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Multistep-Galerkin Methods for Hyperbolic Equations

By Vassilios A. Dougalis*

Abstract. Multistep methods for first- and second-order ordinary differential equa-
tions are used for the full discretizations of standard Galerkin approximations to the
initial-periodic boundary value problem for first-order linear hyperbolic equations in
one space dimension and to the initial-boundary value problem for second-order lin-
ear selfadjoint hyperbolic equations in many space dimensions. L2-error bounds of
optimal order in space and time are achieved for large classes of such multistep
methods.

1. Introduction. In recent years there has been considerable interest in the
numerical solution by Galerkin (finite element) methods of initial-boundary value prob-
lems for first-order systems of linear hyperbolic equations in one space variable and
second-order linear hyperbolic equations in many space variables.

Usually, the continuous-time semidiscrete approximations and low-order (first-
and second-order accurate) full discretizations in time have been considered. It is also
possible to consider higher order accurate full discretizations in time in order to match
the high order of accuracy achieved by the Galerkin method in the space discretization.
Recently, Mock [15] has analyzed explicit fourth-order accurate Galerkin methods for
the first-order case. For single-step Padé discretizations in time also in the first-order
case cf. [18]. Crouzeix [3] and Baker and Bramble [2] have analyzed single-step
fully discrete methods for the second-order hyperbolic case. Gekeler in [9] has ana-
lyzed the stability of multistep methods for second-order hyperbolic equations.

In this work as well as in [5] we analyze the stability and prove optimal L2-error
estimates both in space and time for multistep methods for first- and second-order
hyperbolic equations.

In Section 2 we consider multistep discretizations of the simple first-order equa-
tion (2.1) with periodic boundary conditions. The “‘standard” variational formulation
(2.1') in H is used for the Galerkin method in the space direction. (For “nonstandard”
formulations see, e.g. [1], [4], [5], [14], [15], [21].) Itis well known, cf. [7], [12],
that the order of accuracy in the L2-error bound for the continuous-time approxima-
tion is nonoptimal in the case of an arbitrary finite-dimensional subspace of H.
Specifically, Dupont has proved in [7] that the Hermite cubics on a uniform mesh
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564 VASSILIOS A. DOUGALIS

give a (nonoptimal) O(h%) accuracy that cannot be improved. However, Dupont, op.
cit., has proved that the optimal accuracy is achieved for the piecewise linear continuous
functions and cubic splines. The same result has been proved by Thomeée [19] for

the smooth splines of arbitrary order for the nonperiodic pure initial value problem.
For the variable coefficient case cf. [20] and also [22], [8]. In [19] and [20] super-
convergence at the nodes is also proved with suitable choices of initial conditions
and/or suitable (quasi)interpolation. In the periodic case of constant coefficients that
we are considering, the formulations of [19] or [20] lead to equivalent superconver-
gence results. We chose the Thomée-Wendroff approach of [20] for the space part of
the approximation, and we show in Theorem 2.1 that the optimal exponent in the
L?-error bound is preserved (as well as the superconvergence optimal estimates), under
typical “Courant number” restrictions on 7/h, for a large class of multistep full discreti-
zations, cf. [10, Chapter 5], of the Galerkin semidiscretization. A certain boundedness
condition, introduced in Definition 2.1 as Condition I has to be satisfied by the coef-
ficients v;, which are associated with the multistep method and defined by (2.9). We
verify that the “optimal” (in the sense of Henrici [10, p. 233]) k-step methods for

k =1, 2, 4 (respectively, of order of accuracy 2, 4, 6) satisfy Condition I. For such
methods we prove in Theorem 2.1 that if S¥, u > 2, is the space of the smooth periodic
polynomial splines of order u on a uniform mesh and if the order of the k-step method
is p 2> 1, the estimate

@.1) max |lup — u"|l

= u p
o<n<J L%(0,1) 0" +17)

holds, where u, u}, are the solutions of (2.1"), (2.11), respectively, provided the starting
values {“{:} ,’-‘;01 are accurate enough, cf. Remark 2 after Theorem 2.1. We also prove
the associated superconvergence estimates (2.16.1)—(2.16.2).

In [5] the optimal L? global estimate (1.1) was derived for all polynomial
splines of odd degree, i.e., with 4 = 2m, m > 1, by an extension of the methods and
the results that Dupont obtained for m = 1, 2 in [7].

In Section 3 we consider the initial-boundary value problem (with homogeneous
Dirichlet boundary conditions) for the second-order linear hyperbolic equation with
symmetric space-varying coefficients (3.1). For simplicity, we consider the homogeneous
case. For the space part we use any finite-dimensional subspace S, of H 1(Q) for
which the usual approximation property (3.4) holds. For the time part we consider a
well-known class of multistep methods for special second-order differential equations,
described, e.g. in [10, Chapter 6], on which we impose a growth condition analogous
to the one in the first-order case, Condition II in Definition 3.1. As in the first-order
case, the “optimal” methods, cf. [10, p. 309 et seq.], for k = 2, 4 (respective order
of accuracy 4, 6) satisfy this condition. Under a stability restriction on the time step
(cf. Lemma 3.1), which in the presence of inverse assumptions on S, becomes a re-
striction on the “Courant number” 7/h, we prove in Theorem 3.1 that the estimate

— r p
o<n<J L2(Q) O +17)
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holds, where u, uj, are the solutions of (3.3) and (3.7), respectively, p is the order of
the multistep method, and O(h") is the optimal accuracy achievable in S;,. We assume
that the starting values {“{: };‘;01 are close to H!-projections of the initial data; cf. [6].
See Section 3.2 for details on starting values.

