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Stability of Sequences Generated by Nonlinear
Differential Systems

By R. Leonard Brown*

Abstract. A local stability analysis is given for both the analytic and numerical
solutions of the initial value problem for a system of ordinary differential equations.
The standard linear stability analysis is reviewed, then it is shown that, using a proper
choice of Liapunov function, a connected region of stable initial values of both the
analytic solution and of the one-leg k-step numerical solution can be approximated
computationally. Correspondence between the one-leg k-step solution and its

associated linear k-step solution is shown, and two examples are given.

1. Introduction. The numerical solution of the initial value problem for a system
of ordinary differential equations

(1a) y'(@®) = (@), 1),
and
(1b) (o) =Yo

can be considered locally as the computation of a sequence of approximations Y, =
Up—k+1>+++»Yp_1,Y,} with each y  being a numerical approximation to y(z,)
for ¢, =ty + Z{L h;. While many sophisticated packages [5], [7], [8], [10] exist
which change the stepsize 4; in order to achieve stability and specified accuracy, the
stepsize usually remains constant for a number of steps and the change of stepsize
is usually accompanied by an interpolatory change in the solution sequence Y,
although not always [12]. For these reasons the local analysis, limited to k steps,
given in the sequel will assume constant stepsize #. The actual numerical solution
element y , is usually computed from elements of the sequence Y, _, and f(y, ?)
using one of several formulas, each of which has a local discretization error term
¢,Ch" "1, where ¢ depends on fand ¢,, Cis a constant dependent on the formula,
and r is called the order of the method. This work is concerned with how errors
are propagated when numerical methods are applied to a differential function
f(y, t) which is nonlinear in y, with emphasis on stable propagation of the errors.
This work will deal with first derivative multipstep methods of the general form
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k k
(2) Yn =l;laiyn—i th Z Bif(yn—i’ tn—i)’

= i=0
which have a diversity of specific forms depending on the intended applications. For
example, the Adams-Bashforth and Adams-Moulton formulas are of the form

k

(3) Yn =Vn-1 th Z:l bif(yn—i’ tn—i)’
=
k

(4) Yn =Vn_1 th Z b;kf(yn—i’ tn—-i)’
i=0

respectively. A k-step Adams-Bashforth formula is of order k, and a k-step Adams-
Moulton of order k + 1. Many methods iterate (4) a set number of times, often one,
rather than to convergence to an iterative solution.

The concept of multistep methods is useful since order of accuracy as high as
k +1 [3] can be achieved by a stable formula with only a few evaluations of f(y, ),
whereas a correspondingly accurate Runge-Kutta formula [2] requires at least one
evaluation of f(y, ) for each additional order of accuracy. Newer methods have been
developed to handle special circumstances. The backward differentiation implicit

formulas
k

(5) Yn = Z 4V i + hbof(yn’ tn)

i=

are useful in solving stiff systems of equations [5].

2. Stability of Solution Sequences. The standard linear stability analysis is
formula specific and describes the behavior of a numerical formula applied to the
complex test equation y' = Ny, y(tg) #0. Let E, = {e(t,_,11)s--->elt,_1)
e(t,)} be the difference sequence for y(z,) — z(t,), where each solves the test equa-
tion for a different initial value y,, z,. Then e(t,) = (v — zo)e}" is nonincreasing
in norm for Re(\) < 0. Such a condition is called stability. It is desirable for the
numerical solution y, to be stable if the true solution is stable, so for a given step-
size A, one finds all complex A such that any numerical sequence b:” ={e, _x+1

.. €,_1, e,} has the property le;, | < |e; for all i, where e; =y; — z;, the
difference between the numerical solution sequences with initial values y,, z,.

For Euler’s formula, y, = (1 + A\)y,_,, hence the numerical solution is stable
for |1 + AN| < 1. For multistep formulas, linear stability is characterized by the
generating polynomials

k

(6) pE) = 3 a;t
i=o

k .

(7 o)) =y g
i=0

where p and ¢ have no common divisors. The region of linear stability is all A\ such
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that p(§) + A\o (£) has all roots inside the unit circle, or on the unit circle and simple
[6]. For Euler’s formula, p(£) + Alo(¥) is (—£ + 1) + AX. Since this analysis is
formula specific, to investigate the formula’s effect on an actual f(y, t) one considers
all the eigenvalues A; of the Jacobian matrix 3f(y, ¢)/0y; if all A); are inside the
stability region for all y,, ¢, of interest, then the numerical solution will be stable.
Insuring that such a condition holds is usually not desirable and often is impossible.
To develop a stability analysis for nonlinear f(y, t), let f(y, #) have the property

®) Re (v =z, f(, ) = fz, 1)) <ully 2|

for all ¢, y, and z of interest. Here (u, v} = u *Qu for some positive definite Hermitian
matrix Q, and [lu|l®> = (u, u). Then for any two solutions (), z(t) = y(¢) — e(2), e(t)
satisfies

20— 1), ) - 1:00), )

and (8) implies that

d d

a7 lle(®)I> = 2 Re é(t), %Q < 2ulle®)l?;
and thus

lle()ll < e’ lle(zo)ll,
which is nonincreasing for u < 0.

