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A Fast Cauchy-Riemann Solver

By Michael Ghil* and Ramesh Balgovind**

Abstract. We present a solution algorithm for a second-order accurate discrete form
of the inhomogeneous Cauchy-Riemann equations. The algorithm is comparable in
speed and storage requirements with fast Poisson solvers. Error estimates for the dis-
crete approximation of sufficiently smooth solutions of the problem are established;
numerical results indicate that second-order accuracy obtains even for solutions which
do not have the required smoothness. Different combinations of boundary conditions
are considered and suitable modifications of the solution algorithm are described and
implemented.

1. Introduction. Inhomogeneous Cauchy-Riemann equations appear naturally in
many fluid-dynamical problems, as the divergence and the vorticity equations of a
two-dimensional steady flow field (4, v) = (u(x, ), v(x, y)). The velocity components
u, v are usually called in this context primitive variables, in contradistinction to the
derived variables Y, ¢ in the stream function-vorticity formulation of the flow equa-
tions (e.g., Roache [28]). In the latter formulation, the stream function y satisfies a
Poisson equation; and computations with this formulation have greatly benefited from
the rapid development of fast direct methods for the solution of Poisson’s equation, or
Poisson solvers (Buneman [4], Buzbee, Golub and Nielson [5], Dorr [9], Fischer,
Golub, Hald, Leiva and Widlund [12], Golub [18], Hockney [21], [22], Widlund [32]).

Working in the primitive variables, however, permits the treatment of more gen-
eral flows. Indeed, either nondivergence or irrotationality of the flow are required in
order to introduce a stream function Y or a velocity potential ¢, and obtain a Poisson
equation for them. There are many situations of practical interest in which neither of
these assumptions holds. Furthermore, the formulation of boundary conditions is
often easier in terms of the primitive variables, by using physical considerations which
arise naturally from the problem. On the other hand, a boundary condition on the
vorticity ¢ for instance is at times hard to formulate (Langlois [23]); the construction
of appropriate discrete versions of such a boundary condition is often even more diffi-
cult (Oliger and Sundstrom [27]). Hence, the desirability of simple, physically mean-
ingful boundary conditions and, thus, of the use of primitive variables.

Lomax and Martin [24] have developed a fast Cauchy-Riemann solver and
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applied it to a quasilinear problem in aerodynamics ([24], [25]). Additional versions of
their solver are given in [26]. Our interest in the problem stems from a different applica-
tion, dealing with a two-dimensional version of the equations of dynamic meteorology
(Ghil [14], [15]). The solver we present also differs from those of [24], [26] in a num-
ber of ways: the boundary conditions and their numerical treatment, the decoupling of
u, v and the reduction to a discrete Poisson problenf, and finally the method of solution
of the resulting discrete Poisson equation are all different. We substantiate by numerical
results that the present solver is second-order accurate, even for solutions which do not
have the formally required degree of smoothness. The solvers of [24], [26] seem to be
only first-order accurate according to our numerical tests.

The intended application of our solver is to a fully nonlinear first-order system,
rather than a quasilinear one. This system is a generalization of a Monge-Ampére equation
[15], [17]. Eventually, we hope to apply the solver to cases where the nonlinear equa-
tions are of mixed elliptic-hyperbolic type [16], [17]. Preliminary results are encourag-
ing, and we expect to pursue the nonlinear problem in a future publication.

The organization of the article is the following: Section 2 contains the description
in continuous and then in discrete form of the model problem of which we seek a fast
solution. Section 3 contains the de;rivation and description of the solution algorithm.
Section 4 presents numerical results for test computations with the model problem. Sec-
tion 5 presents modifications of the model problem arising from changes in boundary
conditions. Section 6 contains a comparison of results with the solvers of [24], [26].
Section 7 gives conclusions and a discussion of possible extensions and generalizations.
Finally, Appendix A presents an error estimate for the method, and Appendix B con-
tains a listing of the basic program.

Acknowledgements. It is gratifying to acknowledge useful discussions with Profes-
sors Eugene Isaacson and Olof Widlund. Numerical calculations were performed in part
on the CDC 6600 of the Courant Mathematics and Computing Laboratory, New York
University under Contract EY-76-C-02-3077 with the U. S. Department of Energy.

2. The Model Problem.
The Differential Equations. We wish to study the fast numerical solution of the
elliptic system of two first-order linear equations in two independent variables,

(2.1a) u, v, =dx, y),
(2.1b) u, = v, = e(x, y).

The dependent variables u, v can be thought of as velocity components in the x, y direc-
tions, respectively. In this interpretation d, e are the divergence and vorticity of the
flow, which are assumed to be known. If d =0=e, (2.1) are the Cauchy-Riemann equa-
tions, and u, v are analytic. We are interested in the inhomogeneous case, |d| + |e| # 0,
and we concentrate on real-valued d, e, u, v, although the method is applicable with
minor changes to complex-valued functions as well.

We consider a rectangular domain R, taken without loss of generality to be R =
{(x, y): 0 <x <27, 0<y<n}. The boundary conditions are that v is given on the
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lower and upper side of the rectangle,

(2.22) v=00), y=o,
(2.2b) v=01x), y=n,
and that both # and v are periodic in the x-direction,

(2.3a) u(x + 2w, y) = u(x, y),
(2.3b) u(x + 2m, y) = v(x, ).

The Gauss divergence theorem implies that d(x, ), v{®)(x), and v{!)(x) have to satisfy

(2.3¢) fonf:; d(x, y)dxdy = f;“ WM x) = v (x)} dx.

These conditions, together with (2.1), determine v completely and u up to an additive
constant (compare Ghil [15]). The latter indeterminacy in the solution can be elimi-
nated, for instance, by prescribing u at one arbitrary point (x,, ) in the rectangle.

The boundary conditions we use are associated with a standard channel-flow
problem in geophysical fluid dynamics (e.g., Elvius and Sundstrém [10], Gustafsson
[20]), from which the nonlinear problem mentioned in Section 1 is derived (Ghil [15],
[17]). Extensions to different boundary conditions and to irregular domains will be
discussed in Sections 5 and 7.

The Difference Equations. The discretization of the problem we chose is to
approximate the derivatives in (2.1) by finite differences. Let U, V, D, E stand for
the mesh functions which approximate the continuous functions u, v, d, e; and let
h, k stand for the mesh size in the x, y-directions, respectively. It is natural to use
centered differences to replace the corresponding derivatives in (2.1). We write

Ulx +8,y) = Ulx — 8, ) = 26u,(x, ),
Ulx, y + €) = Ulx, y — €) = 2eu,(x, »),

(®)

for u and similar formulas for v; this yields a second-order accurate approximation of
the derivatives and allows us to expect that in some adequate norm |||,

MU =ull + |V = vl = O(h?) + OK?).

The use of centered differences in a straightforward manner, on an unstaggered
mesh x; = ih, y; =ik, leads, however, to the existence of spurious null vectors (U, V),
i.e., to zero eigenvectors of the discrete matrix operator which approximates the dif-
ferential Cauchy-Riemann operator. To avoid dealing with these null vectors and to ob-
tain an invertible discrete matrix operator, we used a staggered mesh (Figure 1). Such
a mesh, suggested already by Lomax and Martin [24], can be formulated for Egs. (2.1)
in a particularly efficient way.

Let u, v denote points at which U, V are defined, and let -, x (for the vector
operators divergence and curl) denote the points at which the discrete versions (2.4a, b)
(see below) of equations (2.1a, b) are written and at which D, E are defined. Thus,
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u, v alternate on diagonals of the mesh and so do -, x on diagonals parallel to and al-
ternating with those of u, v; in other words, v, x, u, -, in clockwise direction, occupy
the corners of an elementary mesh cell of area hk/4 (see Figure 1). No averaging
of U, V is necessary in writing (2.4a, b) on this staggered mesh. Furthermore, the
boundary conditions (2.2) and the periodicity condition (2.3a, b) can be easily han-
dled. Indeed, let U, V be indexed independently, with y = 0, # being horizontal
V-lines corresponding to V-indices j = 0, N, and with x = 0, 27 being vertical V-lines
with V-indices i = 1, M + 1. Then the computational domain includes the points
((G = D, jk), at which V; is defined, and the points ((i — 1/2)h, (j — 1/2)k), at which
Ujj is defined; in other words, V;; approximates u((i — 1)A, jk), 1 <i <M + 1,0 <
J <N, and U;; approximates u((i = 1/2)h, (j —1/2)k),1 <i <M, 1 <j <N, with
h = 2n/M, k = n/N.

The discrete equations are centered:

@4a) U= Uy D+ V=V, Dk=Dy, 1<i<M 1<j<N,
Q45) (Uyjpr = Uk = (Viyy ;= Vi)lh=Ey 1<i<M, 1<j<N-1;

here D,; approximates d((i — 1)h, (j — 1/2)k), and E ;7 approximates e((i — 1/2)h, jk).
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Notice that &, e in (A) have been replaced after staggering by #/2, k/2, rather than by
h, k. The boundary conditions become

(2.52) Vio =0 -Dh), 1<i<M,
(2.5b) Vin =V -Dh), 1<i<M

and the periodicity condition becomes

(2.62) Uy ;= Uy pr 1<j<N,

».

(2.6b) Vii=Vusry O<j<N

Conditions (2.5), (2.6) leave M(2N — 1) unknowns, to wit, Uy, | Si<M, 1 <
J<Nyand Vy, 1 <isSM 1<j < N — 1, while (2.4) yields M(2N — 1) linear alge-
braic equations for them. We should expect from the situation in the continuous prob-
lem that the matrix of the linear system (2.4) has a one-dimensional null space. The
resulting indeterminacy can be eliminated either by prescribing the value of Uj; at an
arbitrary index (iy, /), or by some alternative procedure which will arise naturally in

Section 3; the necessary discrete compatibility condition will also be discussed there.

3. Solution Algorithm. Our plan shall be to rewrite (2.4)—(2.6) in a convenient
block matrix form, to eliminate ¥V, then to bring the remaining block matrix operating
on U to the form of a discrete five-point Laplacian, and finally to formulate a fast
direct algorithm to solve for U. After this, V obtains from U by a straightforward,
fast computation.

Block Matrix Equation. We start by rewriting the discrete linear system (2.4)
in block matrix form. Let U;=(U, ;, U, ;, ..., UMJ)*, Vi=(Vip Voo VM,]-)*,
where ( )* denotes (conjugate) transpose, so that U;, V; are column vectors corre-
sponding to a horizontal mesh line. D, and Ej are introduced in similar fashion. Also
let p = k/h. With this notation, (2.4) can be written as

(3.1b) U =U]-—T*V].+kE]., 1<j<N-1;
here p ~!T is the familiar backward difference operator,
1 _11

-1 1

1 1lyxm

— -

acting on the M-periodic vectors U, V; and —p ~!T* is the corresponding forward
difference operator.
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From (2.5) we have that V, and V,, are known; accordingly, we redefine D, as
D, + k7'V, in the first one, and Dy, as Dy, — k~1V, in the last one of the equa-
tions (3.1a). After these changes of notation and a change of order, the vector equa-
tions (3.1) can be put into the block matrix form

N N-1
—/W\ e N —— - . —
-1 I | T* U E,
|
N-1 :
. I .
— | *
IR Y ra ] e By
: -1 \£
‘ |
N |
| I
. T I L Vy_y | Dy _

where I is the M x M identity matrix. This form is roughly analogous to writing
(2.1a, b) in reversed order,

, 9/dy —afox|lu e
@1 ofox  afoyllv | |af

We notice that the matrix in (3.3) has only four nonzero diagonals of M x M
blocks and that the blocks are at most scalar tridiagonal. Furthermore, all the non-
zero entries are *1 or £p. In the present form, however, we cannot take full advan-
tage of the extreme sparsity and simplicity of the matrix in order to obtain a solution
method comparable to fast Poisson solvers.

Before bringing (3.3) to a more advantageous form we remark that its matrix
indeed has a one-dimensional null space: the sum of the MN rows in the lower half of
the matrix is zero. The corresponding compatibility condition that XD, = 0 is the
discrete counterpart of (2.3c).

Decoupling of U and V. 1t is a well-known fact that each of the functions «, v
which satisfy (2.1) will also satisfy a Poisson equation obtained from (2.1) by elimi-
nating the other dependent variable by cross-differentiation. This suggests the attempt
to eliminate V in system (3.3) in order to obtain a linear algebraic system for U alone.
The matrix of this system will be similar to a discrete Laplacian, and to it we shall be
able to apply fast solution techniques.

The elimination of ¥V proceeds as follows. In system (3.3) add the Nth block
row to the (V + 1)st, then the (N + 1)st to the (V + 2)nd and so on. This discrete
summation procedure is analogous to integration with respect to y in (2.1a). The lower
part of the system thus becomes
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N N-1
A——— N\
T 1 Uy D,
N2 | A | DA T
. . . | I .
: | :
T---T T ol Vy_, >"p,

N N-1
P ar 1 r g
N—l{ 2 [, E ]
S _-___
3.5 N-1 ' -
G-5) { R | Iy_, D' |’
e N A s
1 T-+T {00 kZle

here U= (U}, ..., Up)*, V=(V],...,Vy_)* Iy_, is the M(N — 1) x MV — 1)
identity matrix, the definitions of P, Q and E’ are easily read from Egs. (3.3), while
those of R and D' follow from (3.4). In particular, note that D' and E' contain the
factor k.

From (3.5) it follows that

(3.6a) PU+QV=E,
(3.6b) RU+ V=D,

where we omit for the moment the last vector equation. Substituting V from (3.6b)
into (3.6a), we obtain

(3.7) (P-QR)U=E -QD',
where
N
38 TT*
3:8) OR = . N-1,
IT* --- TT* 0

since @ is block diagonal with constant equal blocks and T*T = TT*. Attaching now
the last equation of (3.5) to (3.7) yields

(3.9) [—I; - 9 1—;} U =F - _f_D_]
k2 D

or, changing sign in all but the last equation,
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(1 -1 7 Frr*
I
' . . . U
1 -1| | T*
K . . . oJ Lr - - - T
(3.9 T*D, — E, )

T*(D, + D,) - E,

N-1 '
T*Zl D~ Ey_,

N
_Zl D;

Let § = TT*. Notice that
(3.10) S=p(T+T*
or, in the familiar notation for tridiagonal matrices,

(3.10") T=p(-1,1,0), T*=p0,1,-1), S=p*-1,2, 1)

this is a slight extension of standard notation: because of periodicity these matrices are
actually circulants, rather than tridiagonal proper (cf. (3.2), (3.10)). Thus, S corre-
sponds to a central second difference, carrying further the analogy with the continu-
ous case. However, (3.9") is still not in a form suitable for fast solution.

Discrete Poisson Equation for U. This form is now easily achieved. First, mul-
tiply the last block row by T*. Then subtract the second block row from the first,
the third from the second, and so on up to and including the last one; the new last
row is obtained by adding all the new rows, from 1 to (¥ — 1), to the last row. Fi-
nally, the new last row is taken as the first row of the system and all the signs are re-
versed, yielding

S+1 -1
-1 S+ -I
) ' 5
I S+ -1
TOSHI
G.11) - - 4 oA
T*D, - E, B,
T*D, + E, —E, B,
=k . = ;

T*Dy_y +Ey_, ~Ey_,

T*Dy + By, By
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the vector B is introduced for future notational convenience.

We notice that the matrix in (3.11) has almost, but not quite the form of a dis-
crete Laplacian (compare for instance Buzbee, Golub and Nielson [5], for Laplacian
with Dirichlet, Neumann and periodic boundary conditions). The matrix is symmet-
ric and nonnegative semidefinite; in fact, U,.]. = const satisfies the homogeneous sys-
tem. The system would be positive definite if any one diagonal element actually
exceeded the sum of the off-diagonal elements in the same row (e.g., Collatz [6,
pp. 43—47]). This immediately suggests that we make use of the possibility of pre-
scribing Uio,jo = u,, i.e., that we increase the element at the position Mj, + i, along
the diagonal by an arbitrary amount a > 0, and add au,, to the right-hand side of that
equation at the same time. We shall call the system thus modified (3.11a) for future
reference.

The system (3.11a) could now be solved by modifying any one of the different
methods or combination of methods available for Poisson’s equation, as reviewed for
instance by Buzbee, Golub and Nielson [5], Dorr [9], or Widlund [32]. In this sense,
the elimination of ¥ is analogous to a single step of odd/even reduction as proposed
by Hockney [21], [22], although the role of this step is more crucial in the present
context. We describe in the sequel the particular fast algorithm chosen to solve (3.11a).

Fast Direct Solution for U. Essentially, our algorithm is based on the one de-
scribed in greater generality by Buzbee, Golub and Nielson [5] as matrix decomposi-
tion. It relies on the fact that the eigenvalues A\, and eigenvectors &, of S are known,
ie., that

St = N
for
(3.12a) e = 20%(1 —cosQa(k — /M), 1<k<M,
(312b) Ek — M—1/2(1’ e—27ri(k—1)/M’ e, e—21ri(M—l)(k—l)/M)*’ 1<k<M,

where i is the imaginary unit.

Our algorithm deviates, however, from general matrix decomposition because the
first and last diagonal blocks in (3.11) differ from all the other blocks and because the
matrix (3.11), without suitable modification, is singular. For the sake of simplicity, we
shall describe the actual algorithm used directly in a self-contained manner.

Let Q be the matrix whose columns are £,8,, ..., &y and let A =
diag(A;, A,, ..., Ays). Then, with our normalization of &>
(3.13) 0*Q=1  Q*SQ=A.

Introduce I~Jj, ﬁ; by
(3.14a) U, = U,
(3.14b) B,=QB, 1<j<N,

where B; are the subvectors on the right-hand side of (3.11).
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Clearly, (3.14) corresponds to a discrete Fourier transform in the x-direction.
Notice in particular that

M —
U, = zl U,;INM,
i=

where (7] , denotes the first component of the vector ﬁj.
Premultiplying (3.11) by a block-diagonal matrix with all the diagonal blocks
equal to Q *, and using (3.14), we obtain

A+T -1 16,1 [3]
-1 A+2 -I U, B,

(3.15)
-1 A+2 I
_ + ~ ~
I A+I|Ty] By

.