In the work of Gekeler [9], where the stability of multistep methods for first-
order parabolic and second-order hyperbolic equations is analyzed, alternative conditions
of stability are given. We remark that the methods which satisfy the hypotheses of
[9, Theorem 3, pp. 543—544] will also satisfy as a consequence Condition II. This
can be seen by finding estimates on the coefficients 7; in an analogous way to Hen-
rici’s proof of [10, Lemma 6.2, p. 312].

In what follows we introduce some notation about the function spaces that we
shall use. Let § be a bounded open subset of RY with boundary 8%, a generic point
of which we denote by x = (x,, ..., xy). For a nonnegative integer m let C™ (£2)
be the space of real-valued functions whose derivatives up to order m are continuous
in . The Sobolev space H™(2) is defined as the set

H™(Q) = {v € L%(Q): D*v € L*(Q), Va: lal <m},

where a = (@, . . . , ay), @; nonnegative integers, D*v = <’)l"‘lv/axcflax;¥2 oo ax?VN
in the distributional sense and |a| = a; + +++ + a,. Denoting by ||l and
(+, *) the norm and inner product on L?() we see that H™ () is a Hilbert space
under the norm

%

vl =< )3 ||D“vuz>

lal<m
We let H1(Q) = {v € HY(Q): vl,q = 0}.
If (X, |l Ily) is a Banach space and p = 2 or p = oo, LP(0, T; X) (where T > 0)
will denote the Banach space of (classes of) strongly measurable functions f: (0, T')
— X such that

T 2 Y2
11,20 oy = < [INCGIE dt) <o

A1

or

. = ess sup|lf (D)ll < o,
L7(0,T;X) o0<tlT

respectively. When there is no possible ambiguity, LP(0, T'; X) will be denoted by
LP(X). For properties of these spaces, see e.g. [13].

In Section 2 we shall restrict ourselves to the one-dimensional case Q = (0, 1).
We shall denote by L? the set of functions in L2, (R') which are periodic of period 1,
) for u € L2. We also denote by H™ the real Sobolev
space of functions, which have m derivatives (in the distributional sense) in L|20 C(R‘)
and are periodic of period 1. We let |lull,, = "u"H"‘(o,n for u € H™.

and define ||u|| = ||lu
lul = Ml 5,

2. First-Order Hyperbolic Equations.
2.1. The Problem and the Multistep-Galerkin Methods. We consider for sim-
plicity the real, homogeneous, first-order hyperbolic problem with periodic initial and
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boundary conditions:
u, tu, =0 in (0, 1) x (0, T,

2.1 u(x, 0) = uy(x) in [0, 1],

where T > 0 and uy(*), u(+, ¢) are periodic functions of period 1 with u, given.
Obyviously, (2.1) has the following variational formulation: we seek u € L2(H"), u, €
L*(L'?) such that

@1’ 3(ut,v)+(ux,v)=0 VvEHR', 0<t<T,
u(0) given in H!.

For 1 > 0 let S) be a finite-dimensional subspace of H?! with basis {@i}fil. We seek
uy,, the Galerkin approximation to the solution u of (2.1") as a differentiable map u,:
[0, T] — S}, of the form
N
up(x, t) = 3 ¢ (9,(x), (x, 1) €[0,1] x [0, T],

i=1

such that

ouy, ouy,
_at—’v>+ a—x,v>=0 VveS,, 0<t<T,
2.2

u,(0) given in S,.

Then (2.2) is equivalent to the system of O.D.E.’s

o) frrore -0 s

C(0) given in RY,
where C(2) = [c,(?), . . . , cn(?)] T and G, S are the N x N matrices with elements
(2.3) Gy =h" (¥, ®), S;= h_l(‘bi’q’;)

Since G is positive definite, (2.2") possesses a unique solution C(f), 0 <t < T.

Henceforth, the finite-dimensional space ), that we will consider will be S, =
S*, the space of 1-periodic splines on [0, 1] of order u =2 on a uniform mesh with
mesh-length 4 = 1/N, N integer. For properties of the smooth splines, see e.g. [16],
[17], [20]. Let ¢ = x™**, where x is the characteristic function of [—1/2, 1/2] and
¢;(x) = @h~'x — j). Then a basis for S* is given, cf. [20], by the restrictions to
[0, 1] of the functions

<I>].(x) =3 ¢, 1<j<N
1€z
A modified basis can be constructed by letting

F0 = 3 ot - i),

J=—q
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for N > u + 2q and then by defining the new basis to consist of the restrictions to
[0, 1] of the functions

Hw =3 v ®)-

Let now ((*, *)), lll * |l denote the L?-inner product and norm on (—oo, %)

((u,v) = f l u()o(x) dx,  llull = ((u, w)*.

Following [20], we define the following trigonometric polynomials

g0 =h1 Y (g, o),

ez
gO)=h"1 Y (B, BN,
ez
q 3
d(0) = Z d]_e—z/e.
j=—q

In [20, pp. 1061—-1062] the following is proved:
LEMMA 2.1. There exist positive constants g, g such that for all real 6

0<g<g®) <E

If d(6) # O for all real 0, then there also exist positive constants g, ? such that for
all real 6

0<F<F®<Z D

We denote now by (-, *) and |- |, respectively, the Euclidean inner product and
norm on RY. For U, ¥ € RY we also define

N
U,V =WU VY=h 3 UV, U, =(U, U=Vl
2

In addition to (2.3) we also define the N x N matrices 5 , § corresponding to the
modified basis functions %i as

2.4) Gy =h1'@. ), S;=hr"'@ ).

With the notation introduced in Lemma 2.1 the proof of the following can be found
in [20, pp. 1061-1062].