However, (8) is again a condition that cannot be easily verified, so a concept
relating the true solution sequence Y,’, = Wty _gs1)s -+ > Y(ty_1)s ¥(t,)} to the
computed sequence Y5 = {¥,_j > -->Yn_1» Y} is presented in the sequel. The
following definitions and theorem are helpful. They occur in Dahlquist [4], and the
theorem proof is presented since it occurs only in a technical report.

Definition. A linear k-step formula satisfies

k
©) 0= 3 [,y + oGy 1, ).
j=0

Definition. A one-leg k-step formula corresponding to (9) satisfies

(10) O_Zajyn ]+hsf< Zb/yn /’_ 2 ]n />’

where s = o(1). Without loss of generality, set s = 1.
THEOREM 1 [4]. Let Y, be a sequence which satisfies (10), and let Y
{,} be such that

k
(11) .),;n = Zobjy”_]'=0(E)yn9
j=

where E denotes the back shifting operator. Then )A’” satisfies (9). Conversely, if
Y, satisfies (9), then there exists a sequence Y, such thaty, = o(E)y,, and y,
satisfies (10).
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Proof. Without loss of generality assume the system of equations is autonomous.
Write (10) as p(E)y,, = = hf(o(E)y,),n =0, 1,2, . ... This together with 11)
implies p(E)7, = p(E)o(E)y,, = — ho(E)f(J,), which implies that y, satisfies (9).

For the converse, Euclid’s theorem on polynomials with no common divisors
implies the existence of polynomials P, Q which satisfy P(x)o(x) + O(x)o(x) = x™,

0 <m < k. Writing (9) as P(E)Y, = - ho(E) f(p,) and setting Y, =
EZT(P(E)Y, — hQ(E)(D,)) gives

oE)y, = EZ"(BEYO(E)y, + QEYPENS(G,)) = E~(P(E)o(E) + QE)p(E))5,,
which gives o(E)y, = p,. Next, set
p(E)y, =~ E"Th(P(E)o(E) + QEYENSG,) =~ hf(P,) = = hf (0(E)y,), n>m,

and Y, satisfies (10), proving the converse.

This shows that Y, given by the one-leg k-step formula will have similar
stability properties to its corresponding linear k-step sequence . Dahlquist [4] has
described a discrete Liapunov function V.1, Which, applied to a sequence Y,
characterizes the stability of that sequence generated by a nonlinear system (1). Let
Vo,,n(Yn) = ZimiZj= 18 Wp_is 1> Yu_y41)» Where G is a positive definite, / x /
matrix. The structure of G assures that V.10 18 positive for Y, # {0}.

Definition. The (G, I, h)-domain of attraction of (the numerical solution to)
the system (1) is all z,, such that AVGnZo) = Vg1 n(Z)) = Vi1 n(Zo) <0, where
Zy=A{z2((1 =Dh), ..., 2(-h), 24}, Z, = {z((2 - Dh), . .. , Zg» 2, } for the numerical
solution and Z, = {z((2 - Dh), . .., zqo, 2(h)} for the exact solution.

Definition. The (G, I, h)-stability region of (the numerical solution to) the
nonlinear system (1) is all z, such that

v Zy) < inf v Zy)},
G,1,h( 0)\ZOEBD Ve,1n(Zo)

where aD is the boundary of the (G, I, h)-domain of attraction.
This has the following application. Rather than requiring that
Re(y —z, f(t, ¥) = f(¢, z)) < 0, a connected subset of initial values Y, is found such
that y(#) will be in that subset if Yo Was; this is the stability region. This insures that
the difference y(h) —z(h) is bounded since both y(#) and z(h) are in the stability region
if yy and z, were. If f(y, ) is autonomous, y(t,)) will remain in the region as n — oo,
For most well-behaved functions f(y, ¢), the boundary of the region around a stable point
can be approximated computationally. Once the analytic stability region is known, the
numerical stability region can be calculated using the one-leg k-step method for the same
sequence {y (1 —k)n), . .. ,¥(=h),yo} to get y,. The two regions can then be compared.
Analytically, it is possible to form a particular G, based on the coefficients of
a one-leg k-step method, such that all numerical sequences based on f(¢, y) that
satisfy (8) will have a stable solution. Liniger and Odeh [9] have shown how to
pick G for second order two-step formulas, second order three-step formulas, and
third order three-step formulas.
It is shown below that even an arbitrary choice of the positive definite Hermitian
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matrix G will generate some usable results, and Theorem 2 demonstrates that using
some G for a one-leg k-step solution, y, will generate the same stability region for
the related solution y,, of the linear k-step formula for a modified G..