In order to turn the matrix in (3.15) from block-tridiagonal with diagonal blocks
into a tridiagonal matrix, it suffices to reorder the components of Uand of B by ver-
tical lines rather than by Fourier transformed vectors of horizontal lines, i.e., let

(3.16) 0;=Ux B;=B, 1</<NI1<k<M

Here again the first subscript denotes the vector partition and the second denotes the
component of the subvector; this notational convention is different from the mesh
notation introduced in Section 2 and used in (3.1). Using the reordering (3.16),

Eq. (3.15) becomes

B.17) -4,0, =8, 1<k<m,
with

¢, 1 .

1 a, 1
1 a 1
(3.18a) Ay = * ,
| a 1

| 1 ck_ NXN

(3.18b) @, = =2 -, = 2p*[cos@n(k — 1)/M) - 1] -2,

(B.18¢) ¢, =-1-% =202 [cosQ2n(k — )/M)— 1] =1, 1<k<M;

here the ¢, come from the first and last diagonal block in (3.15).

It is easy to check that each A, is nonsingular, except the first, which has a
one-dimensional null space. This reflects the fact that we have not yet utilized a side
condition eliminating U = const as a null vector of (3.11), or of (3.15). As in the



A FAST CAUCHY-RIEMANN SOLVER 595

discussion of (3.11a), we can deal with the singularity of 4, by prescribing any com-
ponent of le, 01 o 523 this means prescribing Ul o = Ufo’ L= 1_1 ’10 M,
rather than one given mesh value U,

igdo”
(3.15a), (3.17a) and (3.18a).

The LU factorization of the tridiagonal matrices in (3.18a) is performed next,
say A, = L, Uy, storing the nontrivial entries of L, and U,. The diagonal elements
of L, and the superdiagonal elements of (I, are identically 1, while the subdiagonal ele-
ments of |, and the diagonal elements of ([, are reciprocals of each other. Hence only
the diagonal elements of ( Uy in fact need to be stored.

Havmg computed B and thus B, from the original data, we can solve for U and

Again we call the suitably modified systems

hence for U. The computation of B from B and of U from U involves matrix multi-
plication by Q* and by Q , respectively. Since these correspond to a direct and an in-
verse Fourier transform, they can be performed efficiently by a fast Fourier transform
(FFT) algorithm. The algorithm used was the one published by Cooley, Lewis and
Welch [7], modified to operate in the real.

Summary and Programming Considerations. The solution algorithm developed
in this section reduces in practice to the following:

(i) From the data of the problem D, E, compute

B, = k(T*D, - E,),

B, = k(T*D]. +E_,-E) 2<j<N-1,

By = k(T*Dy, + Ey_,),

where D, Dy, include the boundary data V,, V, respectively. The number of opera-
tionsis n, = 4MN.*** Notice that, after shifting of the blocks E;, B can overwrite
E, since E is no longer needed.

(ii) From the B, above compute ’]:’;] (cf. (3.14b)) by

B;=Q*B, 1</<N,

using an FFT, with n, = 2MN log, M real operations. Although FFT algorithms exist
which use MN log, M operations for real transforms, we did not feel that in our appli-
cation actual execution time would be much improved by the utilization of such an
algorithm. In this step, B can be stored in the previous location of B. Note that ﬁ;
is complex with pairwise complex conjugate components.

(iii) Solve (3.17a) for the U « by forward elimination and back substitution,
using the stored entries of the [ U factors. One solution, for fixed k, requires 8/V real
operations, since the complex conjugate components of ﬁ; enter nonsymmetrically into
the [ U factorization of (3.17a), and we have to operate separately on the real and the
imaginary parts of B. However, the fact that the components of ﬁi are also complex

***All operation and storage counts are given to highest order. We do not distinguish be-

tween addition, multiplication and division, and we do not assume that accumulation of products
is particularly efficient. Furthermore, we take h = k, or p = 1.
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conjugate allows us to solve only M/2 + 1 systems, so that the operation count for this
step is ny = 4MN real operations. Notice that no reindexing of B as indicated by
(3.16) is actually necessary, and that at this stage U can overwrite B. The shifting of
B elements and U elements required to use the LU subroutine is relatively fast.

(iv) From the ka computed in (iii) obtain U (again with no need for reindexing)
by carrying out (3.14a) with another application of the FFT, in n, = 2MN log, M real
operations, and with U stored instead of 0.

(v) Compute V from U obtained in (iv), using (3.1a). This requires ny = 4MN
operations. Notice that in this recursion V does not depend on Uy, D, since V,; is
known. Using (3.1a) as a backward recursion would yield independence of V on U,
D,, since V,, is also known. This redundancy, however, is only épparent and compu-
tations with (3.1a) used as either forward or backward recursion yielded results with
the same accuracy, which only depended on the accuracy of U.

The final operation count is

5
n=73y n,=4MN(3 + log,M),
1

to obtain both U and V at all the grid points at which they are defined.

The storage requirement for the L, U factors is s, = MN/2, using again the fact
that we only solve for half the number of components of U; the storage requirement
for the right-hand sides D, E, is s, = 2MN; and these locations are successively over-
written until U, V are stored in them. Hence, the total storage requirement is s =
s, + s, = SMN/2.

We conclude this section with a diagram of the algorithm:

E FFT ~ R

V ) ~.—)A =Y. A
N o B 2MN log,M B 0" Be Ve

D, E;, V,,

Ry H U - v

0 7 2MNlog,M 7 4MN '/
here E stands for evaluations by linear recursion, FFT for an application of the Fast
Fourier Transform, R for reindexing, and LU for factorization. The ranges of the in-
dices are 1 <j <N, 1 <k <M, and the operation counts are given under the corre-
sponding step of the algorithm.

4. Numerical Results. In this section we shall present results of test computa-
tions for model problem (2.1)—(2.3). The results will provide evidence for the short
computation time required by the method, for its second-order accuracy and for its
insensitivity to errors in the data.

The experiments consisted in evaluating analytically d, e in (2.1) for known
u, v, and then comparing the numerical solutions U, V with the correct analytical
u, v. The computations were carried out on an IBM 360/95 computer, with a
FORTRAN 1V, level H compiler, the code optimization parameter OPT being set to
the value OPT = 2. Double precision arithmetic was used throughout our numerical
experiments. Test comparisons on an Amdahl 470V/6 computer and on a CDC 6600
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gave entirely similar results; the program is currently being developed into a package
and we expect to test it on other computers as well.

Initially, three different versions of the program were run. The first version
solved the positive definite modification (3.11a) of the system (3.11) by Cholesky
factorization. It is denoted by C in the tables, and given for orientation purposes
only. This version required much longer computer time; moreover, results were less
accurate than with the other two versions, since the larger number of arithmetic oper-
ations introduced more round-off error.

The second version utilized diagonalization by the discrete Fourier transform as
given in (3.14) and the reindexing given in (3.16), but did not use the FFT in steps
(ii) and (iv) of the algorithm. It is thus somewhat comparable to Hockney’s original
method [21] and is also included for comparison purposes. Its numerical results were
equal at least to within three significant digits to those of the third version and are
listed separately only in Table III. This version is denoted by P in the tables.

TaBLE I

CPU execution times for the versions C, P and F on IBM 360/95 with compiler
optimization OPT = 2. The number of points is MN = M?/2.

M c p F
16 .07 .09 .01
32 .88 .65 .04
64 14.35 5.17 .13

128 .51

256 2.11

TABLE II

CPU execution times for version F with different optimization levels, OPT = 0,
1,2, 3, on IBM 360/95, Amdahl 470V/6, and CDC 6600. The compiler used on

the CDC computer was FTN 4.6; on the other two computers, a FORTRAN 1V,
level H compiler was used.

M 360/95 470vV/6 6600
OFT/0 1 2 3 OPT/0 1 2 3 OPT/0 1 2

16 0.02| 0.02} 0.01f 0.00 0.02]| 0.02| 0.01| 0.01{}0.059}{0.031}0.025

32 0.08] 0.07] 0.04| 0.03 0.09| 0.07| 0.05| 0.06}/0.232}0.120{0.093

64 0.35} 0.20} 0.13| 0.13 0.38] 0.30| 0.23| 0.24||0.969{0.494]0.382

128 1.40| 0.88} 0.51( 0.52 1.53| 1.25| 0.96| 0.96(|4.065)2.034]1.615

256 5.91| 3.70f 2.11| 2.13 6.52| 5.46( 4.07| 4.14

The third version is the one actually described in the summary of Section 3 and

listed in Appendix B; it represents the proposed method. This version is denoted by F
in the tables.
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Tables I and II contain timing results. These are essentially independent of the
solution, and depend only on the method, or program version, and on the number of
points. Table I compares CPU execution times for the three program versions C, P
and F on the IBM 360/95 computer with compiler optimization OPT = 2. As the
number of points increases, the advantages of version F become more and more obvious.
We can also see clearly that the execution time for version F is proportional to the
number of points MN.

Table II gives CPU execution times for version F with different optimization
levels, OPT = 0, 1, 2, 3, on the IBM 360/95, Amdahl 470V/6, and CDC 6600 comput-
ers. This is meant to give an idea of the order of magnitude of running time improve-
ments which could still be achieved by code optimization. We notice that timing with
OPT = 3 is not superior to OPT = 2.

The other tables are organized as follows: the first column contains the known
test solution (u, v), and for Table V only, its L, and L., norms. The norms used for
u are the continuous norms

=L (m(m e
(4.12) Iy == [ 7T e, vy ax ay,

(4.1b) lull, = sup lu(x, y)I,
o<x<2m,0<y<mw

and similarly for v. The corresponding L, and L., norms for the vector (i, v) are de-
fined in the obvious way, with u2 + v? as the integrand in (4.1a) and max{|ul, |v|} as
the maximand in (4.1b). These norms are given in order to compare the corresponding
norms of the computational error with them.

The second column contains the version of the program used, specifically version
C or version P/F. The third column contains the value of M, the number of points in
the x-direction. All reported computations were carried out with equal mesh spacing
in the x-and y-directions, i.e., # = k = 2n/M. Hence, N = M/2 always, and the total
number of points equals M? /2.

The remaining columns contain the absolute errors in (u — U, v — V). The
norms used here are the discrete counterparts of the norms in the first column:

2= M N
(4.23) l2(U) - Zi=1,i=l U?]/MM
(4.2b) 1. (U) = maxjL, LUl

and similarly for ¥V and (U, V). For simplicity, in the column headings, as well as in
(4.2) above, we used I,(U), instead of I,(u — U), and so on. The grid values of (, v)
entering (4.2) are those identified in Section 2 and, therefore, are taken at different
locations for u than for v.

Table III shows that for u, v which are combinations of linear and of trigono-
metric functions, and thus eigenvectors of the discrete operator in (3.11), the results
are essentially exact to machine accuracy (in double precision arithmetic).
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TaBLE III

Numerical results with versions C, P and F of the algorithm for a number of sim-
ple test cases. The labelling of rows and columns is explained in the text.

3¢ 2, (0) 2,V) £, U,V 2, (0) L,(V)

u = sin{y), v =y sin(x) | C 8]2.6351 -14 |2.5457 -15 [1.9989 -14 [2.8144 -14 |6.6613 ~-15
16(2.4364 -13 |3.2929 -14 [1.7934 -13 |2.5881 ~-13 |7.6605 -14

32{2.3308 -12 [3.1543 -13 |1.6889 ~-12 |2.4685 -12 |6.7857 -13

642.1272 -11 [2.6296 -12 [1.5273 -11 |2.2408 -11 |5.5140 -12

P 8|3.5286 =-16 |3.4851 -16 |3.5100 -16 [8.7430 -16 |6.6613 -16

16{5.2001 -16 |5.0922 =-16 [5.1500 -16 [1.4017 =15 [1.5543 -15

32|2.7386 ~-15 [1.4532 ~15 [2.2120 =-15 |6.7862 =-15 [5.1070 ~-15

64(1.4957 -14 [5.2021 -15 [1.1267 -14 |2.8247 -14 [3.2488 -14

F 8(2.7088 -16 |3.4397 -16 [3.0436 ~-16 (5.8287 <-16 |6.6613 -16

16(6.3077 -16 |3.3889 -16 [5.1554 -16 |1.5821 ~-15 |6.6613 -16

32|2.5606 -15 [6.5149 =-16 |1.8946 ~-15 |4.3438 -15 |1.5632 -15

64|1.4255 =14 {2.2937 =-15 |1.0286 -14 |3.9314 -14 [7.7934 -15

v =y sin(x), v =sin(y) | C 8|/2.3764 -15 |2.5357 -15 {2.5870 -15 |4.2188 ~-15 |6.4254 -15
16(1.7252 -14 |2.2782 -14 |2.0024 -14 [3.5083 -14 |5.8356 -14

3211.4271 -13 [1.9268 -13 [1.6875 -13 |2.9177 -13 [5.0736 -13

64[1.0832 -12 |1.5755 -12 |1.3481 =-12 [2.2524 ~-12 [4.2358 -12

P 8[1.8762 -15 |2.5357 -15 |2.1834 -15 [4.6629 =-15 |9.7561 -15

16/1.8400 -15 [4.9115 -15 |{3.6143 -15 {6.0091 =-1i5 |2.5924 -14

32{6.1500 -15 |3.9430 -14 |2.7782 -14 [2.7145 -14 |3.2709 -13

642.1996 -14 |1.7951 -13 [1.2690 -13 |7.902C -14 |2.0683 -12

F 8(2.0791 -16 [1.9369 -16 [2.0194 -16 |6.6613 -16 |[5.6899 ~-16

16{3.7749 -16 |2.0176 =-14 |1.3785 -14 |8.8818 -16 |3.1225 -14

32(3.6763 -15 |1.3516 -13 |9.4054 -14 [7.1054 -15 |2.0578 -13

64{3.5572 -15 [1.0348 -12 |7.2592 -13 |9.7145 -15 |1.4948 -12

u = ylsinea + 0.001 , c 8|2.2678 -14 |1.4387 -14 [1.9560 -14 |5.3290 -14 |3.5527 -14
v =y* + 0.001 16|8.0236 -14 |8.2059 -14 [8.1092 -14 |1.9540 -13 |2.4158 -13
32/6.6951 -13 |7.8598 ~-13 [7.2820 =-13 [1.6165 =-12 (2.3128 -12

P 8[1.1175 -14 [8.9470 -15 [1.0279 ~-14 [3.6193 -14 |2.1316 -14

16|1.1179 -14 |1.5689 -14 (1.3750 -14 [5.4622 -14 [1.0303 -13

32(4.1173 -14 [1.3525 =-13 |9.8620 -14 |2.5047 -13 [1.4211 -12

F 8(7.3201 -15 [1.1531 -14 [9.3597 -15 |1.4655 -14 [3.1974 -14

16/1.6285 -14 |2.5126 =-13 [1.7206 =-15 |3.1974 =-14 |5.2558 -13

32{8.2406 =-14 [7.6397 -13 |5.3471 =-13 |1.8474 -13 |1.4246 -12

Table IV presents results for slightly perturbed boundary conditions v(O(x),
v(x), u(x,, ¥,) and right-hand sides d(x, »), e(x, ). Notice that errors in the com-
puted ¥V are bounded by the errors in the prescribed boundary data v(®), v(1) in the
absence of other errors. Also observe that the /, error in U is larger when d, e are
perturbed than when v(®) and (1) are perturbed by a comparable amount.

Table V contains results for a number of more severe test cases, in which the discre-
tization error is nonnegligible. For comparison, an additional last column is included in
this table, which gives a theoretical error bound e(u) on the [, -discretization error in u.
This bound is explained and proved in Appendix A; the values of the constants a, b, a-and
B introduced there were chosen so as to optimize the bound, and the constants Cg, Cr in
(A.14), (A.15) were computed explicitly. We observe that the numerical errors are indeed
lower than the bound in all cases in which u, v are sufficiently differentiable. In fact, the
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TABLE IV

Numerical results with the proposed algorithm (version F) for problems with
slightly perturbed boundary conditions v{®)(x), v{!)(x), u(x, ¥,) and right-hand
sides d(x, ), e(x, ). The subscript (), stands for the correct values.