LEMMA 2.2. For N > u the matrix G is a symmetric, positive definite cyclic
matrix with eigenvalues g2mI/N), 1 <1< N, and, therefore, for every V € RY

g2 <GV, ), < ZIVI;.

If N> u + 2q and d(6) # O for real 0, the matrix 5 is a symmetric, positive
definite cyclic matrix with eigenvalues g(2nl/N), 1 <1< N, and therefore, for every
14538

ZIVE <GV, v, <ZIWWE. O
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Now let D be the cyclic matrix defined for N > 2q by its first row:

[dod_y...0d_g,0,...,0,d,...,d,].

Then it is obvious that for vESH, v = Effl V <I> = EN V CD-, where V = D’I7. It
is also easy to see that G = D*GD, S = D*S D

The following is proved in [20, p. 1062]:

LeMMA 2.3. If N > 4q and there exist constants d , d such that

0<d <I|d®)<d forallrea?,

then
d\vl, <DV, <d\Vl, foral VERN. O

Now, let u be a 1-periodic continuous function. Its a-quasi-interpolant is de-
fined as Qzu € S* by

N ~
Q3w () = 3 u(i)F; ().
=1
Thomée and Wendroff have proved in [20] that a particular choice of d(6) (cf.
Lemma 2.5, p. 1063 of [20]) and of the starting condition in (2.2) as u,(0) = Qg u,
leads in our case of (2.1), for a sufficiently smooth solution u, to the following error
estimates for 0 <¢ < T:

IC@) - VD), = O**),  lluy,()) — Qyu@ll = 0E>*),  |lu(@) — u, (Ol = O(¥),

where u, (¢) is the solution of (2.2),
N

w () =3 GOF;, UGB =[uO,0,...,uGh),... u1,0]7,
=1
C=1[Cys---scp]”
We establish now some notation and some basic concepts involved in a multistep
method for first-order ordinary differential equations. Consider the problem

Y =f(ypt, O0<t<T
@2.5)

»0) = Yo>

where we assume that f is a continuous function in both variables in the domain of
its definition and Lipschitz continuous in y uniformly in # € [0, T']. Let 7> 0 be
the discrete time step, and let y " denote the approximation to y(¢"), where t" = nr,
n=0,1,2,.... LetJ = T/r, an integer for simplicity, and let f" = f(y", t").
Then a general linear k-step method for the numerical solution of the first-order equa-
tion (2.5) is a scheme of the form

k ry k .
> a4y =13 ", n=0,1,2,...,J -k,
j=0 j=0

(2.6)

{»7}}oy"  siven starting values,
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where k > 1 is a fixed integer and where o, B;s 0 <j < k, are real constants indepen-
dent of n. We shall assume hereafter that oy, > 0 and that Iaol + 18,1 > 0. We

associate with the difference equation (2.6) the polynomials of one complex variable z

p(z) = akzk + ozk_lz"_l +oees ta,

2.6' -
26) 0(z) = B 2* + B _ 27+ o0 + B,
For definitions of stability, convergence and order of the multistep methods (2.6)
cf. [10, Section 5.2]. It is well known that the order p of a stable k-step method may
be at most k + 2 when k is even and at most kK + 1 when k is odd. A stable k-step
method (k-even) whose order is k + 2 will be called an optimal k-step method. For
the construction of such optimal methods see [10, p. 233 et seq.].

In association with (2.6) we introduce the complex-valued functions & i© of a
complex variable ¢ given by the formula
o; + §B;

@7 848) = T8

0<j<k
An easy calculation gives

LEMMA 24. Let t € [-K, K], where K is a given positive number. Then §,(it)
is bounded. If B, # 0, then §(it) is bounded for all real t. If B, = 0and t € [0,K],
8;() is bounded. If B, > 0, then 8;(2) is bounded for all t > 0. 0O

For ¢ complex we consider the one-parameter family of polynomials of a complex
variable z

(2.8) Pz, §) = 8,(8) + 8,1 )z + + =+ +84()2".
We define the coefficients {v;({)};Z, by the formal expansion

29) [pG D171 = 70() + 7, )z + 7,2 + -0+

Definition 2.1. We shall say that the k-step method (2.6) satisfies Condition 1
if there exists a positive K such that the coefficients {7;()};Z, defined by (2.9)
satisfy the estimate

(2.10) l7,G)| <T foralljand forallt € [~ K, K],

where I is a constant that depends on the method (2.6) and K. O

Condition I can also be interpreted in terms of the behavior of the zeros of the
polynomial p(z, it) for |¢t| < K. In [5, pp. 3-40—3-46] we verify that it is satisfied by
many frequently used optimal multistep methods for first-order equations. We furnish
below some examples of such methods and the associated bounds K as in Definition 2.1.

(a) k= 1. The optimal (p = 2) stable single-step method is the implicit trape-
zoidal rule [11, p. 42] given by the parameters &, = 1, g = — 1, 8, =, = 1/2. It
satisfies Condition I for all # € R,

(b) k = 2. (i) The optimal (p = 4) implicit, stable, 2-step method [10, p. 234],
[11, p. 42] is Simpson’s rule given by the parameters a, = 1, o, =0, ¢y = — 1,
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B, =By =1/3, 8, = 4/3. Condition I is satisfied with any K € (0, \/3).

(i) One frequently used nonoptimal 2-step method is the explicit midpoint
rule or leapfrog method (p = 2) which is given by o, =10 =0,0=-1,8, =
Bo= 0, B, = 2 and satisfies Condition I with 0 < K < 1.