THEOREM 2. If Vo #(Y,)) = c for the symmetric positive definite matrix G,
then there exists a symmetric, positive definite matrix G, dependent only on G and
o(x), such that V@’l,h(f’n) = c, where y, = o(E)y, are the elements of )A’” and Y,

Proof. Without loss of generality, consider a system of only one equation y' =
f(, t) generating the sequence Y, = {y,,_,,,...,y,}. Since J, and y, are
related only by the k& + 1 coefficients of o(x), replace the sequences by the vectors
Wy = Vp_tse s Vpa)*and Wy = W Yp_1s -« - s Vn1_k41)" Where * is
the transpose operator. Let G’ be a (k + ) by (k + [) matrix consisting of G in the
upper [ by / partition, and O elsewhere. Then V(w,) = wXGw, = ¢ > 0, and
V(w,) = w*G'w, = c.

Define S such that w, = Sw,, thus

by b, b, 0 0

0 by by_y b, 0
S =

0 by b, by

is an / by / + k matrix. Then since G’ is of rank / because G is positive definite,
there exists a singular value decomposition of G"= UFV* for U, VI + k by | + k
unitary matrices, and F = (g 8) for D an I by I diagonal matrix of singular values of
G. Thus, there exists an / by / matrix G such that G' = S*GS. This is seen by letting
S have the singular value decomposition U(Z|0) Vg, where X is an / by / diagonal
matrix. Then

G = U X1 [0)V* UFV*V*(Z~" [0)*U*.

If by, by, ..., b;_, are all zero, a similar argument can be made .using an /
by ! + k — i matrix S where b, is the coefficient of lowest index i such that b; # 0,
and

bz bi+l bk 0
s=|0 b by_ 0
0 0

Thus, there exists a G dependent only on o(x) such that V5 ,,(Y,) = c for all ¢,
which was to be shown.

3. Computational Experience. Preliminary computational results have indicated
the usefulness of (G, k, h)-stability. Two test functions have been investigated. The
first is linear and was used to verify that similar results are given by both linear and
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nonlinear analyses of a linear equation. Let y' = AoY> Ao = (In y4)/h, with solution
sequence ¥, = ya+!, be the test equation. The exact stability region, for any & and
any h, is the unit circle, corresponding to |y, | <1 and Re(M) <O0.

Figure 1 shows the corresponding (7, k, .032)-stability region for Euler’s method
(k = 1), Euler predictor with one backward Euler corrector y, =y,_, + hfy,, t,)
(k = 1), and second order Adams-Bashforth explicit method (k = 2).

It is interesting that this solution sequence solves the single first order difference
equation y, . ; = yo),, yet none of the sophisticated integration formulas can produce
a stable solution throughout the same region, although they, too, are k-step difference
equations. The best is Euler’s method, y,, = (1 + AN)y,,_,, probably because
(1 +A\) =1 +1ny, is a good approximation to y, away from the origin.

O.IOT

0.05 +

0.80 0.85 0.90:

—-0.05 ¢+

—0.10 4

FIGURE 1. Numerical stability regions for Euler predictor
(smallest area), Euler predictor with one backward Euler
corrector (dashed lines), and 2 step explicit Adams formula
(intermediate area).

A more practical two dimensional problem is the (/, k, .032) stability of the
longitudinal equations of motion of a gliding jet aircraft [1], [11]:

u =-gsin 6 —wq + [C,V?*+ CyqV],
W =gcos 0 +uq + [CyV2 + ChqV],
o =gq,

Vo= @u?+ w2,

q =k, +kyq/V.
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FIGURE 2. Exact stability region (/, k, .032) for k = 1 (larger), and k = 2.
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FIGURE 3. (J, 1, .032) stability region for Euler predictor
and backward Euler corrector.

The coefficients C;, k; are determined experimentally at a constant trimmed
flight state with 6, given. Under the simplifying assumption that ¢ = 0 (g is the
rotational velocity in radians/sec), the resulting constant ¢ can be gotten from the
last equation given u, and w, and thus § = 6, + tq replaces this equation, leaving
only 4 and w.

By using the power series method on u(f), w(f), V(¢), and V2(¢) for || <1,
the exact solution for 30 steps forward or backward can be computed to machine
accuracy by recursively computing as many coefficients of the power series as needed.
Figure 2 shows 25 connected points of the exact (Z, 1, .032) and (Z, 2, .032) stability
region about u = 600, w = 0. Figure 3 shows 25 connected points of the (J, 1,.032)
stability region for forward Euler predictor with a backward Euler corrector. Figure 4
is the (/, 2, .032) region for the Adams-Bashforth 2-step explicit method.

For any system for which a stable initial point is available, it is possible to
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FIGURE 4. (I, 2, .032) stability region for Adams 2-step explicit method.

compute the discrete stability region of the numerical solution and graph any two
coordinates. If a power series solution is also available and a discrete Liapunov
stability region exists, these stability regions can be compared with the true region to
determine which of the numerical methods under consideration is most appropriate,
from a stability consideration, for use in solving the system numerically. This is
especially useful in applications such as real time simulation for which the same set of
equations is solved for every simulation run and for constant stepsize. It also allows
methods specially tailored to the problem to be considered at a computer terminal
session, rather than analytically. Further work should be undertaken concerning best
choice of G, computation of the exact stability region, and existence of the exact
stability region, but the software developed to date is already useful in several
applications.
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