M 2, (V) ) 2,(0,V) 2_(0) (V)
u = sin(x) sin(y), v = sin(4x) 16]2.1270 -2 [7.0594 -2 |5.0665 -2 |4.1757 -2 |1.0958 -1
32{5.1732 -3 [1.6540 -2 [1.2091 -2 [1.6793 -2 |2.6040 -2
64(1.2052 -3 [4.0377 -3 |2.9790 -3 [5.2345 -3 |6.4284 -3
128(3.2417 -4 |9.9953 -4 [7.4064 -4 [1.4537 -3 |1.6021 -3
256|8.1071 -5 |2.4878 -4 |1.8473 -4 [3.8233 -4 |4.0020 -4
d=1.1d, , e =1l.le; 16(6.8127 -2 |1.4141 -1 [1.0866 -1 |1.0417 -1 |2.1951 -1
32(5.6760 -2 [8.1393 -2 |6.9773 -2 |1.0102 -1 |1.2814 -1
64(5.4525 -2 |6.6998 -2 |6.0982 -2 |1.0028 -1 |1.0667 -1
128(5.4003 -2 |6.3252 -2 [5.8773 -2 |1.0009 -1 [1.0138 -1
256(5.3874 -2 |6.2204 -2 |5.8172 -2 |1.0003 -1 |1.0007 -1
vO [0, @ gD 16[3.8156 -3 |7.7503 -2 |5.3018 -2 |6.2641 -3 |1.1061 -1
32(1.4438 -2 |2.6059 -2 |2.0885 -2 |4.7086 -2 |6.1123 -2
64(1.8546 -2 [1.8548 -2 |1.8547 -2 |7.5598 -2 |6.9934 -2
128(1.9594 -2 |1.8582 -2 [1.9099 -2 |8.8792 -2 [8.2510 -2
256(1.9858 -2 |1.9146 -2 |1.9507 -2 {9.4717 -2 |9.0694 -2
a=1.01d,, e=1.01 e 16|2.4564 -2 |7.7675 -2 |5.6013 -2 |4.7747 -2 [1.2057 -1

32(9.1866 -3 |2.3026 -2 {1.7323 -2 |2.4293 -2 |3.6250 -2
64/6.1478 -3 |1.0333 -2 |8.4702 -3 |1.3836 -2 |1.6453 -2
128(5.5561 -3 [7.2249 -3 |6.4382 -3 {1.0738 -2 (1.1580 -2
256(5.4252 -3 [6.4446 -3 [5.9547 -3 [1.0026 -2 [1.0367 -2
16/1.9396 -2 [7.1245 -2 |5.0689 -2 [3.8007 -2 |1.0968 -1
32|3.2585 -3 [1.7228 -2 [1.2210 -2 |1.0437 -2 [2.6091 -2
w9 =10 véo), viPo0 vél) 64]7.3104 -4 |4.9289 -3 [3.4965 -3 |2.8843 -3 [8.8601 -3
128[1.6720 -3 |2.3682 -3 |2.0472 -3 [7.5755 -3 |8.5085 -3
256(1.9138 -3 |2.0042 -3 [1.9594 -3 [9.1283 -3 [9.1034 -3

u = sin(x) sin(y), v = sin(4x)

u = sin(x)sin(y), v = sin(4x) 16]2.2784 -2 |7.8326 -2 |5.6034 -2 [4.4085 -2 |1.2068 -1
& =1.01d_ , e=1.01¢, 32{7.7732 -3 [2.2701 -2 [1.7407 -2 [1.7937 -2 [3.s301 -2
v o 101 w0, yWoy gy (1) | 64[5-3611 -3 13088 -2 |8.6658 -3 |1.0386 -2 |1.6493 -2
128]5.0612 -3 [8.0548 -3 |6.7151 -3 [1.0096 -2 |1.1618 -2
ulxgryg) = 1.01 ug(x4.¥,) 256|5.0134 -3 [7.3146 -3 [6.2660 -3 [1.0024 -2 [1.0404 -2
u = sin(x) sin(y) 16(3.2273 -3 |5.9183 -2 [4.0498 -2 [6.2089 -3 [1.1072 -1
v = sin(4x) sin (dy) 32{8.0409 -4 [1.3515 -2 [9.4190 -3 [1.5927 -3 [2.6172 -2
64[2.0085 -4 |3.2789 -3 [2.3045 -3 [4.0074 -4 |6.4545 -3
128]5.0203 -5 |8.1045 -4 |5.7193 -4 |1.0035 -4 [1.6082 -3
256|1.2550 -5 12.0164 -4 |1.4258 -4 |2.5096 =5 |4.0171 -4
da=1.01d,, e=1.01¢, 16]8.2597 -3 |6.5120 -2 |4.4892 -2 |1.5891 -2 |1.2183 -1
e L yor v, (@ g, )] 3258123 -3 [lesie -2 |1.3738 -2 |1.1513 -2 |3.6434 -2

64|5.2030 -3 [8.3918 -3 |6.9572 -3 |1.0381 -2 |1.6519 -2
ulxgryg) = 1.01 ug(xy¥y) 1285.0508 -3 [5.8582 -3 |5.4663 -3 [1.0006 -2 [1.1625 -2
256]5.0128 -3 |5.2234 -3 |5.1188 -3 |1.0024 -2 |1.0406 -2

16{5.3550 -2 {1.1855 -1 |8.,9935 -2 [1.0302 -1 }2.2179 -1

d=1.1 dc ' e =1.1 e,
32|5.0885 -2 |6.6507 -2 |5.8963 -2 [1.0079 -1 |1.2879 -1

() _ (0) (1) _ (1)
v 1.1 vy vt = lldv, 64{5.0221 -2 |5.4407 -2 [5.2323 -2 [1.0020 -1 [1.0710 -1
ulxgr¥g) = 1.1u_(x,¥g) 128(5.0055 -2 [5.1287 -2 |5.0670 -2 |1.0005 -1 |1.0177 -1

2565.0014 -2 |5.0418 -2 |5.0216 -2 [1.0001 -1 [1.0044 -1

errors become very nearly equal to the bound in some such cases (e.g., u = y sin(x),v =
»? sin(x)), which seems to indicate that the bound is rather close to being sharp. The
theoretical bound provides also an indication of error magnitude even in some cases
where the data are not sufficiently differentiable (e.g., u = y* sin(8x), v =

xQ2n — x) sin(8y); u = v = x(w — x)(2m — x) sin(y)).
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TABLE IV (Continued)

M 2, (0) 2, (V) 2, (0,V) 2 (0) 2 (W)

u = sin(x) sin(y) 128]6.7163 -3 |3.5965 -3 |5.3989 -3 |3.6605 -2 |2.7103 -2

v = sin(4x) sin(dy) 256(6.9041 -3 [4.7732 -3 |5.9392 -3 |6.3567 -2 [4.7378 -2

v(o) = v‘(:O) + 0.1 sin(32x)

v o v 4 0.1 sin(32w)

u = sin(x) sin(y) 16]3.2180 -2 |7.0895 -2 [5.3831 -2 |7.2440 -2 |1.7657 -1

v = sin(4x) sin(dy) 32|3.2461 -2 |4.3007 -2 [3.7981 -2 |8.1802 -2 [9.5004 -2

vi0) o vf(.°’+ 0.1sin(31x) 64]7.4420 -3 |4.5354 -3 |6.4849 -3 |4.1426 -2 [1.8729 -2

v = vy 0 1sin @i 128[6.2894 -3 |3.7044 -3 |5.5055 -3 |5.2501 -2 |2.7606 -2
256]7.0221 -3 [4.9065 -3 [6.0615 -3 |6.9534 -2 |4.8358 -2

u = sin(x) sin(y) 16[3.8439 -2 [8.0665 -2 |6.1843 -2 [1.1296 -1 [1.5208 -1

v = sin(4x) 32{3.2860 -2 |4.4139 -2 |3.8780 -2 |9.8528 -2 [9.2006 -2

)
© = v 4 0.1 sin(310) 64/7.5512 -3 [5.1109 -3 |6.4665 -3 |4.6641 -2 |1.8363 -2

¢ 2@ 401 sinein 128]6.8369 -3 |3.7503 -3 |5.5256 -3 [5.3952 -2 |2.7601 -2
2567.0226 -3 [4.9087 -3 |6.0626 -3 |6.9553 -2 |4.8357 -2

u = y? sin(3x) 16]1.1961 5.7240 -1 |9.5706 -1 |3.6459 1.5927

v = x(2 -x) sin(3y) 32|2.9682 -1 |1.4061 -1 |2.3461 -1 |1.0109 4.1008 -1

vl = ¢ 4 0.1 sin(ain 64[7.3896 -2 [3.3020 -2 |5.7534 -2 |2.6792 -1 [1.0273 -1

e 2y 4 o1 singatn 128[1.9594 -2 [8.9053 -3 [1.5258 -2 |1.0993 -1 [3.2782 -2
2568.3894 -3 |5.3044 -3 [7.0244 -3 [8.3911 -2 [4.8979 -2

u = y? sin(4x) 16|2.2889 9.2522 -1 |1.7871 5.1558 2.8077

v = x(2 -x) sin(4y) 32{5.5349 -1 |2.1416 -1 |4.2463 -1 |1.7679 6.7504 -1

V(@ = (0 4 0.1 sin(ain 64|1.3716 -1 [5.1032 -2 |1.0410 -1 |4.9607 -1 [1.6534 -1

v® 2D 4 0 sinGin 128[3.4841 -2 {1.3094 -3 |2.6397 -2 |1.6413 -1 |4.1227 -2
256]1.1054 -2 |s.8169 -3 [s.8422 -3 [9.8365 -2 [4.9620 -2

The formal truncation error of the finite-difference scheme, in the interior as
well as on the boundary, is O(h? + kz);T hence, we expect that the scheme will pro-
duce second-order accurate results. A good way of testing this numerically is by com-
puting the ratio

IUER2E — ) U™ -y,

and similar quantities for v and (4, v); here || || is either the [, or the [, norm of
(4.2). For sufficiently small 4, k and twice continuously differentiable (i, v) these
ratios should be very close to 4 if the method is indeed second-order accurate, and it
should be close to 2 if the method is first-order accurate.

The indicated ratios are computed and entered in additional rows in Table V; the
entry in column 3 indicates the values of M and 2M, rather than of % and %/2, to
which the norms whose ratio was taken correspond. The interesting result is that for
those cases tested the method seems to have second-order accuracy even when v is
merely continuous and « once continuously differentiable and that it is first-order ac-
curate when both u and v are merely continuous. The continuity of u, v is given in
standard notation as a column to the left of the usual first column;ie., u, v € C°,
Cl, C?, ..., C™, indicate the number of continuous derivatives of u, v. Continuity is
understood for u, v and their derivatives as extended x-periodic functions.

T A more detailed discussion of accuracy appears in Appendix A.
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TABLE V

Numerical results indicating the order of accuracy of the proposed algorithm (ver-
sion F) and discretization procedure.

w2y %, (V) 5,(0,v) | 2, () 2 (V) e ()
uec™ | u =y sin(x) F| 8 |4a.015 -2{2.879 -2|3.573 -2|/8.041 -2|4.879 -2[4.455 -1
ec™ | v = y2sin(x) 16 [1.049 -2/7.043 -3[9.049 -3|2.794 -2[1.315 -2|1.114 -1
lul = 1.2825 32 |2.657 -3|1.722 -3|2.254 -3|8.124 -3[3.414 -3[2.784 -2
Ivi,= 3.1210 64 |6.664 -4|4.248 -4|5.607 -4|2.193 -3|8.566 -4]6.961 -3
lul = 3.1416 8/16 |3.826 4.088 3.948 2.878 3.711
Ivl = 9.8696 16/32 [3.950 4.090 4.016 3.440 3.851
32/64 {3.987 4.054 4.019 3.706 3.986
uec™ | u =y sin(4x) F| 16 [1.7589 -1]|2.5573 -1]|2.1684 -1]4.9751 -1|5.5634 -1|1.426 +1
vec™ | v = y®sin(4x) 32 |4.326 2|6.1881 -2|5.292 -2{1.573 -1|1.4699 -1|3.564
1.2825 64 |1.083 -2/1.5133 -2|1.3123 -5|4.6187 -2(3.6885 -2|8.910 -1
3.1210 128 |2.7087 -3]3.752 -3|3.268 -3|1.2895 -2[9.2309 -3|2.227 -1
3.1416 16/32 |4.066 4.152 4.097 3.169 3.805
Ivi_= 9.8696 32/64 [3.996 4.069 4.033 3.407 3.964
64/128[3.997 4.033 4.015 3.582 3.996
bec® | u = y sin(8x) F |16 [1.0235 [1.0575 -1|7.579 -1|1.6347 [1.1188 -1|2.103 +2
e | v = yZsin(sx) 32 [1.6710 -1[2.973 -1[2.3912 -1[5.6803 -1|7.6216 -1[5.257 +1
tul,= 1.2825 64 |4.0218 -2{7.088 -2[2.739 -2|1.7565 -1|1.856 -1[1.314 +1
Iviy= 3.1210 128 |9.9941 -3[1.7449 -2|1.419 -3|5.0463 -2|4.6501 -2|3.286
tul = 3.1416 256  |2.4956 -3{4.3369 -3[3.835 -3|1.4018 -2[1.1612 -2[8.215 -1
Tvl = 9.8696 16/32 [6.125 3.5571 -1[3.141 2.878 1.467 -1
4.155 4.194 4.1663  |3.234 4.106
4,024 4.062 4.045 3.481 3.992
4.005 4.023 4.015 3.600 4.004
uec®| u = y sin(léx) F 16 |5.8205 +1{3.1886 +1 [4.7763 +11.3081 +2[6.0451 +1 (3.290 +3
ece| v = ¥?sin(iex) 32 [1.0321  |5.4585 -2 [7.4243 -1|1.7140 |5.6038 -2 [8.224 +2
lul,= 1.2825 64 |1.5734 -1{3.2060 -1 [2.5130 -1|6.0606 -1|8.8298 -1 [2.056 +2
Ivi,= 3.1210 128 [3.7506 -2{7.6097 -2 |5.9846 -2(1.8544 -1|2.1426 -1 [5.140 +1
ful = 3.1416 256 [9.2864 -3[1.8749 -2 [1.4774 -2|5.2893 -2|5.3174 -2 [1.285 +1
vl = 9.8696 16/32 [5.6397 +1|5.8415 +2 6.4334 +1{7.6319 +1[1.0788 +3
32/64 [6.5596  [1.7026 -1 [2.9544  |2.8280 |6.3465 -2
64/128(4.1950  (4.2131  [4.1991 [3.2682  |4.1210
128/256(4.0388  |4.0587  |4.0499  |3.5060  |4.0294
wec®| u = sin(x)sin(y) F 8 [1.306 -2/2.1429 -169.8921 -3|2.2339 -2{5.2730 -161.268 -1
vec®| v = sin(4x)sin(4y) 16 |3.227 -3{5.198 -2 4.0498 -2|6.2089 -3|1.1072 -1 [3.171 -2
tul,= 0.5 32 |8.0409 -4|1.3515 -2 [9.419 -3|1.5927 -3|2.6170 -2 [7.927 -3
= 0.5 64 |2.0085 -4[3.2789 -3 [2.3045 -3[4.0074 -4]6.4545 -3 [1.982 -3
lal = 1.0 8/16 |4.0548  [3.628 -152.443 -1[3.5980 |4.76 -15
© 16/32 [4.0135  [4.3790  |4.2996  [3.8982  |4.2305
vl = 1.0 32/64 |4.0034 [4.1219  |4.0872  (3.9745  |4.0548
uec®| u = ylsin(x) F 8 |[3.586 -1/6.33 -1[4.95 -1[5.44 -1[1.168 7.898
ec®| v = x(2mx) sin@y) 16 (9.332 -2|1.509 -1[1.24 -1{1.49 -1[3.14 -1|1.975
tul = 22.9595 32 |2.36 -2{3.67 -2[3.06 -2{3.821 -2[7.89 -2[4.937 -1
Ivl,=  5.0966 64 |5.92 -3{9.03 -3|7.61 ~-3[9.617 -3|1.984 -2|1.234 -1
lul = 97.4091 8/16 [3.8424  [4.1959  [1.0077 |3.6604 [3.722T
vl = 9.8696 16/32 [3.9541  |4.1150  |4.0346  |3.8922 |3.9793
32/64 |3.9880  |4.0603  [4.0244  [3.9734  [3.9761

Table VI contains a study of the number of grid points per wave length which
the method necessitates for given numerical accuracy. The results are given here as
relative errors, I,(u — U)/|lull,, rather than as absolute errors, Z,(u — U), and similarly
for v and for /,,. It seems that roughly 4 points per wave length will give 10! rela-
tive error, 8 points will give 5 x 1072, and 16 will give 10 2. We notice again that
if u oscillates less than v, the error in « will be considerably smaller than that in v.
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TABLE V (Continued)
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M 2, (V) L0 | oW [ o 2 (V) e(u)
wec®| u = ylsin(sx) F| 16 |1.732 +1[3.8587 [1.202 +1[3.932 +1[7.2614 [3.856 4
wecd| v = x(21-x)sin(sy) 32 |2.459 7.1378 -1[1.8352 [6.2285 [2.1761 [9.640
lul,= 22.9595 64 |5.853 -1|1.636 -1|4.3267 -1|2.0035 |5.130 -1[2.410
lvl,=  5.0966 128 |1.446 -1|3.989 -2|1.064 -1|5.3048 -1|1.2653 -1]6.025 -1
lul_= 97.4091 256 |3.604 -2{9.892 -3|2.647 -2|1.3449 -1|3.165 -2[1.506 -1
Ivi= 9.8690 16/32 |7.0428  |5.406 7.040 6.312 3.337
32/64 |4.201 4.363 4.242 3.109 4.242
64/128|4.048 4.101 4.0656  |3.777 4.055
128/256|4.012 4.032 4.020 3.944 3.997
wec®| u y¥sin (16x) Fl 16 [4.66 +1]1.174 +2{8.7105 +1[6.4677 +1[2.055 +2|s.067 +2
wecd| v = x(2m-x)sin(16y) 32 |1.e16 +1|2.241 1.3108 +1|4.6798 +1|a.5798 [2.017 +2
22.9595 64 |2.5178 |6.1677 -1|1.8458 |6.884 1.783 5.042 41
5.0966 128 [5.964 -1|1.4347 -1[4.353 -1|2.1700 [4.106 -1]1.260 +1
97.4091 256 |1.471 -1{3.518 -2|1.071 -1]5.7139 -1|1.006 -1|3.151
9.8690 16737 [2.566 57736 FI[6.630 1,386 17487
32/64 [7.212 3.634 7.118 6.781 2.568
64/128(4.221 4.299 4.241 3.172 4.343
128/256[4.053 4.078 4.061 3.798 4.080
wec”| u = y%sin(32x) Fl 16 [9.32 +1]7.511 +2|5.176 +2[1.2935 +2|1.564 +3|1.467 44
ec®| v = x(2r-x)sin(azy 32 |9.176 +1]2.901 +2[2.123 +2[1.277 +2[7.936 +2{3.669 42
lvl,=  5.0966 64 |1.843 +1|1.2121 |1.316 +1|5.092 +1|2.7678 |9.172 42
Tul )= 22.9595 128 2.535 5.813 -1]1.8459 7.2431 1.4956 2.293 43
Ivl =  9.8696 256 [5.997 -1|1.3647 -1|4.356 -1|2.2600  |3.4708 -1[5.732 41
lul, = 97.4091 16/32 [1.0157 |2.5888 |2.4378  [1.0128  |1.9709
32/64 [4.9795 [2.39  +2|1.613 +1[2.5081 [2.867 +2
64/128(7.2681  |2.085 7.1300  [7.030 1.851
128/256|4.228 4.259 4.237 3.205 4.309
wect| u = x(n-x) (21-x)sin y 16 [1.4431 -1]9.7688 -2|1.2474 -1]3.4316 -1]2.4159 -1|3.784 -1
vecl| v = x(rox) (21-x)sin y 32 [3.6692 -2[2.4499 -2[3.1389 ~2[9.5067 -2[6.3250 -2]9.461 -2
64 |9.2269 -3]6.1387 -3|7.8604 -3[2.4802 -2[1.6099 -2|2.365 -2
tul, = v, = 6.0518 128 |2.3104 -3|1.5368 -3|1.9651 -3|6.3163 -3|4.0366 -3]5.913 -3
lul, = Iyl =11.9343 256 |5.7783 -4]3.8452 -4[4.9116 -4}1.5928 -3[1.0101 -3|1.478 -3
T6/32 [3.9330  [3.9874  [3.9739 — [3.6097  |3.8196
32/64 |3.9766 |3.9910 [3.9933 |3.8330 [3.9287
64/128/3.9937  |3.9943  |4.0000 |3.9267 |3.9884
128/256/3.9984  |3.9968  |4.0002  |3.9656 _ |3.5960
wecl| u = x(n-x) (21-x)sin y 16 [1.3883 -1]|1.2207 -1{1.3127 -1{3.0675 -1[2.5198 -1[3.784 -1
vec®| v = x(2n-x)sin y 32 [3.4733 -2[1.9011 -2{2.8241 -2|8.3754 -2(6.0616 -2|9.461 -2
64 |8.6870 -3|4.8190 -3|7.0539 -3|2.1836 -2|1.5363 -2[2.365 -2
lul )= 6.0518 128 |2.1720 -3]1.2133 -3]1.7629 -3[5.5692 -3[3.8520 -3|5.913 -3
1vl,= 5.0966 256 |5.4303 -4]3.0443 -4|4.4065 -4[1.4059 -3/9.6442 -4|1.478 -3
T6/32 |3.9970  |6.4210  |4.6484  [3.6625  |4.1570
lul,= 11.9343 32/64 |3.9983  |3.9450  |4.0036 |3.8357 |3.9456
Ivl_= 9.8696 64/128/3.9995  |3.9717  |4.0014 [3.9207 |3.9873
128/256[3.9999  [3.9856  |4.0006  |3.9613 |3.9950
wec®| u = x(2n1-x)sin y 16 {4.6542 -1{5.0733 -1{4.8543 -1{1.0241 [1.1306 [1.565 -1
ec®| v = x(zmexysiny 32 [2.3271 -1{2.3676 -1|2.3468 -1[5.6744 -1{5.7633 -1|3.912 -2
64 |1.1639 -1/1.2030 -1]1.1833 -1|2.9686 -1{2.9230 -1{9.780 -3
luly = Ivl, = 5.0966 128 |5.8198 -2|6.0629 -2|5.9417 -2|1.5144 -1|1.4679 -1|2.445 -3
lul_ = Ivl_ = 9.8696 256 |2.9100 -2|3.0434 -2|2.9772 -2[7.6427 -2{7.3474 -2]6.112 -4
T6/37 [2.0000  [2.1428  [2.0685 — [1.8047  |1.9618
32/64 [1.9994 [1.9680 [1.9832 [1.9115 [1.9717
64/128[1.9999  [1.9842 [1.9916 |1.9603 |1.9913
128/256]2.0000 [1.9922 [1.9958 |1.9814 |1.9978