(©) k =4. It is known [11, pp. 38-39] that there exists a one-parameter
family of optimal (p = 6), stable, implicit 4-step methods. They are given by the
parameters

=1, ay=-2\ a,=0, o =2X, a,=-1,
Bo = B4 = (14 + N)/45, B, =B, = (64 — 34N)/45,
B, = (8 — 3815,
where A € (-1, 1). In [5, p. 3-34 et seq.] we verify computationally that these

methods satisfy Condition I with 0 < K(X\) < R()), where R(}) is given for some
values of A by the following table:

N RO A ROV

-1.0 0.0 0.1 1.5068
-0.9 0.0903 0.2 1.5558
—-0.8 0.2466 0.3 1.5942
—0.7 0.4273 04 1.6251
—-0.6 0.6165 05 1.6506
-0.5 0.8020 0.6 1.6719
—-04 09742 0.7 1.6901
—-03 1.1269 0.8 1.7059
—-02 1.2561 09 1.7198
-0.1 1.3610 1.0 00
0.0 1.4433

We define now the associated k-step Galerkin method for the solution of the initial
value problem (2.1'). We seek {u'}’_, € S* such that

K . k .
<E a]-uz*",v) +T<Z Bju;,';’,v)=0, 0<n<J-kVYveESH
j=0 j=0
@.11) _
{u} }]’.‘;01 given in ¥,

Writing

M=

~n~
¢ P

N
n __ n —
uh—zl cjd>j— s
]=

Il

J
we see that (2.11) is equivalent to the problem
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k .
> (6 +‘rﬁjS)C"+’=0, 0<n<J—k,
=0

@.12)
{C7}=y  sgiven,
where C" = [cV, ¢}, ..., ch] T, orto
k ~
Z(OtjG +‘rﬁjS)Cn+]—0, 0<n<J -k,
=0
2.12")
{C7}=y  siven,
where C" =[], ¢P,. .., cn]T. Of course C" = De™.

In practice we use (2.12) to advance in time since G and S will have, in gen-
eral, smaller bandwidths than 5 and § Now since @, <I>j are 1-periodic functions,
S is antisymmetric. Hence, since o, > 0 and G is symmetric and positive definite, we
conclude that the matrix oy, G + 768, S is invertible. Hence, the solutions C" of the
linear systems (2.12) exist uniquely. Under the hypotheses of Lemma 2.3 so do the
solutions C” of (2.12"). We shall discuss starting values in Section 2.2.

2.2. Error Estimates. We first present a preliminary lemma. To establish nota-
tion, let H(&) denote the Fourier transform of a function v(x) € L2(— oo, )

b = [ : v(x)e ¥k dx.

We suppose that d(8) is chosen so that the Fourier transform of the associated modi-
fied E(x) has the property that, for some integer s

@.13) B =1+0¢) ast—0.

We suppose that s = u so that we have the approximation property for the E—quasi-
interpolant Qg

oMy

2.13' v—Q3ull < Ch*
.13 llv — 0ol -

For details cf. [20], [17]. In [20, Lemma 2.5] a particular d(6) is constructed for
which s = 2u.

The following lemma can be proved by a specialization in the constant coefficient
case for (2.1) of the general proof in [20, Lemmas 4.1 and 4.2]. The exponent s in
the estimate below is a consequence of (2.13). The proof in [20], which is given for
§ = 2u, can be easily modified to yield (2.14).

LEMMA 2.5. Let $ satisfy (2.13) for some integer s, u < s < 2y, let u be the
solution of (2.1), and suppose that for 0 <j <s + 1 and for every t € [0, T],
aju/ ox/ are continuous, 1-periodic functions.
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Then there exists a constant C independent of h and u such that

as+l

ax9+l

(2.14) _ _max <cw =

1<j<N,0<t<T

N[
> <J, 57 (b D+ S u(th, t)>

=1

L=(L™)

We proceed now withthe main error estimate. The algebraic manipulations fol-
low the ordinary differential equation case treated by Henrici [10, Lemma 5.6, p. 243],
and some of the analytic machinery is analogous to that used in the parabolic case
by Zldmal [24, p. 355 et seq.].

THEOREM 2.1. Suppose that the k-step method (2.6) is of order p = 1 and that
it satisfies Condition 1 for some K > 0. Let uj, = EN <I> = EJI\; 1 7'<I> be the
solution of the k-step Galerkin method (2.12)—(2. 12 ). Let @ satisfy (2.13) for some
integer s, u < s <2u. Let u, the solution of (2.1), satisfy u € L*(HP* ') and the

hypotheses of Lemma 2.5. Then, if

(2.15) 0<7 max |N\|<
1<iSN

where \; are the eigenvalues of the matrix G~ 1S, we have that

max | C" — v,

osn<J
(2.16.1) {k—l [os+1 a1
~ . u P u
<C {2 I -V, +h =5 tr ’j“ ,
j=0 |axs L=(L%) orP L2(T )
max |lu? ~ 37
o<n<1” v
(2.16.2)
kz_:lll ; o f||+h'l FH1 4P Pty
C, u —Qzu T )
j=0 h ¢ axst1 L°(L™) Pt L2(Z2)
max - u"l| < Cy 4 3 Nl — Qg ulll + hHOE
=
o<n<s " 3 =0 axH||IL=(@?)
(2.16.3)
s 3+, Pty
ax*tlL=@™) 3P+ 141232

where u” = u(nt), U is the N-vector with components u”™(jh) and where C;, i =
1, 2, 3, are constants which do not depend on h, T, u or u,,.
Proof. Let E" =C" — U". Using (2.12'), we obtain that E” satisfies

(2.17) }: (@G +78,S)E"* = - GR" = 1F" for0<n<J -k,
J.—

where R" is the N-vector with components r”(jk), where

(2.18) Z ou T — 1 Z Buyt
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and
k ~ . ~ )
(2.19) F" =3 ;(GUf* + SU"™).
=0
Multiplying both sides of (2.17) by G ! and defining
(2.20) G" =-R" - 7G~1F",

~

we obtain, with M = 5‘13,

K .
2 (I +rBME =G", 0<n<J-k
=0

Since G is cyclic, so is G~! and, therefore, M is a cyclic, antisymmetric matrix. Hence,
o, I + 7B, M is invertible. Recalling now the definition (2.7) of §;, we can rewrite
the above as

k .

