigenvalue Problem, Clarendon Press, Oxford.