These conclusions are also supported by some of the results in Table V. It is inter-
esting that experiments with solutions containing odd wave numbers give results which

are only slightly worse than those for even wave numbers, if at all; in other words,

using M, N which are powers of 2 is not detrimental to accuracy, even when odd
wave numbers are present in the solution.
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TABLE V (Continued)

M 2, (V) 2,(V) , 2,V | 2 () g, | ew
uec?| u=x?(2n-x) 2sin(y) F 8 |1.6926 +1[1.2066 +2{8.0018 +1]3.3808 +1]2.909 +2[; 370 41
ecd| v = x* @m0 tsingy) 16 |3.5778  |2.7330 +1|1.8850 +1|8.311 7.162 +1|s5.774
lul, = 43.9070 32 [8.674 -106.5176 |4.6131 |2.009 1.783 +1|1.443
IV, = 1247.6048 A T e T e e R h i B
lul_ = 97.4091 16/32 |4.1236  [4.1593  [4.0867 [4.1368 |4.0160
Ivi_ = 9488.531 32/64 |4.0258 |4.0706  |4.0370 |4.0344  |4.0040
uec!| usx(r-x)(zx)sinty)  |F| 16 |2.1348  |9.5464 -2|1.5604  |4.2730 |2.4150 -1|3.7g8 -1
™| v = 0 32 [4.7264 -1{2.3985 -2(3.3996 -1]1.1174  |6.3250 -2|0.461 -2
lul, = 6.0518 64 |1.0805 -1/6.0150 -3[7.7121 -2{2.8579 -1]1.6099 -2]2.365 -2
tal, = 11,9343 128 |2.5536 -2|1.5065 -3[1.8158 -2|7.2238 -2/4.0366 -3|5.913 -3
256 |6.1832 -3]3.7699 -4|4.3888 -3|1.8161 -2|1.0101 -3|1.478 -3
16/32 |4.5167 |3.9800 |4.5899  |3.8241 |3.8196
32/64 |4.3743  (3.9877 [4.4081 |3.9106 |3.9287
64/128(4.2313  (3.9927  [4.2471 |3.9554  |3.9884
128/25614.1299  13.9961  [4.1375  [3.9777  |3.9960
—
wec®| u = x(2n-x)sin(y) F 8 [1.1787  [1.0090 [1.1001 [2.8276 [1.9799 |1.265 e1
wec”| v = ylsinto 16 |4.9757 -1[4.889 -1|4.936 -1[1.3147 [1.1202 |3.162
32 |2.3681 -1[2.433 -1[2.3999 -1|6.4005 -1[5.7897 -1!7.904 -1
lul )= 5.0966 64 |1.169 -1{1.2179 -1]1.193 -1{3.1481 -1;2.9311 -1|1.976 -1
Iyl = 22.9595 128 |5.826 -2/6.0988 -2|5.963 -2[1.559 -1[1.4697 -1|4.940 -2
tul_= 5.8696 256 |2.9107 -2{3.052 -2|2.982 -2|7.754 -217.352 -2 |1.235 -2
16/32 |2.1011  |2.0093 |2.0566 |2.0540 |1.9349
vl = 97.4091 32/64 |2.0257 [1.9978  |2.0110 |2.0332 |1.9752
64/128(2.0065 [1.9972  [2.0013  |2.0194  |1.9944
128/25612.0016  11.9982  [1.9996  |2.0105  |1.9990

In particular, these results also show that the present solver would perform very
well on linearized versions of the original geophysical fluid dynamic problem we were
interested in ([16], [17]). We shall return to this point in Section 7.

5. Changes in Boundary Conditions. In Section 2 we have formulated the model
problem (2.1)—(2.3) which motivated this study. The algorithm of Section 3 has ob-
vious applications to many other situations; it is of interest, therefore, to consider a
number of different boundary conditions which could be associated with the Cauchy-
Riemann equations (2.1) in a rectangle.

We shall assume throughout this section that the boundary conditions on y = 0,
m are still (2.2), i.e., v is prescribed there as v(°)(x) and v(!)(x), respectively. The two
different combinations of boundary conditions we consider explicitly are: (1) that u is
given on the left boundary of the rectangle and v is given on the right boundary, and
(2) that u is given on both vertical sides.

It is clear that if v is given on all sides, the problem should be formulated as
Poisson’s equation for v with Dirichlet boundary conditions; similarly if u is given on
all the sides, a Dirichlet problem for u is more suitable. A moment’s thought will
show that the two situations we shall discuss can easily be transformed into a con-
siderable number of others, by reflections or by interchanging the roles of x and ¥,
and of  and v. In fact, all situations in which u as well as v are prescribed on some
of the sides of the rectangle can be handled by slight modifications of the algorithms
we present, yielding second-order accurate numerical solutions.
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TABLE VI
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Numerical results indicating the resolution (mesh points per wave length) required
by the proposed discretization procedure and solution algorithm (versions C and
F) to obtain prescribed accuracy.

M H, (U)/hul, (2, (V) IV, |2 (0) /hul |2, (V) /ivE
u =y sin(x) , v = yzsin(x) C 64| 6.6212 -4| 1.3611 -4| 8.6548 -4| 8.6792 -5
F 64| 5.1958 -4| 1.3611 -4| 6.9789 -4| 8.6788 -5
u =y sin(4x), v = yzsin(dx) F 64| 8.444 -3| 4.849 -3| 1.47 -2| 3.737 -3
u =y sin(8x), v = yzsin(Sx) F 64| 3.1358 -2| 2.271 -2| 5.59 -2| 1.88 -2
u =y sin(64x), v = yzsin(édx) F 64| 1.9450 +2| 4.4180 +1} 2.0070 +2| 3.00 +1
128| 8.0699 -1| 4.4600 -3| 5.6440 -1| 1.42 -3
256 1.1422 -1| 1.0867 -1} 2.0238 -1 1.0347 -1
u = sin(x)sin(y) , v = sin(4x)sin(4y) [¢] 64| 4.1000 -4] 6.5580 -3] 4.4250 -4| 6.4550 -3
F 64| 4.0170 -4| 6.5578 -3| 4.0074 -4] 6.4550 -3
u = y4$in(x), v = x(2m-x)sin(y) C 64( 3.0218 -4| 1.7716 -3| 1.3592 -4] 2.0102 -3
F 64| 2.5784 -4] 1.7716 -3| 9.8728 -4| 2.0102 -5
u = ydsin(Bx), v = x(27-x)sin(8y) F 64| 2.5490 -2| 3.2100 -2| 2.0570 -2| 5.1980 -2
u = ydsin(lﬁx), v = x(21-x)sin(16y) F 64| 1.097 -1} 1.210 -1} 7.067 -2| 1.807 -1
u = yqsin(32x), v = x(2m-x)sin(32y) F 64| 8.027 -1| 2.378 -1| 5.227 -1} 2.085 -1
u = yqsin(64x), v = x(2n-x)sin(64y) F 64} 7.962 1.2598 +2| 2.617 2.085 +2
128| 8.0577 -1| 1.2376 -1| 5.4615 -1]| 1.5496 -1
256| 1.1064 -1 1.1180 -1} 7.6292 -2| 1.5496 -1
u = yqsin(lzax), v = x(27-x)sin(128y) F 64| 1.592 +1| 6.956 +2| 5.234 9.36 +2
128| 1.5906 +1| 2.6429 +2| 5.3360 4.6962 +2
256| 1.0707 -1| 6.514 =-2| 5.5526 -1| 8.1543 -2
u = x(27-x)sin(y), v = yqsin(x) (o] 64( 3.394 -2| 5.270 -3} 4.104 -2| 3.0079 -3
F 64| 2.2937 -2| 5.270 ~-3| 3.1896 -2| 3.0079 -3
u = x2(2n-x) Zsin(y), y = %' (2n-x) Ysin(y) c | 64] 1.121 -2 1.2037 -3] 9.4755 -3| 4.604 -4
F 64| 4.9081 -3| 1.2937 -3} 5.1124 -3| 4.6939 -4
u = x(r-x) (2r-x)sin(y) , v=20 F | 64| 1.785 =-2| --- 5.267 =2| ---

u= y4sin(3x) . v = x(2n-x)sin(3y) F 1615.2079 -2 [1.1205 -1 |3.6800 -2 [1.6137 -1
3211.2851 -2 |2.6395 -2 |9.6328 -3 |4.1549 -2

64]3.2022 -3 |6.4495 -3 [2.4339 -3 |1.0409 -2

128)7.9989 -4 [1.5969 -3 |6.0900 -4 {2.6059 -3

256(1.9993 -4 |3.9748 -4 |1.5225 -4 |6.5159 -4

u = yasin(5x) ’ v = x(2m-x)s8in(5y) 16]/1.6604 -1 |2.7604 -1 |1.2079 -1 |4.2728 -1
3213.8882 -2 [5.9866 -2 [3.1351 -2 |9.6724 -2

6419.5680 -3 [1.4350 -2 |7.8489 -3 [2.3872 -2

128)|2.3826 -3 [3.5362 -3 |1.9858 -3 |6.0154 -3

256|5.9508 -4 [8.7915 -4 |4.9629 -4 [1.5020 -3

u = ylsin(7x) , v = x(2n-x)sin(7y) 16(3.7455 -1 {5.7315 -1 |2.7813 -1 [6.7758 -1
32|8.0104 -2 |1.0879 -1 [6.5915 -2 |1.6856 -1

64(1.9318 -2 |1.9621 -2 [1.6605 -3 |4.0480 -2

128)4.7869 -3 |6.2087 -3 [4.1578 -3 [1.0380 -2

256|1.1941 -3 |1.5410 -3 [1.0382 -3 (2,5881 -3

u = yqsin(Qx) , v = x(21-x) sin(9y) 1617.4843 -1 11.1403 5.5451 -1 |1.3986

3211.3893 -1 |1.7668 -1 {1.1704 -1 [2.3986 -1

64]3.2567 -2 [3.9733 -2 |2.8390 -2 !6.3575 -2

128}8.0160 -3.{9.6458 -3 [7.1369 -3 {1.5598 -2

25611.9963 -3 {2.3893 -3 |1.7829 -3 [3.,8817 -3

We proceed now with the description of the algorithm for the two cases men-

tioned.

Case 1. u Given on the Left Side. The rectangular domain is now taken as
R, = {{x, y): =h/2 <x <2m,0 <y <}. This is merely done for notational con-
venience, so as to leave Figure 1 unchanged. The boundary conditions are first (2.2),
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which we repeat here as

(5.1a) v=v0%), y.=0,
(5.1b) ’ v=vV), y=n,
and also

(5.2a) u=u(y), x=-h/2,
(5.2b) v=uH(), x=2m

Thus Egs. (5.2) replace the periodicity conditions (2.3a, b). Egs. (2.1), together with
(5.1), (5.2) completely determine u, v, and u need not and should not be prescribed
any more at an interior point of R, .

The difference equations are still (2.4), which we repeat for convenience as
(53a) (U;; — Uiy plh+(V,; = Vij—lk = D;;, 1<isSMI1I<j<N,
(5.3b) (Ui.i+1 —U; )k~ (Vi+1,j Vi) =E; 1<iSM1<j<N-1

The boundary conditions become

(5.4a) Vio =G -Dh), 1<i<M,
(5.:4b) Vin =V - Dh), 1<i<M,
and

(5.52) Usj=uo)\G =1k, 1<j<N,
(5.5b) Vi +1,; = vy k), 0<j<N.

Hence, there are MN interior U-values to be determined, and M(V — 1) interior V-
values, or M(2N — 1) unknowns altogether. Egs. (5.3) yield M(2N — 1) linear alge-
braic equations; we shall see that these equations are actually independent and deter-
mine U, V -ompletely.

It turns out to be more convenient in this case to form column vectors U, V;
from the values of U, V along vertical mesh lines; in Section 3 vectors U]., Vj were
formed along horizontal mesh lines. Thus

U, =00, Uy U,.’N)*, Vi=Wip Vigo ooy V,.’N_l)*;

1 l
in particular U;, V; have now different lengths, the U;’s being N-vectors, while the V,’s
are (V — 1)-vectors. In a similar fashion, D; is an N-vector, while E; is an (V — 1)-

vector of values along the corresponding vertical mesh lines.
With this notation, (5.3) becomes

(5.6a) U,-U_, +TV,=hD, 1<i

N
B

(5.6b) Vig, ~V; + T*U; = hE, 1<i<M;
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here T is an N x (N — 1) matrix of rank (V — 1),
— -
1
-1
(5.7) T=0p .
-1
e - 1_
and we define p = h/k. In (5.6a) U, is known from (5.5a), and in (5.6b) V,,, , is
known from (5.5b). Hence it is convenient to redefine D, as D, + & ~1U,, and E,,
as Eyy —h ™'V, . Furthermore, we redefine D, o as D; o + k™'V; o and D, y as
D;n— k! V; n- After these changes of notation (5.6) can be given the block matrix
form

(5.8)
M M
W M — TN\
T Iy v, D,
T : Iy Iy vV,
M | . .
I .
T Iy Iy|l vy D,,
————————————————— T.,T T T -—\|=h|-—1,
Iy Iy, : T U, E,
Iy Iy, :
M : :
[
IN—I |
[
i Iy T*{{ U] LEm]

where I; is the L x L identity matrix.

The decoupling of U and V in this case proceeds as follows. In the upper half of
system (5.8) we add the first block row to the second, then the second to the third,
and so on, until the new (M — 1)st row is added to the Mth. We obtain a new system,
which we write in condensed form as

P'IllV F
5.9 —{— ——|=n|--|,
Q \R||U E
where
T
T T
(5.10a) p=|" .
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(5.10b) 0= B ,

Iy Iy
B Iy
T*
*
(5.10¢) R = T ,
. -
D,
D, +D,
(5.10d) F= . »
M
2. D
and [ is the MN x MN identity matrix. From (5.9) we have
(5.11a) U=hF - PV,
(5.11b) (Q — RP)V = h(E — RF),
with
S
(5.11¢) RP = S 3 . ;
S-S S

here S = T*T isan (V — 1) x (V — 1) matrix,

2 -1 ]
-1 2 -1
(5.12) S=p? '

Notice that S, in contradistinction to S of Section 3, is nonsingular. We shall return to

it later.
Written out explicitly, (5.11b) becomes after a change of sign,
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KX -1 i [ T*D, - E, T
S S+l I T*(D, +D,)—E,
(5.13) : Ven : ,
: : .- )
M
| S - S S+1 ] LT*Zl D;—Ey |

where I is now the (V — 1) x (N — 1) identity. This system can be brought into block-
tridiagonal form simply by subtracting the ith row from the (i + 1)st, starting from the
top. This produces the system

(s+1 -1 i [ T*D, - E, ]
-1 S+2 -1 . T*D, +E, - E,
(5.14) B V=h
oI S+u - .
| -1 S+2I] | T*Dy; + Eppy — By |

We see that the decoupling resulted in this case in the elimination of U, rather
than of V. Equation (5.14) is rather similar to (3.11). Some of the differences have
already been pointed out; as a result of these differences, the matrix of (5.14) is non-
singular. It can be brought to scalar tridiagonal form by diagonalizing S and then re-
indexing. We shall comment on the fast solution of (5.14) further at the end of this
section, together with the fast solution of the matrix equation obtained in the second
case we wish to discuss.