(2.21) Zo Bj(TM)E"ﬂ =L",
]:

where

(2.22) L" = (ol + 78, M)"'G".

Using (2.8) and equating powers of z in (2.9), we obtain the identities

8,7 =1,
5k7j+5k—17j_1 +'°°+6k—j70=0» 1<j<k,

8+, 1Yoy 8 =0, 1>k

As in Henrici [10, p. 243] and Zldmal [24, p. 355] by considering (2.21) with
n — k — I instead of n, premultiplying both of its sides by v,(7M), summing the result-
ing equations from / = 0 to / = n — k > 0, rearranging and finally using the above
identities, we obtain the solution of the difference equation (2.21) in terms of the L"
and the {E/} }‘;01. Noting that for a N x N matrix 4, |4| = |4l,, we obtain the
following estimate on |E"|,, for k <n <J:

LE™ |, < (10— G185 _ ML+ = oo 4 1y, o 1 ML B0 (MDIER — 1,

(2.23) -
o 1y ML B oML IE®], + 3 1y, (rMI L™ =5,
=0

Since M is antisymmetric it is normal, and we have that

18,(rM)I = (Jax 8, Iyl = max Iy,

1<i<N
where A;, 1 <i <N, are the (pure imaginary) eigenvalues of M, which coincide with
the eigenvalues of the generalized eigenvalue problem SV = AGV. Hence, using the
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stability restriction (2.15), Condition I (Definition 2.1) and Lemma 2.4 we conclude that
18;,MI<C allj>0, ly@MI<T alll>0,

where C and I are nonnegative constants that depend on the multistep method (2.6).
Then (2.23) gives

k—1  J-k
(2.24) max |E” lh {Z lE]lh + Z |Lnlh} .
j=0 n=0

osn<J
Now, since M is antisymmetric and o, > 0 we have by (2.22) that

anIh (akl + TﬁkM) ll lG lh <—— |Gn|h
Hence, by (2.20)

1 ~_
(2.25) 1L, < g (IR"|, + 711G~ 1F™1,).

Now, since Qg r"= Zjlil r"(jk)aj, we obtain, using Lemma 2.2,
N

> riGh)d,

=1

= (GR", R/ > T % IR,

Q5 "Il =

And for & sufficiently small, Lemma 2.2 gives that for some constant C, IIQ¢~r"|| <
Clr"|l. Hence, we obtain that |[R"|, < C||r"|l. Using (2.18), Taylor’s theorem with
remainder and the fact that our k-step method is of order p, we have that

k (n+j)
)= ajl% mT [(n +])7--s]p (x 5) ds
j=o0 'F

k (n+))7 . _, 0Pt

Z 1)'f [(n +j)r—s]P! (x 5)ds,
from which, easily,

(n+k)T ap“u(s) 2

rn 2 <C 2p+1 -7

I < Cr fnr P+l
Hence, we have,

'S 1Rm, < o) 2
T .

Now, since |F"|, < S max, ;< v | F}'l, we obtain by (2.19) and Lemma 2.5 that

¥ty
max |F"|, < Ch|[=—— .
o<n<J DR | PSR
and, finally, since |G~!| < Z~! by Lemma 2.2, we obtain that
|5“lik 1P, < onf| 2
T < .
2.27) =, h x| ==
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Finally, using (2.24)—(2.27) we obtain (2.16.1). Now (2.16.2) follows from (2.16.1),
the fact that for

N ~ ~ ~ A~ A~
v=2 V& €S WP =(GV, V),
and Lemma 2.2. Finally, since

lup — ul < llufy — Qzu”™|l + llu” — Qzu”ll,

using (2.13"), we obtain (2.16.3). [

Remark 1. The stability condition (2.15) requires that + = O(h), because the
eigenvalues \; = )\j(G‘IS ) satisfy | N = O(h~1). To see that, let i\, with X real, be
an eigenvalue of the generalized eigenvalue problem SV = iAGV, where V =
Vi oo Vil Te ¢V is an associated eigenvector. Let Z denote the complex conju-
gate of z. Then the above becomes

N _ N _
2 SpVi=-ix 3 GV,
=1 =1
Multiplying the above by VJ for 1 <j < N and summing, we obtain that
N _ , N _
IZ Vle(d’ja q’[) =—iA IZI Vle(d’j, ‘I’l),
=1 ii=

from which with w = Zjlii V¥,
W, w') =—ixw, w).
Now let w = w, +iw,, with w, €S¥, i =1, 2. Then from the above it follows that

A =2, wy)l(lw, 12 + llw, I12).

Now, since w, € S*, it satisfies the inverse property ||w'1 < Ch‘lllwlll, for some
constant C. Hence, |\l < Ch™!. Because of the cyclic structure of G, S , it is easy to
obtain explicit formulas for the eigenvalues A; of G~!'S. We immediately obtain that

_ —10y —
N = NE718) = NN (G-
Let [g,,8,, - - - 84,0, ..., O,g”,gu_l, ..., &,] denote the first row of G,

for N> 2u — 1. Then it is well known from the theory of cyclic matrices that the
eigenvalues of G are given by the formula

m
ANG) =g, +2 1=Z:2 g cos(l — 1)0]., 0; = 2mj/N.