Case 2. u Given on Both Vertical Sides. We fit the grid to the rectangular do-
main so that R, = {(x, y): —h/2 <x <2m — h/2,0 <y <n}. The boundary condi-
tions are (5.1) on the horizontal sides of the rectangle, and

(5.15a) u=u)(y), x=-h/],
(5.15b) u= u(l)(y), x =2m —h/2,

on the vertical sides. Equations (2.1), (5.1) and (5.15) determine u and v completely,
subject to the requirement that the data d(x, y), ug)(¥), u(1(»), v(Ox), vV (x)
satisfy the Gauss divergence theorem:

ffd(xr y) dx dy = L";:;;h/2 {l)(l)(x) _ v(o)(x)} i
(5.16) R,
+ foﬂ {u(l)(y) —uggy(»)} dy.

The difference equations are (5.3), with (5.3b) only being written for 1 <i <
M—1,1<j<N-1. The boundary conditions for the mesh variables are (5.4) and

(5.17a) Up; =uwy(G—1/2)k), 1<j<N,
(5.17b) Un,j=uu)(G-12)k), 1<j<N
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Hence, there remain (M — 1)V U-values to be determined, and M(NV — 1) V-values, i.e.
2MN — M — N unknowns. In (5.3) we have MN D-equations and (M — 1)(NV — 1) E-
equations, i.e., 2MN —M — N + 1 equations in all.

It would seem that the number of equations exceeds the number of unknowns
by one. We expect, however, from the continuous case that one compatibility condi-
tion has to be imposed on the data, analogous to (5.16), and that the matrix of sys-
tem (5.3) have rank equal to the number of unknowns. This can be checked directly
in the block form (5.18) to which we shall bring this matrix below; the compatibility
condition turns out to be the one obtained when computing the integrals in (5.16) by the
midpoint rule. A similar statement is true in the case in which u is prescribed on the hori-
zontal sides of the rectangle, and v on the vertical sides; in that case the compatibility con-
dition is the discrete analog of Stokes’ curl theorem, involving e(x, y) rather than d(x, ).

We introduce the N-vectors U;, D; and the (V — 1)-vectors V,, E; as in the pre-
vious case. Again, the first and last components of D, D; o and D, y, are modified by
the addition of ph ™! Vi’0 and of —ph ™! V; n» respectively. Also, D, is modified by
the addition of #~'U, and D, by the addition of ~2~1U,,.

After these changes of notation, system (5.3) becomes

M M-1
W M — AN 1
[T | Iy v,
T Iy Iy v,
M ! :
I
I
| Iy
T : Iy Vu
_____________ _‘.______.____ ———
Iy Iy | T* U,
I
M-1 :
| .
I
| Iy In—y | T*-_ _UM—l_
(5.18) _
[ D,
Dy,
=h|----1,
_El
s._EM_l_J
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where T is the N x (N — 1) matrix defined by (5.7), and I, _,, Iy are identity ma-
trices of the appropriate dimensions. Clearly, the sum of the MN rows in the upper
half of the matrix in (5.18) is zero. The corresponding compatibility condition that
z; ].Di, = 0 is exactly the one we expected; we only need to remember that the D;
close to the boundary have been redefined to include the boundary data with appro-
priate coefficients.
The elimination of ¥ proceeds in a manner analogous to Case 1, by summing the

blocks of the upper half of (5.18), in a discrete form of integration with respect to x.

The result is

(5.19)
M-1 M-1
—/'\J\/\ —A————
T 0y v, D, |
T T I | . D, +D,
M-1]. . I | .
[ I .
T T T 0 Iy || Vi
_________ I_—__l_—_____ ———— —_—— —— ——
I | o
T TIT 10 O || Vg |=h |2 D;
_________ N I | P o
|
Iy, Iy T U, —E,
I
M-1 :
|
Iyoy  Inoy : T* 1| Us—y L—EM—I
We rewrite this, with the obvious identifications, as
Y 7 F
—_—— e e - — = V _ — =
I
I M
(5.20) T---T,0---0 =h Zi D;
I
| o 1 R U -E

Notice that P and Q have block dimension (M — 1) x M, P has blocks of dimension
N x (N — 1), and Q has blocks of dimension (N — 1) x (N —1).

From (5.20) we obtain
(5.21a) U = hF — PV,

(5.21b) QV + RU = —hE.
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This allows us to eliminate U and write

(5.222) (Q - RP)V = —h(E + RF),

M
(5.22b) TTT--T)V=hT*3 D;
1

here we introduced the block row missing in (5.21) as (5.22b). The elimination of
the single redundant equation in (5.18) was done naturally by multiplication of (5.22b)
with the (W — 1) x N matrix T*.

System (5.22) becomes, after carrying out the matrix multiplications,

[s+1 -1 T*D, +E, ]
S S+1 -1 T*@D, + D,) + E,
(5.23) :
S - s s+1 -] V=" T*XY 7D, +E, |
| S s S| T*> YD,

with S being the (N — 1) x (N — 1) matrix defined by (5.12). The matrix of this
system is the same as that of (5.13), except for the lower right corner block; also the
right-hand sides differ only slightly. Applying the block-tridiagonalization procedure
used in Case 1, which corresponds to differencing in x, one obtains

S+1 -1 | T*D, +E,
-1 S+ -1 T*D, + E, - E,
(5.29) ’ V=n :
N T*D,,_, + Epy_, — Ep_,
L -1 S+ _T*DM_EM—I a

We are now prepared to discuss the fast solution of (5.14) and of (5.24).

Fast Sine Transform. The fast solution of (5.14) and of (5.24) involves bringing
the corresponding matrices to scalar tridiagonal form. This is done in two steps: the
first and crucial step is to diagonalize S; the second is to bring the two diagonals which
are identically —1 from the position of block subdiagonal and block superdiagonal to
that of scalar sub and superdiagonal, i.e., immediately adjacent to the main diagonal.

We shall write the procedure for a slightly more general system, which includes
(5.14) and (5.24) as special cases, to wit:
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(S, tad vyl ]
B,I S, +a,l ¥, 1
(5.25) 1 2 2 . 2
Tm -1

i By—id Syt ogd

W and B are partitioned to conform with the blocks of the matrix,
W=(W* W%, ... ,Wi* B=(B} BS,...,Bj)* and S;=§;S.

The eigenvalues y, and eigenvectors 1, of S,

(5.26a) S = ey, 1 <kSN-—1,
are known:

(5.26b) e = 20% {1 + cos(nk/N)},
(5.26¢) Ny = /N2 sin(nkl/N).

The matrix S differs from S of Section 3 inasmuch as its eigenvectors are generated by
the sine function, rather than by the exponential, as in (3.12). Its diagonalization thus
corresponds to the fast sine transform, in the same way in which S was connected to
the FFT. The differences arise in the continuous problem because of the different
boundary conditions.

Let Pbe the matrix whose columns are n,,m,, .. ., Ny_,,and let M =
diag(uys -+ My —;)- Then
(5.27) P*SP=M, P*P=1Iy_,.
We introduce Wi, ﬁi by
(5.282) W, = P*w,,
(5.28b) B,=P*B, 1<i<M,

and M; = 8;M. We premultiply (5.25) by a block-diagonal matrix with all the diagonal
blocks equal to P* and use (5.27), (5.28) to yield

My + oI v, d
B I My, + oyl v,I
(5.29) . W=%
. . | Tm-f
L Bar—11 My + aMI_

Reindexing Wand B into W and ﬁby

(5.30) Wei=Wio Bei=Bi 1<i<SM1<k<N-1,
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the scalar tridiagonalization of (5.25) is completed in the form

¢

(5.31) “

=
I
o

Cy

-

here each C,, is a nonsingular scalar tridiagonal M x M matrix,
8 My + oy 7, ]

B, Somy + oy Y2

(5.32a)
Yrm—1

| BM—I 6M/1k+aM_
I<k<N-1.

After performing and storing the [ (| decomposition of the C}’s, the solution of
(5.25) is now carried out by a forward fast sine transform (5.28b) of the data B into
B, elimination and substitution in each subsystem

(5.32b) W, =B, 1<k<N-1,

and a backward fast sine transform (5.28a) of the solution W into W; the reindexing of
B into B and of W into W does not necessitate actual computer operations. Further-
more, in our application,

Bi=v=-1, &=1, 1<i<M,

and all ; are 2, except for oy, = 1 in (5.24).

The operation counts and storage requirements are, therefore, the same as in
Section 3; in particular, the same remarks apply to the computation of the sine trans-
form as to the real Fourier transform, i.e., the practical computer time required is es-
sentially determined by twice the number of real data.

Numerical experiments similar to those in Tables I through VI of Section 4 were
carried out for Cases 1 and 2, with the algorithm described above. The results were
entirely analogous, confirming the fact that the algorithm is second-order accurate and
the computational time it requires is essentially proportional to the number of mesh
points used in the discretization.

It is remarkable that the numerical tests still indicate second-order accuracy for
u€CP,veC? withp > 1, q > 0, and lower-order accuracy for u € CP, v € C? with
p <1,q <0. This is true in both Case 1 and Case 2 for jump discontinuities in « and
v or their derivatives introduced along either x = const or y = const. These numerical
observations seem to indicate that the method’s second-order accuracy even for solu-
tions without the formally required differentiability is not restricted to the case of
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periodic boundary conditions. Furthermore, the asymmetry with regard to the con-
tinuity requirements on u and v does not appear to depend on whether U or V are
eliminated in the algorithm, or on the boundary conditions imposed.

6. Comparison with Existing Solvers. A fast direct solver for the inhomogeneous
Cauchy-Riemann equations was published by Lomax and Martin [24]. Some applica-
tions and extensions are given in [25], [26]. We carried out a comparison between
our solvers and those published previously. The comparison was made first for the
test case of [24], [26], then for some of the test cases in our Tables III through VI
and similar ones. These computations were carried out on a CDC 6600 computer with
a FTN 4.6 compiler; single precision arithmetic was used throughout.

Thin Biconvex Airfoil. The example problem used in [24], [26] to illustrate the
use of a Cauchy-Riemann solver in aerodynamics is that of steady, irrotational, sub-
sonic, inviscid flow over a thin symmetrical parabolic-arc biconvex airfoil in the small-
perturbation approximation. The linearized Prandtl-Glauert transformation (e.g., [25])
yields for this problem the formulation
(6.12) Uy T vy, =0,

(6.1b) uy—vx=0, y>0,—0<x <oo

with boundary conditions

(6.2a) u(x, 0) =—-4x, —0.5<x<05,
=0, 0.5 < Ixl,

and

(6.2b) uv—>0, x2+3y? —oo

The analytical solution to (6.1), (6.2) is well known and contains a logarithmic
singularity at the leading and trailing edges of the airfoil, x = £0.5, y = 0. It is most
easily written as

w=2§1 ;102 H 03
(6.3) om 218705 §°

with w = u —iv and z = x + iy. The most important quantity one wishes to compute
is u on the airfoil {(x, y): y =0, -0.5 <x < 0.5}; from it one can obtain the lift.
The exact u there, given by (6.3), is simply

64 u(x, 0) = % {1 ~x log |" +0.5 }

x—0.5

In [24] the numerical computation is carried out in a rectangle R; = {(x, y):
0<y<2,-1<x <1}, which we also did. Computations were performed in this
rectangle prescribing the exact, analytic solution as boundary data on the three sides
{x =1}, {y = 2}, as well as prescribing homogeneous boundary conditions there.
Clearly, it is a matter of choice which function, u or v, is prescribed on the sides of
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the rectangle not containing the airfoil. Hence, we used both the solvers of Section 5,
Case 1, as well as Case 2.

Among the solvers of [26], we chose for comparison purposes version D, option
(d). Version D is the one suggested by the authors themselves for the application at
hand, and its option (d) seemed, of all the versions and options offered, to be the only
one which could be second-order accurate. This version corresponds to our Case 1 in
the choice of boundary conditions.

For the test case (6.1), (6.2) neither the norms of the solution over R, nor the
order of accuracy of the solvers is particularly relevant, because of the singularities at
the edges of the airfoil, x = 0.5, y = 0. As a means of comparison we chose, there-
fore, the accuracy in computing u(x, 0). To compute U on y = 0, which is a V-line
and not a U-line in the staggered mesh, [24] suggests the second-order accurate extra-
polation formula
6.5) Uira = a/8){9u; , - Uiy + 3V o = Vier,0) = 3kE; o}
we used this formula in our program, as well as in theirs.

Because of the singularity at the edges, [24] did computations both with x =
+0.5 being V-lines, i.e., with computational mesh points coinciding with the edges, and
with x = £0.5 being U-ines, i.e., with the computational mesh straddling the edges.

In Table VII we give results for the computation with both these meshes.

For each mesh, Table VII contains in successive columns the x-coordinates of
the points along y = 0 at which U was calculated, the exact u there, the solution by
the [26] solver, version D, option (d), and its error, the solution by our solver Case 1,
its error, and finally the solution by our solver Case 2, with its error. We were only
interested in comparing the different solvers, and did not wish to study the question of
computing in a finite domain the solution to a half-plane problem; hence, only the
comparison when using exact boundary data is given. The computations with homo-
geneous boundary data were carried out and gave slightly poorer results for all solvers.

For the mesh points coinciding with the edges, our Case 1 solver has a smaller
error than the [26] solver at all points except four. The error, in particular, is smaller
by a considerable factor over the airfoil |x| < 0.5, and it is smaller at the edges, where
most of the error occurs. Our Case 2 solver has mostly smaller error than the Case 1
solver, but they are quite comparable.

For the computational mesh straddling the edges, our Case 1 solver seems to
have mostly larger errors than [26] outside the airfoil, 0.5 < |x|, but smaller errors in-
side. The Case 2 solver is still slightly better than the Case 1 solver, except at a few
points.

As a conclusion, our solvers of Section 5, Case 1 and Case 2, are quite successful
on the example problem of [24]. If anything, they have slightly smaller error than the
[26] solver which appeared most promising. A better test would probably be to ex-
tract the singularities from the solution analytically (cf. the example in [13], for in-
stance) and compute only the regular part of the solution. We felt, however, that [24]
stressed the importance of computing the neighborhood of the singularities as accurate-
ly as possible, and made the comparison accordingly.
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TABLE VII

Numerical results for the 4 component of velocity along y = 0 in the solution of
the example problem (6.1), (6.2). The heading LM indicates results with the sol-
ver of [26], version D, option (d); headings GBuv and GBuu indicate results with
the solvers of Section 5, Cases 1 and 2, respectively. The solutions were obtained
on a 64 x 64 grid; every second point is given for reasons of space economy, ex-
cept near the singularity at x = 0.5, where every point is given; the “extra”
points are marked by stars. The terms “coinciding mesh” and “straddling mesh”
are explained in the text.

VIIA. Coinciding mesh

617

x u exact LM eﬁgor cBY Y | @YY 4!

error error
~0.953125|-1.409-1|-17411-1] 1.962-4|-1.411-1| 1.612-4|-1.411-1| 1.595-4
~0.890625|-1.666-1|-1.670-1| 4.049-4|-1.670-1| 3.346-4|-1.670-1| 3.311-4
~0.828125|-2.009-1|-2.016-1| 6.647-4|-2.015-1| 5.586-4]|-2.015-1| 5.533-4
~0.765625 |-2.486-1|-2.497-1| 1.044-3|-2.496-1| 9.012-4|-2.496-1| 8.942-4
-0.703125|-3.193-1|-3.210-1| 1.703-3|-3.208-1| 1.522-3|-3.208-1] 1.513-3
20.640625 |-4.341-4|-4.372-1| 3.083-3(-4.370-1| 2.864-3|-4.370-1| 2.853-3
* 1-0.609375|-5.243-1|-5.286-1| 4.290-3|-5.283-1| 4.051-3|-5.283-1| 4.039-3
~0.578125 |-6.588-1|-6.640-1| 5.230-3|-6.637-1| 4.970-3|-6.637-1| 4.957-3
* |-0.546875|-8.895-1|-8.863-1|-3.208-3|-8.860-1|-3.488-3|-8.860-1|-3.503-3
-0.515625|-1.467 |-1.684 2.166-1|-1.684 2.163-1|-1.684 2.163-1
* |-0.484375]-1.282 |-1.480 | 1.983-1|-1.480 1.980-1|-1.480 1.980-1
-0.453125|-4.646-1|-4.560-1|-8.664-3|-4.556-1|-9.009-3]|-4.556-1|-9.027-3
* |-0.421875|-5.250-2|-5.493-2| 2.434-3|-5.456-2| 2.066-3|-5.454-2| 2.047-3
-0.390625| 2.302-1| 2.277-1| 2.490-3| 2.281-1| 2.099-3| 2.281-1| 2.078-3
-0.328125]| 6.163-1| 6.150-1| 1.323-3| 6.154-1| 8.841-4| 6.155-1| 8.606-4
-0.265625| 8.729-1| 8.704-1| 8.401-4| 8.725-1| 3.496-4| 8.726-1| 3.228-4
-0.203125| 1.050 | 1.050 6.658-4] 1.050 1.209-4| 1.050 9.045-5
-0.140625| 1.170 | 1.169 6.182-4| 1.170 | 1.488-5| 1.170 |-1.953-5
-0.078125| 1.242 | 1.241 | 6.331-4| 1.242 |-3.309-5| 1.242 [-7.198-5
-0.015625| 1.272 1.271 | 6.869-4| 1.272 |[-4.743-5| 1.272 |-9.136-5
0.046875| 1.262 | 1.261 7.729-4| 1.262 |-3.587-5| 1.262 |-8.551-5
0.109375] 1.211 | 1.210 8.950-4| 1.211 | 4.145-6| 1.211 [-5.196-5
0.171875] 1.116 1.115 | 1.069-3| 1.117 8.743-5| 1.116 2.391-5
0.234375] 9.698-1| 9.684-1| 1.338-3| 9.695-1| 2.539-4| 9.696-1| 1.818-4
0.296875| 7.566-1| 7.548-1| 1.812-3| 7.560-1| 6.116-4| 7.560-1| 5.297-4
0.359375| 4.450-1| 4.422-1| 2.796-3| 4.435-1| 1.463-3| 4.436-1| 1.369-3
*| 0.390625| 2.302-1| 2.266-1| 3.580-3| 2.280-1| 2.174-3| 2.281-1| 2.074-3
0.421875(-5.250-2|-5.613-2| 3.635-3|-5.464-2| 2.149-3|-5.454-2| 2.042-3
x| 0.453125|-4.646-1{-4.573-1|-7.346-3|-4.557-1|-8.918-3{-4.556-1{-9.033-3
0.484375|-1.282 |-1.482 1.998-1|-1.480 1.981-1|-1.480 1.980-1
*| 0.515625|-1.467 |-1.685 | 2.182-1|-1.684 2.164-1]-1.684 2.163-1
0.546875|-8.895-1|-8.880-1]-1.490-3|-8.862-1|-3.367-3|-8.860-1|-3.511-3
x| 0.578125|-6.588-1|-6.659-1| 7.102-3|-6.639-1| 5.103-3[-6.637-1| 4.948-3
0.609375|-5.243-1|-5.306-1| 6.330-3|-5.285-1| 4.197-3|-5.283-1| 4.029-3
0.671875|-3.689-1|-3.736-1| 4.675-3|-3.711-1| 2.231-3}-3.709-1] 2.031-3
0.734375|-2.802-1|-2.844-1| 4.205-3|-2.816-1| 1.374-3|-2.814-1| 1.134-3
0.796875|-2.227-1|-2.270-1| 4.292-3|-2.237-1| 9.723-4|-2.234-1| 6.777-4
0.859375|-1.825-1|-1.872-1| 4.720-3|-1.833-1| 7.678-4|-1.829-1| 3.980-4
0.921875|-1.529-1|-1.584-1| 5.454-3|-1.536-1| 6.693-4[-1.531-0) 1.902-4

General Purpose Comparison. Lomax and Martin developed their solvers [24],

[26] with certain aerodynamical problems in mind [25], and we developed ours bearing

in mind certain problems in geophysical fluid dynamics [15], [17]. On the other

hand, the first Poisson solvers were also formulated for specific applications [4], [21],

and only later developed into general purpose algorithms and into packages. Therefore,

it seemed reasonable to test our solvers on solutions which had an appropriately general
character (Tables III through VI, and discussion at the end of Section 5); these tests
showed that our solvers are second-order accurate, given rather minimal continuity prop-
erties of the solution.