Similarly, if [0, s,, 55, . . . ,s”,O,. ..,0,-5,,-5

row of S, we obtain that

., —8,] denotes the first

I
N(S) =2i 1_22 s;sin(l = 1)8;,  6; = 2mj/N.

With the definition (2.3) g, = O(1) and s, = O(1/h).
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These formulas can be used then to find the stability bounds on 7/A from (2.15).
Remark 2. The starting values {u’ }k o can,in principle, be obtained by a single-
step method (e.g. a Padé method) selected so that the accuracy in the error estimates

(2.16) is recovered. Alternatively, define
o _ i B=1(Gn) 2'u(0)
Ug = Uy, Uy = T

, 1<j<k-1,

=0 ' o
so that u, = u(j7) + O(rP).
Noting that
l
3'u(0) —(— 1)1 Eu_o,
art axt

and defining u{‘ =03 uf,0<j<k — 1, we see that the accuracy in the supercon-
vergence estimates (2.16.1) and (2.16.2) is conserved. The O(h* + 7P) global L?
estimate of (2.16.3) can be achieved by defining u,’; as the L2-projections on S* of u}

(u,’;, v) = (u,{;, v) VYveSH

and then noting that
luy = Qzull < lluj = ulll + lluk —ull + llu? = Qzull = O(R* + 7P).

3.. Second-Order Hyperbolic Equations.

3.1. The Problem and the Multistep-Galerkin Methods. In this section we shall
be interested in approximating the solution of the following initial-boundary value
problem. (To simplify matters we consider the homogeneous case.) Given T, 0 < T
< oo, we seek a function u(x, t) defined on Q x [0, T'] (where  is a bounded open
subset of RY with sufficiently smooth boundary d2) and satisfying

82 ou .
Z ax <ij(x) a_x_._>=0 in Q x (0, T],
i,j=1 ]

u=0 ondQ x [0,T],

(3.1)
u(x, 0) = uy(x) in Q,

ou .

Et_(x’ 0) =u,(x) in Q.
It is assumed that a;(x) € C%(£) and that a;; (%) = j,.(x) for x € Q and that there
exist constants a, A > 0 such that

N N _ N
(B2 Z <Y q;0g5 <43 & VxEQE=(, ... k) ERY.
i=1 i,j=1 i=1
Let a(- , ) be the bilinear form associated with problem (3.1)
ou v
a(u, v) = Z f a,(x) 5 o, 2 —dx for u, v € HY(Q).

i,j=1
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Then the initial-boundary value problem (3.1) has the following weak formulation:
Given a;; € C%(Q) and uy, u; € H'(), find u € L*(0, T; H'()) such that 3%u/dr?
€ L%(0, T; H~()) and satisfying

2 o
(3.3) <-g—2“ > +aw,v)=0 YvEHY(Q),0<t<T,
t
u(0) = uy, u,0)=u,.

Henceforth, we assume that (3.3) has a unique solution ¥. In appropriate places below
precise conditions on the smoothness of u, which guarantee the convergence results, will
be imposed.

Let h be a real parameter, 0 <h <1 and let S, be a finite-dimensional subspace
of H 1(©2) which satisfies the following approximation property for s sufficiently small,
and integer r > 1:

(3.4)

for all f € H"() N 1-;1(9) and where C does not depend on 4 or f.

Multistep methods for the numerical solution of initial value problems for a
special class of second-order differential equations are well known. See e.g. Henrici
[10, Chapter 6] or Lambert [11, Chapter 9]. We consider the problem

y"=f(y, 1), 0<t<T,
y(0)=yo, y'(0)=y1,

inf |If—¢ll, <CH"Ifll,, j=0,1,
¢ESy,

(3.5)

where we assume that f is a continuous function in both variables in the domain of

its definition and Lipschitz continuous in y uniformly in ¢ € [0, T']. This is a special
class of second-order ordinary differential equations in the sense that no first-order
derivatives ' appear explicitly as arguments of f. With the same notation as in Section
2 we say that a special k-step method for the numerical solution of the second-order
equation (3.5) is a scheme of the form

k

Mw

a yn+]

ij"‘ff, n=0,1,...,J -k Jr=T,
(3.6) =0 i

0

{y! };‘;01 given starting values,

with k > 1 and ;, B;, 0 <j <k, real constants independent of n. Again we assume
for definiteness that a; > 0 and Iaol + IBOI > 0. We also assume that 8, = 0. With
the difference equation (3.6) we associate again the polynomials p(z) and o(z) defined
by (2.6'). For the convergence, stability and order p of such methods see [10, Section
6.1]. It is well known that the order p of a stable special k-step method cannot exceed
k + 2. Again, it may be at most k¥ + 2 when k is even and at most k¥ + 1 when k is odd.

A stable special k-step method (k even) whose order is k + 2 will be called a special
optimal k-step method. For the construction of such optimal methods see [10, p. 309,
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et seq.]. In association with (3.6) we consider again the functions 85M and p defined
by (2.7), (2.9), (2.8), respectively.

Definition 3.1. We shall say that the special k-step method (3.6) satisfies Con-
dition 1I if there exists a positive K such that the coefficients {'y]-(t)};;o satisfy the
estimate

ly;(®)| <Tj+~v foralljand all z € [0,K],

where I"and v are positive constants depending on the method (3.6) and K. O

In [5, pp. 4-20—4-27] we verify that Condition II is satisfied by many frequently
used special optimal multistep methods for second-order equations. Examples of such
methods and their associated bounds K are

(@) k=2. For 6 > 0 we consider the one-parameter family of stable special
2-step methods given by ay = a, = 1,0, ==2,8, =8, =60,8, =1 —-20. For 6 #
1/12 the methods are of order p = 2. For 6 = 1/12 we obtain the Stgrmer-Numerov
formula [11, p. 255] which is of order p = 4. This is the only optimal special 2-step
method [10, p. 311], [11, p. 256]. For 8 = 0 we obtain an explicit method and for
6 = 1/4 we obtain a 2-step method of accuracy p = 2 analyzed in [6, p. 886 et seq.].
See also [9]. For these methods we find that
0<t<4/1-46) if0<0<Y%,

lv@®I<i+1, 1=0,1,2,...for
0<t<o if 8 = %.

Hence, Conditon II is satisfied with K defined as above.

(b) k = 3. The optimal implicit 3-step methods (p = 4) form a one-parameter
family of methods and are given in [11, p. 256]. It turns out that these methods are
linear combinations of two subsequent cycles of application of the 2-step Stprmer-
Numerov formula and that the stability restriction on K is not improved as compared
with the restriction required for the Stérmer-Numerov formula.

(c) k = 4. There exists a two-parameter family of 4-step methods of p = 5 or
6 given by the formulas [11, p. 256]

o, =1, ag=-2-a, ay=1+4+2a+b, oy =-a—-2b, o,=0>b,
B, = (19 +a — b)/240, B, = (51 — 6a + b)/60,
B, =(7-97a + 7b)/120, B, = (1 —6a + 51b)/60, B, = (-1 +a + 19b)/240.
Ifb+#1,thenp =5;if b =1 then p = 6. The methods are stable for —1 <
b<1,—-1—-b<a<1 +b. Thus, the optimal methods (p = 6) are given by b = 1,

—2 <a <2. The optimal methods satisfy Condition II with the exception of the
case b = 1,a = —2. The associated bounds are

K@) = 60(z +2)/(%a +22), -2<a<2.

We define now an associated special k-step Galerkin method for the solution of
the initial-boundary value problem (3.3). We seek {u; }‘,’l= o €8, such that
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=0

k
<Z au"+1,¢>+7a<z Bu"""’, >=0, 0<n<J-k VOES,,
3.7
{u,}o)!  given in S,,.
Writing as usual

M
up (x) = Z ¢ ¢;(x),

i=1

where {¢; }f‘il is a basis of S,,, we see that (3.7) is equivalent to

k .
3 (@G +72BA)C" T =0, 0<n<J-k,
(3.8) =0’ !

{CT}  siven,
where C" = [c}, ..., cn1T,and G, A are the M x M matrices given by
G,] = (¢i, ¢1)’ A,] = a(¢i’ ¢])'

The solutions C", 0 < n <J, of the linear systems (3.8) exist and are unique since
(3.2) and a;. > 0, B, = 0 imply the positive definiteness of the matrix a, G + TzﬁkA.
We shall discuss starting values in Section 3.2.

3.2. The Error Estimate. We establish first an a priori estimate for the solutions
of a difference equation associated with (3.6). The algebraic and analytic tools follow
[10, Section 6.2] and [24].

LEMMA 3.1, Let f" € L*(Q) for 0 <n <J, and let {v/}}=| be given functions
in S,. Given a special k-step method of the form (3.6) which satzsfzes Condition 11
for some K > 0, let {v/ }]{=0 € S, satisfy

k k
(3.9) <Z o, ¢> + T2a(z ", ¢> =(f"¢), 0<n<J-k VoES,.

j=0 j=0
Then for

0<72 max [A|<K
(.10 1<ismM

where \; are the eigenvalues of the matrix G~ YA, we have that

(3.11) max [V < 3 Z oIl + Z ||f"||$
osn<J n=0

where the constant C does not depend on v, f", 7 or h.

Proof. As in Zldmal [24, p. 355], let ®(x) = [¢,(x), - . . , dp(x)] T, where
{9 ()M i=1 is the basis of S, and W = G~ 1/2¢, Then the coordinates w; of W form
a basis for §;,. With notation introduced in Section 2.1, since v € Sh, let v =
(V",W). Itis easy to see that (w;, w;) = §;; and that a(w;, w;) = B;;, where B is
the symmetric, positive definite matrix deﬁned by B= G‘”zAG 12 Let F™ be
the M-vector with coordinates F}' = (f", w;). Recalling the definition of §,(§) by
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(2.7), we can rewrite (3.9) as
k .
2 §(?B)V*H =G", 0<n<J-k
j=0

with G = (ey ] + 726, B)"!F™. Using the same techniques as in the proof of Theorem
2.1, we estimate V" by

V< (17, @B 18, _ (T2 B) + * =+ + by _op i 1 (72 B 8o(r2BIDI VE 1
+ oo+ |y, 1 (T2B) 18 (72B)I VO]

n—k
+ 3 Iy BIIG"*,  k<n<J.
1=0

Since B is positive definite, (3.10), Condition II and Lemma 2.4 give
18;(r*B)| =  fnax 18;(T*\)I<C, allj,

lv(72B)l = 2‘2‘ (> \)I<Ti+y, 1>0,

for constants C, T', v, where A; are the eigenvalues of G~1A which coincide with the
eigenvalues of B. Hence the above estimate becomes

IV <C{T'[(n—k)++++ +(@m—2k+ 1] +ky}vk1|
n—k
e+ (CT(n - k) + NIV + 3 @I+ PIG"*! fork<n<J,
=0

which for 7 sufficiently small, since T = J 7, implies that there exists a constant C
independent of 7, #, V", G" such that

(3.12) V"I\- Z V7| + Z |G "%

Now, since l(ay,/ + 728, B) ™'l <!, we see that |G"| < o 'IF"| <o 'lIf"|l as in
[24, p. 356]. Finally, since v” €S, we obtain that |[v"|| = |V"| and (3.11) follows
from (3.12). O

Remark. The stability condition (3.10) will require a bound on 7/k (in case
K < ) if the elements of S, satisfy the inverse hypothesis

(3.13) lgll, <Ch Mgl Vo ES,.