618 MICHAEL GHIL AND RAMESH BALGOVIND

VIIB. Straddling mesh

uv uu
LM GBuv GB GYY GB

u exact L]
x M error error error

-0.9375 |-1.467-1|-1.467-1{-3.986-5|-1.467-1|-6.063-5{-1.467-1{-5.903-5
-0.8750 |-1.743-1|-1.742-1{-1.054-4|-1.741-1}-1.474-4|-1.741-1|-1.442-4
-0.8125 |-2.114-1(-2.112-1{-2.127-4}-2.111-1]-2.765-4|-2.111-1{-2.717-4
-0.7500 |[-2.637-1}-2.633-1|-4.073-4|-2.632-1/-4.939-4|-2.632-1]|-4.874-4
-0.6875 |-3.425-1|-3.417-1|-8.356-4|-3.416-1|-9.463-4|-3.416-1|-9.380-4
-0.6250 |[-4.753-1|-4.730-1{-2.236-3|-4.729-1|-2.372-3|-4.729-1|-2.362-3
-0.59375|-5.840-1 (-5.793-1|-4.734-3|-5.791-1|-4.884-3|-5.791-1|-4.873-3
-0.5625 |-7.559-11-7.417-1{-1.422-2|~7.415-1|-1.439-2|-7.415-1|-1.437-2
-0.53125(-1.092 -1.020 -7.206-2]-1.020 -7.224-21-1.020 -7.223-2
-0.5000
-0.46875|-7.763-1(-7.027-1(-7.353-2|-7.025-1]|-7.374-2|-7.025-1{-7.373-2
-0.4375 |-2.353-1(-2.219-1|-1.338-2|-2.217-1|-1.361-2|-2.217-1|-1.359-2
-0.40625] 9.975-2| 1.036-1(-3.796-3| 1.038-1|-4.037-3| 1.038-1(-4.019-3
-0.3750 3.441-1} 3.455-1|-1.406-3| 3.458-1|-1.665-3| 3.458-1|-1.646-3
-0.3125 6.898-1| 6.900-1{-1.765-4| 6.903-1(-4.726-4| 6.903-1|-4.505-4
-0.2500 9.235-1] 9.234-1| 1.697-4| 9.237-1|-1.669-4| 9.237-1(-1.417-4

-0.1875 1.085 1.085 3.290-4} 1.085 -5.183-5| 1.085 -2.327-5
-0.1250 1.192 1.192 4.268-4( 1.192 -2.463-6} 1.192 2.980-5
-0.0625 1.253 1,253 4.998-4| 1.253 1.715-5] 1.253 5.376-5

0.0 1.273 1.273 5.610-4{ 1.273 1.928-5( 1.273 6.068-5

0.0625 1.253 1.253 6.144-4] 1.253 6.971-6| 1.253 5.376-5
0.1250 1.192 1.191 6.578-4| 1.192 -2.301-5} 1.192 2.990-5
0.1875 1.085 1.084 6.804-4| 1.085 -8.314-5| 1.085 -2.327-5
0.2500 9.235-1{ 9.229-1| 6.476-4| 9.237-1{-2.095-4}| 9.237-1{-1.417-4
0.3125 6.898-1| 6.894-1| 4.365-4| 6.903-1|-5.274-4| 6.903-1{-4.505-4
0.3750 3.441-1| 3.448-1|~-6.466-4| 3.459-1|-1.733-3| 3.458-1|-1.646-3
*1 0.40625|-2.353-1| 1.027-1|-2.957-3| 1.039-1|-4.112-3| 1.038-1|-4.019-3
0.4375 |-2.353-1]-2.228-1{-1.246-2(-2.216-1|-1.369-2|-2.217-1{-1.359-2
*1 0.46875 (-7.763-11-7.037-1(-7.252-2|-7.024-1|-7.383-2(-7.025-1[-7.373-2
0.5000
*1 0.53125-(-1.092 -1.021 -7.086-2(-1.019 -7.235-21-1.020 -7.223-2
0.5625 |-7.559-1(-7.430-1{-1.291-2|-7.414-1|-1.450-2|-7.415-1{-1.437-2
*! 0.59375 |-5.840-1|-5.807-1|-3.304-3|-5.790-1|~5.011-3|-5.791-1|-4.873-3
0.6250 |-4.753-1(-4.746-1/-6.781-4|-4.727-1{-2.510-3(-4.729-1|-2.362-3
0.6875 |-3.425-1]-3.435-1| 1.013-3|-3.414-1{-1.108-3|-3.416-1|-9.380-4
0.7500 |-2.637-1{-2.655-1{ 1.796-3|-2.630-1(-6.830-4|~-2.632-11-4.874-4
0.8125 |-2.114-1(-2.138-1| 2.432-3|-2.109-1|-4.957-4|-2.111-1|-2.717-4
0.8750 |-1.743-1{-1.774-1| 3.105-3|-1.739-1|-3.994-4|-1.741-1(-1.442-4
0.9375 |-1.467-1|-1.506 3.911-3|-1.464-1{-3.457-4]-1.467-1|-5.903-5

The intent of [24], [25], [26] was explicitly restricted to the solution of spe-
cific aerodynamic problems. It appeared worthwhile, however, to consider the more
general applicability of their solvers.

We carried out a number of tests with version D, option (d) of [26] on solu-
tions with a generic character. The results are given in Table VIII. This table is or-
ganized in the same way as Tables III and V of Section 4, and we refer to the de-
scription there.

For very simple test cases such as u, v constant or quadratic, the [26] solver is
essentially exact to machine accuracy; the round-off error increases slightly with the
number of grid points used. The difference between these results and those in Table III
is due to the computer used: double-precision arithmetic on an IBM 360/95 is slightly
more accurate than single precision on a CDC 6600.

The results with more severe test cases seem to indicate that the [26] solver is
only first-order accurate in general. This is apparently due to the formulation of the
algorithm at the boundaries. An indication that boundary inaccuracies are the cause
of lower than second-order accuracy are those exceptional test cases which show high



points used in the x-direction in each test.
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TABLE VIII
Numerical results for general-purpose test cases using the solver of [26], version
D, option (d). The smaller regions, such as R, = {(x, y): 0<x <, 0<y <m/2}
were used in some of the tests because of the difficulty of fitting computations with
M = 256 into the core memory of the CDC 6600; M is the actual number of grid
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- VI DY 2, W) v |2 () 2, (V)
uw v = 1000.0 16 1.083-11 1.642-12 7.747-12 2.910-11 4.547-12
3
constant | v = - 100.0 32 [2.871-11 | 2.628-11 | 2.752-11 | 9.095-11 | 5.093-11
R4 64 1.001-10 1.387-10 1.210-10 4.475-10 2.310-10
128 1.999-10 2.177-10 2.090-10 1.281-9 3.174-10
u,v € c® |u = x2 +y 16 3.076-12 1.537-12 2.431-12 8.640-12 4.547-12
= 100 32 1.360-11 2.533-11 2.033-11 5.571-11 4.957-11
64 7.589-11 1.376-10 1.111-10 3.583-10 2.287-10
128 1.706-10 2.164-10 1.949-10 1.122-9 3.156-10
u,v € ¢ |u = y sin(x) 16 4.183-3 4.979-3 4.598-3 9.507-3 1.013-2
= sin(y) 32 1.020-3 1.227-3 1.128-3 2.379-3 2.544-3
64 2.519-4 3.046-4 2.795-4 5.921-4 6.366-4
128 6.262-5 7.589-5 6.957-5 1.477-4 1.592-4
16/32 |4.101 4.058 4.076 3.996 3.983
32/64 |4.048 4.023 4.036 4.019 3.996
64/128(4.023 4.014 4.018 4.009 3.999
u,v € ¢ |u = y?sin x 16 [1.155-2 8.376-3 1.009-2 2.622-2 1.909-2
= sin(y) 32 2.885-3 2.055-3 2.504-3 6.613-3 4.838-3
64 7.197-4 5.090-4 6.233-4 1.656-3 1.211-3
128 1.797-4 1.267-4 1.555-4 4.141-4 3.030-4
16/32 |4.005 4.076 4.029 3.966 3.947
32/64 [4.008 4.037 4.018 3.994 3.993
64/12814.005 4.018 4.009 3.999 3.998
[ , LM M 2,(0) 2,0 | 2,00 | 2,(0) 2_(V)
u,v € c” = y3sin(x) 16 2.356-2 3.073-2 2.738-2 8.028-2 6.846-2
= sin(y) 32 5.333-3 7.566-3 6.546-3 2.600-2 1.725-2
Y 64 1.296-3 1.876-3 1.612-3 7.155-3 4.314-3
128 3.219-4 4.672-4 4.012-4 1.865-3 1.078-3
16/32 4.418 4.062 4.183 3.088 3.969
32/64 4.115 4.032 4.059 3.633 3.998
64/128| 4.025 4.016 4.019 3.836 4.003
wvec®fu=ylsinx 16 9.705-2 | 1.262-1 | 1.126-1 | 4.135-1 | 2.797-1
= sin(y) 32 3.426-2 3.117-2 3.276-2 1.282-1 7.139-2
- Y 64 1.061-2 7.741-3 9.286-3 3.417-2 1.787-2
128 2.938-3 1.928-3 2.485-3 8.742-3 4.470-3
16/32 2.832 4.047 3.436 3.224 3.919
32/64 3.230 4.027 3.527 3.753 3.995
64/128 | 3.610 4.014 3.737 3.909 3.9%8
u,v € c®lu= yssin(x) 16 €.019-2 5.031-2 5.547-2 1.217-1 1.052-1
v = sin(y) 32 3.206-2 1.277-2 2.440-2 6.215-2 2.712-2
Y 64 1.058-2 3.206-3 7.818-3 1.982-2 6.805-3
2m/3 128 2.988-3 8.026-4 2.187-3 5.511-3 1.703-3
4n 16/32 1.877 3.939 2.273 1.959 3.878
0 -3 32/64 3.030 3.983 3.122 3.135 3.985
64/128 | 3.542 3.9295 3.574 3.597 3.996

accuracy, apparently because their solutions close to the boundary behave in a special

way in the variable perpendicular to it. The series of tests with increasing powers of
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TABLE VIII (Continued)

LM M 2,(U) 2, (V) 2,(u,v) 2 (U) 2, (V)
w,v e c® [u=y®sin(x) 16 1.726 1.937 1.835 6.229 4.615
+0.1 32 1.002 4.854-1 | 7.876-1 | 2.209 1.182
v = sif(y) 64 3.696-1 | 1.210-1 | 2.750-1 | 6.000-1 | 2.969-1
oo 128 1.087-1 | 3.018-2 | 7.981-2 | 1.750-1 | 7.427-2
16/32 | 1.722 3.990 2.330 2.820 3.904
32/64 | 2.712 4.012 2.864 3.682 3.980
64,128 3.399 4.010 3.446 3.429 3.998
wvec® [u=y sint)| 16 1.099+3 | 3.209+2 | 8.115+2 | 1.944+3 | 8.179+2
v = sin(y) 32 1.740+2 | 8.664+1 | 1.374+2 | 4.049+2 | 2.312+2
= sinly 64 1.065+2 | 2.186+1 | 7.685+1 | 1.687+2 | 5.875+1
128 3.603+1 | 5.470 2.577+1 | 5.635+1 | 1.474+1
16/32 | 6.320 3.796 5.905 4.800 3.538
32/64 | 7.634 3.963 1.788 2.400 3.935
64/128| 2.950 3.997 2.982 2.994 3.985
u,v e c” |u= yZsin(x) 16 5.742-2 | 1.128-1 | 8.951-2 | 2.299-1 | 3.015-1
v = sin(y?) 32 1.556-2 | 2.690-2 | 2.197-2 | 8.305-2 | 7.070-2
= Y 64 3.835-3 | 6.571-3 | 5.379-3 | 2.533-2 | 1.892-2
128 9.507-4 | 1.632-3 | 1.335-3 | 7.042-3 | 4.703-3
16/32 | 3.690 4.195 4.074 2.768 4.264
32/64 | 4.058 4.094 4.084 3.279 3.737
64/128| 4.033 4.027 4.029 3.597 4.023
u,v e c® a = yisin(x) 16 1.261+1 | 1.892+41 | 1.608+1 | 4.736+1 | 3.853+1
- sinyh) 32 6.517 1.044+1 | 8.703 3.188+1 | 2.896+1
v = sinly 64 4.913 7.542 6.365 2.726+1 | 1.494+1
128 2.752 3.623 3.217 1.833+1 | 1.026+1
16/32 | 1.935 1.812 1.847 1.486 T.331
32/64 | 1.326 1.384 1.367 1.169 1.939
64/128| 1.785 2.0828 1.978 1.487 1.456
LM M 2,(0) 2, (V) 2,(0,9) | 2_(0) L (V)
u,v € C” |u = x sin(y) 16 |1.938-1 6.645-2 1.448-1 8.011-1 2.812-1
v =y sin(x) 32 |1.087-1 3.787-2 8.140-2 5.367-1 1.872-1
64 |5.845-2 [ 2.017-2 4.372-2 3.371-1 1.108-1
128 |3.049-2 1.041-2 2.278-2 2.028-1 | 6.175-2
16/32 |1.782 T.754 1.779 1.493 1.502
32/64 |1.860 1.878 1.862 1.592 1.689
64/128(1.917 1.939 1.919 1.662 1.795
u,v e c® [u = sin(y) 16 [2.733 6.771-1 1.991 1.055+1 4.096
v = y*sin(x) 32 [1.787 4.20-1 1.300 8.858 3.456
64 [1.033 2.413-1 7.501-1 | 6.367 2.401
128 |5.604-1 1.281-1 4.065-1 4.193 1.505
16/32 |1.529 1.578 1.532 1.191 1.185
32/64 |1.730 1.778 1.732 1.391 1.439
64/128|1.843 1.884 1.845 1.519 1.595
u,v e c® |u = x%sin(y) 16 [4.381-1 1.319-1 3.235-1 1.738 6.385-1
v = y2sin(x) 32 |2.571-1 7.774-2 1.899-1 1.227 4.722-1
64 [1.429-1 | 4.213-2 1.054-1 | 8.254-1 3.017-1
16/32 [1.704 1.697 1.704 1.416 1.350
32/64 [1.798 1.845 1.802 1.487 1.565

» in the solution, which lead to decreasing order of accuracy, illustrate this point. The
fractional order of accuracy evident in these and in some of the other test cases also
points in this direction. Needless to say, we also performed experiments with our sol- -
vers of Sections 3 and 5 on the same test cases; they all yielded second-order accurate
results.
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TABLE VIII (Continued)

LM M £, () L5(v) 25(u,v) ¢ (0) L (V)
u,v u=cos (x)sinh(y] 16 7.984-2 2.924-2 6.013-2 3.669-1 1.105-1
harmonic |v=sin(x)cosh(y 32 4, 464-2 1.647-2 3.365-2 2.559-1 7.177-2
R 6l 2.379-2 8.7271-3 1.792-2 1.050-1 4.2ug-2
4 128 | 1.234-2 | 4.491-3 | 9.285-3 | 1.012-1 | 2.383-2

16/32 | 1.789 1.775 1.787 1.434 1.539

32/64 1.876 1.888 1.878 1.551 1.690

64/128] 1.928 1.943 1.930 1.630 1.783
u,v u=cos (x)sinh (y} 16 9.154-3 3.8L0-3 7.019-3 4.505-2 1.348-2
harmonic |[v=sin (x)cosh(y 32 4.861-3 2.110-3 3.747-3 3.087-2 7.809-3
R,/4 64 2.515-3 1.105-3 1.943-3 1.938-2 4.181-3
/8 128 1.283-3 5.653-4 9.91L-4 1.166-2 2.168-3

o[::::::L/u 16/32 | 1.883 1.820 1.873 1.492 1.726

32/64 | 1.932 1.910 1.929 1.593 1.868

64/128| 1.961 1.954 1.950 1.661 1.928
u,v u=sin(y)cosh(x 16 1.143+1 3.983 8.557 5.535+1 1.776+1
harmonic |v=cos(y)sinh(x 32 7.065 2.569 5.315 4.188+1 1.457+1

64 3.951 1.463 2.979 2.760+1 9.492

128 2.101 7.809-1 1.585 1.696+1 5.490

16/32 | 1.618 1.550 1.610 1.322 1.219

32/64 | 1.788 1.756 1.784 1.517 1.535

64/128| 1.888 1.873 1.879 1.627 1.745
u,v U=cos (y) sinh (x) 16 1.742+1 8.394 1.367+1 7.865+1 3.313+1
harmonic - - sin(y) 32 8.911 4.681 7.117 4.542+1 2.071+1
v= 1E(Y) 64 4.500 2.476 3.632 2.443+1 1.165+1

coshix 128 2.260 1.274 1.835 1.264+1 6.183

16/32 | 1.955 1.793 1.921 1.731 1.600

32/64 | 1.980 1.891 1.960 1.860 1.779

64/128| 1.991 1.944 1.970 1.928 1.883

Subject to further testing, we are forced to conclude at this point that our
algorithms, compared to previously published ones, are at least as good when applied
to specific problems of interest, and that they are more suitable for development into
general-purpose Cauchy-Riemann solvers.

7. Concluding Remarks. The inhomogeneous Cauchy-Riemann equations in a
rectangle have been discretized by a finite-difference approximation. A number of
different boundary conditions have been treated explicitly, leading to algorithms which
have overall second-order accuracy. All boundary conditions with either u or v pre-
scribed along a side of the rectangle can be treated by similar methods. A rigorous
proof of the second-order accuracy of the algorithm was given for one combination of
boundary conditions, and numerical experiments substantiate this result for all the
boundary conditions tested.

The algorithms presented here have nearly minimal time and storage require-
ments and seem suitable for development into a general-purpose direct Cauchy-Riemann
solver for arbitrary boundary conditions. This could be done for instance along the
lines of the capacitance matrix methods of discrete potential theory (Widlund [33]);
generalizations to nonrectangular domains can also be made by this approach and re-
lated ones. More experience with different applications should help in formulating a
code which gives a reasonable compromise between efficiency and range of applica-
bility.

It is well known [30], [31], [32] that fast solvers can be formulated for a sin-
gle separable second-order elliptic equation with variable coefficients. Clearly, the
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same generalizations can be carried out for a first-order system (2.1) in which 3/dx
and 9/dy are replaced by a(x)d/0x and by b(y)3/dy, and in which lower-order terms
can also be introduced. A special case of such an extension appears in [26]. Effi-
cient algorithms for generalizations of this nature can be based on appropriate modifi-
cations and combinations of matrix decomposition, cyclic reduction and Toeplitz fac-
torization [30], [31], [32].

Linear problems with variable coefficients, as well as nonlinear problems, can
also be handled by semidirect methods, i.e., by splitting the given operator to be in-
verted into one whose inverse is easily computed using a fast direct method, and an-
other one which is small in some suitable sense [8], [19], [25], [32]. It is in this direc-
tion that we shall seek to extend the work presented here, in order to solve the non-
linear problem of [15], [17] and related ones. The straightforward iterative method
of [17] will then be compared to semidirect methods.

Appendix A. An Error Estimate. We saw in Sections 4 and 5 that the proposed
algorithm gives a second-order accurate solution to the inhomogeneous Cauchy-Riemann
equations under the various boundary conditions considered. The second-order ac-
curacy of the discrete solutions was obtained in our numerical experiments even, for
cases in which the solution to the continuous problem was merely C!, more precisely,
u € C',v € C° We shall give now a rigorous error estimate for the model problem of
Section 2, making the stronger and more customary assumption that u, v € C?, ie.,
that the solution to (2.1)—(2.3) has continuous derivatives up to fourth order.

The discrete operator L, we consider is that of (3.11a),

S+17 -1
-1 S+ 21 -1
(A1) L, = . " . + aee™,
. =1 .S + 2/ . -1
| -1 S +I_

where o > 0 and € is a vector of length MN with all entries zero but one,
=0 forl# M, +i,, eM]-0+,.0=1;

L, acts on the grid function U. We wish to show that

(A.22) lu - Ull, = Oh?* + k?).

From such an estimate and from (3.1a) it will follow immediately that

(A2b) v =Vl. = 0@ + &%)

as well; it suffices to observe that (3.1a) is a second-order accurate quadrature formula
for

(A3) o(x, ) = vO@) + [7{dCx, m) — u,(x, m) dn,

namely the midpoint rule. We only need to apply the result of Bramble and Hubbard
[2] that (A.2a) implies similar estimates for the difference quotients of .
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The matrix operator L, of (A.1) is of monotonic type (Collatz, [6, p. 42 ff.])
or of positive type with diagonal dominance (Forsythe and Wasow [11, p. 181]). To
avoid confusion in the terminology, we shall simply state that L, satisfies the following

LEmMA 1 (MAXiMUM PRINCIPLE). If L,W = H, and H > 0 (in the sense that
all the components of H are nonnegative), then W > 0.

From this, one easily shows that

LEMMA 2 (COMPARISON THEOREM). If |L,W| < L,®, then |W| < &.

We notice that these results would still hold if, instead of aee*, we included in
L, aterm aA, with a single diagonal block equal to I,,, and all other blocks zero, I,
being the M x M identity matrix.

These properties of L, suggest the familiar estimation procedure first used by
Gershgorin [13]. Let u be the solution of

(A.4a) Lu = f,

where L and f are defined by the two equations

(A.4b) Au=u, tu,, =d, +e, iR,

(A4c) u,=e+v, ondR={(x,y):0<x<27y=0,n},

with the additional requirements that u be 2z-periodic in x, and given at a point
(x¢» ¥o) €R. For sufficiently smooth d, e and v(® v (A.4) has a unique solution
u € C*, subject to the familiar compatibility condition for the Neumann problem that

(A4d) { J@ +eyaxay=-§ (c+v)ax

We shall make the necessary smoothness and compatibility assumptions throughout
this Appendix.
Let U be the solution of

(A.5a) L,U=F,
where L, is defined by (A.1) and F is defined as the right-hand side of (3.11a),
T*D, - E,

A.Sb 2 1
( ) F=k| «« oo, + aee*U’

with F;, 1 <j <N, corresponding in obvious fashion to the partition of L,. Clearly,
for 2 <j< N -1, (AS5) is an approximation to (A.4b) with second-order local trun-
cation error. This would further encourage us to seek an estimate (A.2a) by first
showing that the truncation error satisfies

(A.6) L,w—-U)=(L, - Lu+f-F=0FK®m+k?)

and then constructing a Gershgorin comparison function ® which would allow us to



624 MICHAEL GHIL AND RAMESH BALGOVIND

conclude based on Lemma 2 that (A.2) follows from (A.6). We remark at this point
that, in order to make the notation of (A.6) transparent, we defined

(A.72) L=-k*A inR, L=-k3/dy on dR,

(A.7b) =-k*(d, +e) iR, = —k(e +v,) on 0R,

furthermore, F is not merely f at the grid points.

A number of slight difficulties arise in carrying out the program above. First,
(A.4) is essentially a Neumann problem, rather than a Dirichlet problem as in [13] and
in most of the literature on elliptic systems. The work on boundary conditions of the
second and third kind most relevant to the estimation which follows is that of Batsche-
let [1], who gives an O(h) estimate, and that of Bramble and Hubbard [3], who give
an O(h?|log hl) estimate, their assumptions being that u € C*. The latter article also
contains further references to estimates for the Neumann problem. The boundary con-
dition approximations in these works are different from ours.

Second, (A.6) actually fails close to the boundary, i.e., for j = 1, N, where the
local truncation error is of first order only. The work of Bramble and Hubbard ([3]
and references therein), combined with our numerical results, led us to expect that
(A.2) could still be proved, with some additional effort; this turned out to be the case.

Our method to obtain (A.2) is actually a modification of that in [1], which ex-
ploits the fact that the boundary condition we use is second-order accurate, while that
in [1] is only first-order. We shall see below that the failure of (A.6) forj=1, N
stems from \Lh there being a linear combination of the discrete analog to (A.4b) and
of that to (A.4c). Hence the truncation error, as defined by (A.6), is of first order
there, although both (A.4b) and (A.4c) are separately approximated to second order.
In spite of this formally first-order truncation error, the fact that both the equation
and the boundary condition are approximated by second-order discrete analogs yields
an overall O(h? + k?) error estimate (A.2).

After these observations, we proceed with the business at hand. To start, we
derive (A.6) for 2 <j < N — 1, let the discretization error W be defined as

(A.8a) W=u-U,
considered as a mesh function. Then
(LhW)j = —Wj_1 + (S + 2I)W]. - Wj+l
=-uw_, + @ +2Du —u,, +k*(Au);
(A8b) 12 J . J J
—k*d, + ey) - k(T D]. + Ej_1 - Ej)
=0(K*(n* + k%), 2<j<N-1.

In (A.8b), and in the sequel, u;, (Au);, and similar terms are interpreted as vectors of
grid values, in the same way as U;. The factor k? is convenient in order to keep the
coefficients of L, as O(1). The terms O(h?k?) appear due to differentiation in the x
direction, those O(k*) due to differentiation in the y direction. The constants implied
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in writing O(hPk?) depend on the derivatives of order p + ¢ for the functions involved;
they will not be written down explicitly, since those derivatives are known to be
bounded from our assumptions.

Here, as in the derivation of (A.2b) from (A.3) and as in the sequel, it is im-
portant to remember the staggering of Figure 1, which essentially guarantees that all

differences are centered. Notice also that, for € # 0, (A.8b) will only be modified
by the term aejoejoujo in L,u, and by the term aefoefono in F’; the condition we
chose to eliminate the indeterminacy in the Neumann problem is exactly that these
two terms cancel, and hence the estimate is not affected. If instead of ee™ we have

A, the same observation holds as after Lemma 2; i.e., prescribing the average of Ufo’
rather than one of its components, UiO io’ does not affect the estimate either.

To analyze the situation for j = 1, it is convenient to rewrite (A.5) for j = 1 as
a linear combination of two equations, involving an auxiliary vector U,; an entirely
similar procedure can be carried out for j = &, introducing Uy, , |, but we shall omit
writing out the latter analysis and merely draw the conclusions we need from it. The
two equations for j = 1 are

(A9a) -U, +(§+2)U, - U, = k(T*D, + E, —E)),
(A9b) U, -~ U, = —kE, + T*V;
here we revert to the original definition of D,, which had been replaced by D, +
k“IV0 in writing Eq. (3.3). Equation (A.9a) is now simply the discrete analog of (A.4b)
forj =1, or y = k/2, with E; defined on y = 0 in the usual manner. Equation (A.9b)
is the discrete analog of (A.4c) written on y = 0. If the auxiliary vector U, is thought of
as given on y = —k/2, then both (A.92) and (A.9b) are formally second-order accurate.
With this motivation in mind, it is easy to obtain
L,W) = +DW, - W,
=@+ Du, —u, + szulyzkl2 + k(a/ay)uly=0
(A.10a) —K*d, +e)l,—r;, ~KT*D, + Ey —E,)
k(e +v)l,— + kE, - T*V,
= [(Lh “L)ull + [f—F] 1°
We have from (A.10a) that
(L, —L)ul, = 0k*n*> + k), [f-F1, = 0K ">+ k*) + O(kh?).
We assume throughout that k/2 = O(1) and drop the fourth-order terms; thus finally
(A.10b) L, W), = O(k(n* + Kk*)).

For j = N we obtain in the same way
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(A.10c) LWy = O(k(h* + K2)).

At this point we have to exhibit a comparison function ¢ which shall lead us
from (A.8) and (A.10) to (A.2). Let ¢ be the solution of

(A.11a) LYy =k%a inR,
—kab ony =0,
(A.11b) Ly =
kBb ony =m.

L is defined by (A.7), and ¢ is 2w-periodic in x and fixed at one point; this yields a
unique and smooth ¥, which is bounded independently of x, y, # and k. Notice that
Y satisfies inhomogeneous boundary conditions as in [1]. The constants 4, b, a and f
are positive and chosen so as to satisfy the compatibility condition

(A11¢) Jfavaxay = [2" (v, m - v, 6, O} ax,
R

that is, mz = (a + B)b.
We want to find m independent of x, y, but not of &, k, so that

(A.12a) ¢ =my
and
(A.12b) |L,WI<L,®,

where W is given by (A.8a) and ® is the mesh function corresponding to ¢. Lemma 2
will then provide the desired estimate on W in terms of m.

We consider first the “interior” mesh domain of U-points R, = {(x;, yj): 1 <i
<M, 2<j<N-1}. There

(A.13a) L,é=L¢ + (L, — L) =mk*a+ mO(k*(h* + k%)),
as in (A.8b). For A, k sufficiently small, with A/k = O(1),
L,¢ > mk?a/2.
It suffices, therefore, given some sufficiently large constant Cp, to have set
(A.142) m= Cgh?

for (A.12b) to hold in R, ; Cg will depend on certain bounds for the derivatives of w.

Consider now the “boundary” mesh domain of U-points I'; = {(x;, ¥)):
1<i<M,j=1,N}. Here, cf. (A9, 10), we have

Ly9), = +DP -2, = sz¢ly:k/2 + k¢y|y=o + O(K*(* + k)

(A.13b)
= —mk%aq + mkab + O(K3);

a similar equation holds for (L, ®),. Thus, for A, k sufficiently small, we have in ',

Lo > mkab/2;

remembering again (A.10), it suffices here too that
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(A.14b) m = Cph?,
for (A.12b) to hold. The constant Cp. depends only on the derivatives of u, and on the
domain R.

In fact, one can write down ¢ = Y(x, y;a, b, a, ) explicitly and optimize the
parameters a, b, o, § subject to (A.11c). This yields

(A.15a) Wl < gh2max{§cR, CF},
where
1

(A.15b) Cr =34 ) S0 12ty +ityyy) = (s + €,

o<y<m
and

1
(A.15¢) Ch== sup |u +ou___|
r 24 0<x<2m, ryy e

y=0,m

The bound e(u) in Table V of Section 4 was computed using (A.15).
Having derived bound (A.15) completes the proof that under our assumptions

lu = Ullo, + llv = VI, = O(r?).

It might be of interest to notice that the algorithm proposed and the error estimate
just given apply not only to the inhomogeneous Cauchy-Riemann equations (2.1),
(2.2); they apply directly to the Neumann problem (A.4), with d, te, e+, arbi-
trarily prescribed as well. In other words, this is also a second-order algorithm for the
Poisson equation with Neumann boundary conditions in a rectangle (compare Schu-
mann and Sweet [29]).

Appendix B. The Basic Algorithm. At the end of the paper we present a
FORTRAN listing of the program used to compute the results in Tables I through VI.
The program implements the algorithm described in Section 3, tested in Section 4, and
analyzed in Appendix A. It solves the inhomogeneous Cauchy-Riemann equations for
u and v in a rectangle, with v prescribed on the upper and lower side of the rectangle,
and with periodicity in the x-direction. The programs for other combinations of
boundary conditions, as discussed in Section 5, are very similar.

The program was tested for compatibility with ANSI FORTRAN (U.S.A. Stan-
dard X3.9-1966) by a special diagnostic option of the CDC FTN 4.6 compiler; it was
further cleaned up to conform to common usage by a program called TIDY, imple-
mented at and available from the Courant Institute. It was run on a CDC 6600 with
an FTN 4.6 compiler, and on an IBM 360/95 and an Amdahl 470V/6 with a
FORTRAN 1V, level H compiler. It is felt that these procedures and the numerical
tests reported on in the text are some reasonable steps in the direction of validation
and portability; further steps in this direction taken by potential users would be of the
greatest interest to the authors.
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The main part of the program is subroutine FASTCAR. For user convenience,
the driver subroutine, as well as the FFT subroutine and the tridiagonal solver we used
are included. Clearly, these subroutines can be changed to others which the user for
one reason or another finds are better adapted to his needs or preferences; e.g., cyclic
reduction can be used instead of the FFT, or Toeplitz factorization instead of the LU
factorization we use for the scalar tridiagonal systems, etc. The use of a more general
FFT algorithm would remove the restriction of M being a power of two.

The driver program contains some diagnostics on error norms, which would have
to be modified for problems whose solution is not known in closed form. FORMAT
statements are grouped together and can thus easily be modified. Execution speed can
be increased if MN additional storage locations are available, by avoiding the shifting
required for the reindexing process within the same array. Other trade-offs between
storage and execution time are also possible.

The implementation follows rather closely the algorithm description in the last
subsection of Section 3. With the help of the COMMENTS provided in the pro-
gram, we hope that it is fairly readable.

Questions and comments by users are warmly invited.

DO 10 I=1,M
X1=xJUu(l)

c DRIVER FOR FASTCAK A1
Cc A2
COMMON /KEEP/ 7(8256) A3
COMMON /HAND/ E(8292),D(8292) A 4
COMMON /WET/ VO(128),VN(128) ALY
COMMON /DRY/ X(64),Y(64) A6
DIMENSION W(5,5) A7
c A8
XJUGJ) =XL+H2*FLOAT(J)-H A9
XJV(J)=XL+H2*FLOAT(J=1) A 10
YKU(K) sYL+G2*FLOAT(K) =G A 11
YKV(K)=YL+G2*FLOAT(K) A 12
VEX(X,Y)=SIN(X) A 13
UEX(X,Y)=COS(X)+Y A 14
DUDY(XsY)=1,0 A 15
DUDX(XpY)==SIN(X) A 16
DVDX(X»Y)=COS(X) A 17
DVDY(X»Y)=0,0 A 18
c A 19
ISAM=-1 A 20
PIA=1,0 A 21
PI=4.0%ATAN(PIA) A 22
PI2=PI/2.0 A 23
DO 60 MF=3,6 A 24
ICODE=0 A 25
MPOW=MF A 26
M=2%¥MPOW A 27
N=M/2 A 28
YL=0.0 A 29
XL=0.0 A 30
XU=2,0%PI A 31
H2=(XU=XL)/FLCAT (M) A 32
YU=N*H2 A 33
H=H2/2.0 A 34
G2=(YU=YL)/FLOAT(N) A 35
6262/240 A 36
Ml=M=-1 A 37
ALAM=G/H A 3t
AM=1,0/M A 39
N1=N-1 A 40
IL=M*N A 41
ILM=1L=-M A 42
MR=M+1 A 43
DO 10 J=1sN A 44
Y1=YKV(J) A 45
Y2=YKU(J) A 46
A
A
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X2=XJV(I)
K=(J=1)%M+1

SETTING UP ReHeSe
EQUATIONS.