This is easily deduced from the fact that the \;’s are the eigenvalues of the generalized
eigenvalue problem

AV=\GV for VERM,

Hence, if v(x) = Ef}i 1 Vi9;(x) €S, we see that X = a(v, v)/llvl?; and the result
follows from (3.13) and (3.10).

We now refer to a well.known (cf. e.g. [23]) result about the elliptic projection
of the solution u of (3.3).
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LEMMA 3.2. Let u be the solution of (3.3) and suppose that it satisfies

du()/dt' € H'(Q),0<t<T, 1=0,1,2,.... For 0 <t <T we define w,(t) €
S, by
(3.14) a(wy (1), 9) = a(u(t), ) V¢ ES,,.
Then for some constant C independent of h, u, w, we have that
1 NPy

(3.15) ”—a—{u - wy,) (t)l < cw-i|[2u

ot i at',
forj=0,1land1=0,1,2,.... 0

The main result of this section is
THEOREM 3.1. Suppose that the k-step method (3.6) is of order p > 1 and that

it satisfies Condition 11 for some K > 0. Let {u}, }f,=0 be the solution of the k-step
.Galerkin method (3.7). Let u, the solution of (3.3) satisfy the requirements

92u aP+2y

oo r v @ 2 r 212
u€L™H"), 277 € L2H"), = € L2(L?).

Then, under the stability condition (3.10) we have

max |luj —u”||

o<n<J
1Azt i / 0%u
SCA=> llul -l +h'(u - +Hl|—
(3.16) 7;20 h—h il =y ar2 2™
+2
P 0P *u | ’
atPt2 ||L21L?)

where u" = u(nt), Wj = w,(n7) is defined in Lemma 3.2 and where C is a constant
which does not depend on h, 7, u or u,.

Proof. We define w,,(¢) by (3.14) and set " = up — wj, n(t) = u(t) — w, ().
Then by (3.3), (3.7) and (3.14) we have that V¢ €5,

k . k .
< 3> aii'"'”, ¢> + 72a<.z;) B,-§"+’, ¢>
J=

=0

k . K .
(£ o, 9) o3, poi. 9

j=0 j=0
k k
=- < > a’w’”", ¢> - 1'2a<z B’u”*" )
j=0 j=0
=(Hn>¢)—(rn,¢)> 0<n<]—k>
where )
(3.17) H =3 an"*

j=0
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and”

k . k
(3.18) m=3 aju"+] — 42 Z u;lt+]'

j:o =
Since {" € S, we have, by Lemma 3.1 that

n S L g+ 15 oy
max [I§"]l=C{- > I+ +- r

(3°19) os<n<J ”§ T /Z:O T n=0 Tj:o

By Taylor’s theorem,
. . 0 (n+p)r . 92
(n +j))=nnr) +j7 —n(m) +f [(n +j)r —s] 21 (s) ds.
at nr at2

By (3.17) and the consistency of our k-step method (which implies that Ek 0% =

E] o Ja; = 0) we obtain that for 0 <n <J -k,

(n+pr azn
Z [ +7)7=s] — (s)ds
j=0 f a2
from which, easily
i

ds,
ar?

(n+k)r
IH™? < cﬂf
nrtr

where C depends on the {a } —o and k. Therefore, by (3.15)

Ik J—k 2 a2 2
1 C n 2) --—-—17 7 9u
320) — 3 IHMIS—5 {3 IH™MIPy  <( ’
(3.20) - ngo RN ; ar? [lz2e2y (e ||L2ar

We examine now the r” term. Using (3.18), Taylor’s theorem with remainder and the
fact that our special k-step method is of order p, we obtain

2u

"
(p+1)v Z f [(n +]')T—S]p+l::j?(s)ds

“ (s)ds

2 k i +2
T (n+j)71 oP
- B8: n+i)r—sl?!
(p - D! ];) IfnT [(n +7) ] o1

from which

(n+k)T ap+2
”rn“2 <C7.2p+3f
nt

ot p+2

where C depends on p, k, {al-}}‘zo, {ﬁ,-},’fzo. Hence

_ J—k Ya +2
(321) l Z |rn”< C z “rn“2 <CTP ap u )
L =0 7312 (n=0 P2 [|L2¢12)
Finally, (3.19), (3.20), (3. 21) and the fact that
max |u” —upll < max (19"l + max ("
os<n<J osn<J os<n<J
< CH'||ull + max [I§"l

LZ(H")  o<n<J
give the desired estimate (3.16). O
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To preserve the O(h" + 7P) accuracy it is sufficient to choose the starting values
W} ;‘;01 such that

k—1 .
(3:22) > lluy = wlll = O(h" + rP+1),
j=0

We can achieve this as follows: Let u, € CP*%(Q), u, € CP*1(§) and a; € CY(Q).
We define u), for 0 <j <k — 1 by

2, (jn)' 3u(0)

0 — J —
Uy = uo, u* = i .
1=0 * at

, 1<j<k -1,

where we express 8'u(0)/d¢ in terms of Uy, Uy, a; and their derivatives using (3.1).
We easily see that

Pty

lu(jr) — e lly < CrP+1 ,
s Pt || Lo

s=0.

We set now u{, = wi, where wi € S, is defined by
a(wh, ¢) = a(uh, §) VOES,.
This choice obviously satisfies (3.22).
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