E IS THE ReH.Se

D IS THE ReHeS.

OF THE INHOMOGENLOUS CAUCHY=RIEMANN

E(K)=DUDY(X1,Y1)=DVDX(X1sY1)
D(K)=DUDX(X2,Y2)+DVDY(X2,Y2)

CONTINUE

NEXT STORE THE BOUNDARY VALUES V(TOP)

NEXT STORE THE BOUNDARY VALUES V(BOTTOM)

DO 20 I=1,M
X2=XJV(I)
VO(I)=VEX(XJVIII,YU)
VNCI)sVEX(XJV(I)sYL)
CONTINUE

NEXT STORE THE FIXED U VALUL IN SOL.

IROW IS THE ROW WHERE

SOL=0.0
IRCW=N

Y1=G*(2*(IROW=1)+1)+YL

DO 30 J=1,M

X1=XJu(J)
SOL=SOL+UEX(X1,Y1)
CONTINUE

CALL FASTCR (SOL»H,G»PL, IROW» MPOW» ISAM, ICUDESN)

NEXT FINDING NORMS..

XN IS THE L2
YN IS THE L2
XYN IS THt L2
XM IS THE MAX
YM IS THE Max

YM=0,.,0
YN=0,0

DO 40 J=1,M
X2=XJV(J)

DO 40 I=1,N1
Y2=YKV(I)
Ka(I=1)*M+J

NORM
NORM
NORM
NORM
NORM

DKKK=ABS(D(K)=VEX(X2,Y2))

YN=YN+DKKK*DKKK

IF (DKKKoGToYM) YM=DKKK

CONTINUE

XN=0.0
XM=0,0

DO 50 J=1,M
X1l=XxJU(J)
DO 50 I=1,N
Y1l=YKUC(I)
K=(I=-1)%M+y

EKKK=ABS(E(K)=UEX(X1sY1))

XN=XN+EKKK*EKKK

IF (EXKKKeGTeXM) XM=EKKK

CONTINUE

XYN=(XN+YN) /(IL+ILM)
XN=XN/IL

YN=YN/ILM

XN=SQRT (XN)
YN=SQRT(YN)
XYN=SQRT(XYN)

WRITE (6,120)

WRITE (65110) XNs»YNspXYNsyXMpYM

W(1sMF)=XN
W(2sMF)=YN
W(3,MF)=XYN
W(4yMF) =XM
W(5,MF)=YM

OF
OF
UF
ot
0OF

OF THE VORTICITY EQUATION
OF THE DIVERGENCE EQUATION

FIXCD VALUE U IS ASSIGNZD.

U.
Ve
(U+V) .
Ue
Ve

PP>PP>PPPEPPPPPPD>EPPPPEPPRRPPPRPDELEDEPPPPPLDPPERERD>DPDEDRPPRP> PP

R b 2 B B BB P R P I A I S
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49
50

<

52
53
54
b &
56
27
St
59
(819
61
62
63
04

66
67
ot

7C
7.
72
73
T4

0
-

7¢
77
7

79
€0
bl
€2
63
e4
b9
e
®7
8t
89
9¢C
91
G2
93
G4
9t

97
Ge
99
100

101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
ies
126
127
128
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c A 129
WRITE (6,90) A 130

WRITE (6,90) A 131

WRITE (6580) NyMpXLsXUpYLsYU A 132

WRITE (6590) A 133

WRITE (6,90) A 134

60 CONTINUE A 135
WRITE (65,90) A 136

09 70 J=1,5 A 137
W(Js3)=W(Js3)/W(Js4) A 13¢
WJsd)sw(Jsa)/uldsh) A 139

70 W(JsH)=wlJs5)1/W(ds6) A 140
WRITE (6,100) A 141

WRITE (65110) ((W(Jy1)sJ=155)51=3,6) A 142

sTGP A 143

c A 144
c A 145
80 FORMAT (5Xs*N=%,13,% M=%,13,5Xs*XL=%,Fl0s3s% XU=%3F1043,% YLz%*, A 146
1F10e35% YU=%,F10,3) A 147

90 FOKMAT (1X) A 148
100 FORMAT (7Xs 9HFOLLOWING»4Xs2HIS»4Xs SHRATIO» 4Xs 2HOF»4Xs5HASOVE »4Xs5H A 149
1NORMS) A 15¢C

110 FORMAT (1X»1P9E20.10) A 151
120 FORMAT (1Xs 9HNGKM OF Us15Xs» GHNORM OF Vs»12Xs L1HNOKM OF J+Vs1O0Xs11HM A 152
1AX NORM Us10X»11HMAX NORM V) A 153

END A 1lb4-
SUBROUTINE FASTCR (SOL,DELTAX,DELTAY,PLs IRUWsMPOWs ISAM, 1L 00ESN) B 1
COMMON /HAND/ E(8292),D(6292) 8 2
COMMON /DRY/ X(64),Y(64) B 3
COMMON /WET/ A(128,2) 8 4

C Rk kk kR kkkk kR kakok ko ko Rk ke kR k ok kR kK A kK B 1A
c * * B 3
c * SOLVES INHUMDGENOUS CAUCHY-RIEMANN EQUATIOUNS IN A RECTANGLE* 8 7
(o * U+ V = D(XsY) * B €
c * X Y WITH BeCo  VI(X50) » VI(XsYMaX) * 3 ]
C * U=V = E(XsY) * B 10
C * Y X AND A FIXED VALUE OF U ASSIGNED * 8 11
c * AT SOME (X»Y), * 8 1z
C * * 8 13
c * ALL FUNCIONS ARE PERIODIC IN X WITH PERIOD 2#DELTAX*M . % B 14
c * * g 1t
4 * THE ReHeSe E(XsY) » D(XsY) ARE STORED IN * B 1€
C * E(M®¥J+I) = E( DelTAX*(2%1-1) , JELTAY*(2%J42) ) ¥ 3 17
C * FOK  J = OeeoaN=2 5 I 2 LeeoM 3 1t
c *  D(M®J+I) = D( DELTAX*2#(I-1) DELTAY#(2%4+1) ) * & 19
C * FOR J = UeseN=1 5 I = laesef * 8 20
c * * B 21
C * THE BOUNDARY CONDITICNS AKE STOREOD IN * 8 2¢
C * A(Is1) = VIDELTAX*I50) »A(I,2) = V(UELTAX*I1,DELTAY%N) * B8 23
c * FOR I = leesM ¥ B 24
C * ¥ 8 L
c * SOLUTIONS U AND V AR{ RETURNED IN * 5 26
[ * E(M®J+1) = U( DELTAX*(2%I-1) » DELTAY*(2%J+1) ) * 8 27
c * FOR J =2 OeaeN=1 5 I = LesoM * B 2t
C *  D(M*J+I) = V( DELTAX*2=%(I-1) , OELTAY*(2%J+2) ) * 8 29
C * FOR  J = OseaN=2 5 1 = LesuM B 30
[+ * * g 31
c * N = NUMBER OF MESH POINTS IN Y * B 37
(o *  2%%MPOW = NUMBER OF MESH PGINTS IN X * B 33
C * * B 34
o * ISAM = =1 SOLVES V FROM TOP TO BOTTOM(Y AXIS) « 83 3%
C * ISAM = 1 SOLVES V FRCM BOTTOM TU TuP * B 36
c ® ISAM = 0 DOESNT  SOLVE Vv * 3 37
[ * IROW = THE ROw IN Y WHERE THE FIXED VALUE JF U IS * B 3¢
o * ASSIGNED * B 39
c * = (J+#1) OF U X » DrLTAYR(2%J+1) ) ¥ 3 4(
o * soL = SUM OVER THE (X) OF THIS ROW * B 41
C * * B 42
c * ICODE MUST BE SET NOT EQUAL TO 3 WHEN KOUTINE IS * 3 43
C ¥  CALLED FOR THC FIRST TIME * B 44
C * ICODE = 3 FOR SU3SEQUENT CALL IF TH:E NUMBER OF * 3 4%
4 * MESH POINTS IN X AND Y ARE SAME AS IN THE PKEVIOUS CALL * 4 46
c * ¥ B 47
C ek e o ok R Rk ok ok ko ko ko ok ke R ok ek kR ok Rk ok R Rk kR ok Rk R K R X R R KRk KXk 8 48
Ma2*%MPOW B8 49

MBY2=M/2 8 =

Ml=M=1 8 51
Af=1.0/FLOAT(M) B 52
NLl=N-1 8 53
NEXT=0 B b4
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MHALFP=MBY2+1
MPLUS2=M+2

IL=M%N

ILM=IL-M
ALAM=DELTAY/DELTAX
ALSQ=ALAM*ALAM

SETTING UP THE RerdeSe OF THE LINEAR SYSTEM

G2=2.0%DELTAY

DO 10 K=1,ILM

E(K)=E(K)*G2

D(K)=D(K)*G2

00 20 I=1,M

KPsI+ILM

D(KP)=D(KP)*Gz=A(Ls2)
D(IN=D(L)+A(I»1)

A(I,1)=0.0

IpP=1

IS=2

DO 40 J=l,ILMyM

KM=J=-1

00 30 I=1,M1

Kl=KM+I

A(I,IS)=E(K])
E(K1)=ALAMA(D(K1+1)=0(K1))+E(K1)=A(I,IP)
KMMP=K1+1

A(MyIS)=Cc(KMMP)

E(KMMP ) =ALAM®(D(KM+1)=D(KMMP))+E(KMHUP)=A(MsIP)
IEXx=IP

IP=1IS

IS=IEX

00 50 I=1,M1

Kl=ILM+I
E(KL)=ALAM*(D(K1+1)=D(K1))=A(I,IP)
ECIL)=ALAM*(D(ILM+L)=D(IL))=-A(M,IP)

PERFORMING THE FAST FOUPIER TRANSFURM BLOCK BY 8LOCK

SIG=-1.0

D0 80 K1l=1,N
JE=(K1=-1)%M

03 60 I=1,M
JrJF+1
ACI,1)=E(J)
A(1,2)=0.0

CALL FFT2 (SIGsMPOW,»PI)
DO 70 I=1,MBYZ2
IQFsJF+1%2
E(IQF-1)=A(I,1)
E(IQF)=A(I,2)
X(K1)=A(MHALFP,1)
Y(K1)=A(MHALFP,2)

SOLVING £ACH SUB=SYSTEM

00 120 J=2,MBY2

IF (ICODE.EQ.3) GO TO 100
X1=2.0%ALSQ*(COS(2+0*PI*(FLOAT(J)=140)%AM)=140)=240
ACly1)=X1+1.0
A(N,1)=X141.0

D3 90 K=2,N1

A(K,1)=Xx1

D0 110 K=1,N
Ia(K=1)*M+2%)

IQF=K+N

A(K,2)=E(I-1)
ACIQF,2)=E(])

CALL CONSOL (N,NEXT,ICODE)
D0 120 K=1,N
I=(K=1)%M+2%J
E(I-1)=A(K»2)

IQF=K+N

E(I)=A(IQF,2)

IF (ICODEEC.3) GO TO 140
X1==2,0%(ALSQ*2.0+1.0)
A(l,1)=X1+1.0
AIN,1)=X14140

DO 130 K=2,N1

A(Ky1)=X1

DO 150 J=1,N

AlJy2)=X(J)

IQF=J+N
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160

170
180

190

200

210

230

240

250
260
270

280

A(IQFs2)=Y(J)
CALL CONSOL (N,
DO 160 J=1,N
IQF=N+y
X(J)r=A(Js2)
Y(J)=A(1QF,2)
IF (ICODEJEQ.3)
A(l,1)==1,0
A(Ny1)==1,0

DO 170 K=2,N1
A(Kyl)==2.,0

DO 190 K=1,N
I=(K=1)%M+1
A(Ky2)=E(I)
TUF=N+K
A(IQF»2)=E(I+1)

MICHAEL GHIL AND RAMESH BALGOVIND

NEXT, LCODE)

GO TO 180

A(JROWs1)=A(IKOWs1)=1,40

A(CIRIWs2)=Aa(IRO
CALL CONSOL (N,
00 200 Kal,N
I=(K=1)%M+1
E(I)=A(K»2)
IQF=N+K
E(I+1)=A(IQF,2)

FAST FOURIER

SIG=1.0

DO 230 Kl=1,N
JF=(K1l=1)%M

00 210 I=1,M3Y2
IQF=JF+1%2
A(I,1)=E(IQF-1)
A(Is2)=E(IQF)
D0 220 I=2,M8Y2
L=MPLUS2-1I
AlL,1)=A(1,1)

. A(Ls2)==A(I,2)

A(MHALFP, 1) =X(K
A(MHALFP,2) =Y (K
CALL FFT2 (SIGy
00 230 I=1,M
J=JF+]
E(J)=A(I,1) %M

SOLUTION V w

IF (ISAMJEQ.O)
IF (IS4M4EC.=1)
DO 250 K=1,N1
KM=K*M
KMMP=KM=M
ACl,1)=ALAME(E(
DO 240 J=2,M
KJ=KMMP+J
AlJrl)=ALAME(L(
D3 250 I=1,M
JEKMMP+]
D(JI=D(J)+A(I,1]
IF (Kelbel) GO
K1I=J=-M
D(J)=D(J)+D(K1I
CONTINUE

GO T0 300

DQ 270 I=1,M
JaI+ILM
ACI»1)=D(J)
IS=1

1p=2

DO 290 KD=1,N1
IEX=IS

IS=1p

IP=1EX

KMaM* (N-KD+1)
KMMP=KM=M
ACl,IP)=ALAM*(E
DO 280 Js=2,M
KJ=KMMP +J

ACJs IP)=ALAM®(E
D0 290 I=1,M
JEKMMP+1

Ws2)=50L
NEXT, 1CODE)

TRANSFORM OF SOLUTION U

1)
1)
MPOw, PI)

ILL BE IN ARKAY D AND U WILL BE IN E

GO TU 300
GO TO 260

KM)=E(KMMP+1))

KJ=1)=t(KJ))

)

TO 250

)

(KM)=E(KMMP+1))+A(1s1IP)

(KJ=1)=E(KJ))+A(JyIP)
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K1I=J-M

A(I»IS)=D(K1I)

D(K1I)==A(I,IP)

IF (KDeGTol) D(KIII®D(J)+D(K1I)
CONTINUE

CONTINUE

RETURN

END

SYUBROUTINE FFT2 (SIGs»M»PI)
COMMON /WET/ X(LzE),Y4128)

FAST FOURIER TRANSFORM

N=2#%%M

NV2=N/2

NM1=N=1

J=1

00 30 I=1,NM1

IF (I.GEsJ) GO TO 1V
TX=x(J)

TY=Y(J)

X(J)y=x(I)

Y=Y (1)

X(1)=TX

Y(I)=TY

K2 NV2

IF (KeGEeJ) GO TO 30
J=J=K

K=K/2

G TO 20

J=J+K

DO 50 L=1,M

LE=2%*L

LEl1=LE/2

UX=1.0

UY=0.,0
ANG=PI/FLOAT(LEL)
WX=COS(ANG)
AY=SIG*SIN(ANG)

D0 50 J=1,LEL

DO 40 I=J,yNyLE
IP=I+LE]
TX=X(IP)*UX=Y(IP)*UY
TY=X(IP)*UY+Y(]P)*UX
XCIP)aX(I)=TX
Y(IP)=Y(I)=TY
X(I)=X(I)+TX
YOL)=Y(L)+TY
US=UX*WX=UY*WY
UY=UX*WY+UY*WX

ux=us

RETURN

END

SUBROUTINE CONSOL (NsNEXT»ICODE)
COMMON /KEEP/ Z(82Y%6)
COMMON /WET/ Xx(128),Y(128)

e o o sk o o o ok o ook o ko R ko ok ko ko sk oK %6k e ok ook ok ok ke Aok ok g ko ko R ok Rk R Rk ek R Rk ok

*

* SOLVES A SPECIAL TRI-DIAGONAL LINEAK SYSTEM BY LU

* FACTORIZATION

* TWO ReHeSe ARE GIVEN AND STORED IN Y, STARTING AT Y(1)

* AND AT Y(N+1) KESPECTIVELY ,

* THE TWO COKRESPONDING VECTOR UNKNOWNS ARE RETURNED IN X»
* STARTING AT X(1) AND AT X(N+1) KeSPECTIVELY.

*

* IF ICODE = 3 THEN Z ARRAY MUST Bt KEPT RESERVED FOR

* USE BY CONSOL.

*

Ak oK o R R R R R K KK KK KKK b KK KK K R ROk %k k

IF (ICODE.EQ.3) GO TO 20
ZINEXT+1)=X(1)

DO 10 K=2,N
NEXTPL=NEXT+K

KlsK=1
X(K1)=140/Z(NEXTPL=-1)
ZINEXTPL)=X(K)=X(K1)

DO 30 K=2,N

KPL=K+N

KNEXT=NEXT+K-1
Y(K)=Y(K)=Y(K=1)/Z(KNEXT)

*
*
*
*
*
*
*
*
*
*
*
*
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30 Y(KPFL)=Y(KPL)=Y(KPL=1)/Z(KNEXT) b 2¢
NEXTPL=NEXT+N D 29
Y(N)=Y(N)/Z(NEXTPL) [
Y(2*N)=Y(2*N)/Z(NEXTPL) 0 31
DO 40 J=2,N D 32
KzN=J+1 D 33
KPL=K+N D 34
KNEXT=K+NEXT D 35
Y(K)=(Y(K)=Y(K+1))/Z(KNEXT) 0 3¢

N VIKPL)=(Y(KPL)=Y(KPL+1))/Z(KNEXT) D 37
NEXT=NEXTPL b 3¢
RETURN D 39
END D 40-
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