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A Simplified Galerkin Method
for Hyperbolic Equations*

By R. C. Y. Chin, G. W. Hedstrom and K. E. Karlsson

Abstract. We modify a Galerkin method for nonlinear hyperbolic equations so that
it becomes a simpler method of lines, which may be viewed as a collocation method.
The high order of accuracy is preserved. We present a linear wave analysis of the
scheme and discuss some aspects of nonlinear problems. Our numerical experiments
indicate that the addition of a proper artificial viscosity makes the method competi-
tive and the common difference schemes, even when the solution has discontinuities.

1. Introduction. In considering Galerkin methods for the problem

ou 0 fl ) ( <x< S
—=—JWy xt — oo oo, s
(1.1) or  ox X <o, 1>0)

u(x, 0) = uy(x),

we must first decide how to implement such a method. We might replace u by a
spline v and solve the system of equations obtained from

(1.2) f _: vwdx = —f_: fQ x, Hw, dx

by letting w run through a basis of spline functions. This approach was taken by
Swartz and Wendroff [17] in their theoretical discussion, but for computation in non-
linear cases they used some simplified methods. In this paper we examine in detail
the properties of one of these simplified Galerkin methods. This method may also be
viewed as a collocation method.

We first describe the method, starting with a definition of the B-splines [13].
Let ¢, be defined by

$o®) =1 (IxI<1/2),
$o®) =0  (lxI>1/2).

If p is a natural number, let ¢p =@ * p—1> where % denotes convolution. The num-
ber p may be either even or odd, but it must be positive. We approximate u by
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o, )= 2 ek~ k).

where A is the mesh size and the ¢, () are yet to be determined. Let F be the spline
F(x, 1) = >k: d, ()6, (x/h = k),

where the d,(¢) are such that
(1.3) F(h, ) = f(uGih, ©),jh 1) G=0,%1,...).

It is known [16] that F exists and is unique if
D 1fGh, 1), jh, H)1? < oo,
J

Let a; and b; be defined by

a; = ¢p * ¢p(i)a

1.4
(14) bj=¢;*¢p(i) G=0,+1,...);

and let 4 and B be doubly infinite matrices with components A;, = a;_, By = b;_;.
One simplified Galerkin method for (1.1) is

(1.5 Ac'(H) = (1/n)Bd(p),

where ¢ and d are the vectors with components, respectively, ¢, and d,. A further
simplification is possible and desirable. For purposes of programming, Eq. (1.5) has
the disadvantage that if p > 1, then d depends on ¢ through (1.3) in a very complicat-
ed way. This complication may be easily avoided, because the argument of Swartz and
Wendroff [18] shows that Eq. (1.5) is equivalent to a method of lines

(1.6) ; ;U () = Zkl (1/h)b;_ i f (), Xy, D),

where x, = kh and v, (f) = v(x,, 1). Asin [18], one may also view (1.6) as colloca-
tion at the points x, based on the splines ¢,,, ;.

It is known from the work of Thomée and Wendroff [21] that for a linear equa-
tion (1.1) with constant coefficients the accuracy of (1.5) is O(h*?*?2). Nevertheless,
we sketch here a simpler, direct proof that the order of accuracy of (1.6) is O(h2P*?2).
In terms of the vector F with F; = f(v,(t), X, 1) (k =0, £1, .. .), we may write
(1.6) in the form Av' = k" !BF. Note that the time dependence is irrelevant here; we
have simply a discrete approximation to 3/0x. Following the ideas of [15] and [12,
p. 68], we introduce the discrete Fourier transform

(1.7) v(0) = 3 v kO
k
to get

(1.8) 2%t =B F.
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It is known from [15] and [19] that

(1.9) a©) = 2 a(6 - 2mk),
k
(1.10) BO)=i Y (0 - 2mk)q(0 — 27k),
where g
(1.11) a(8) = ((2/0) sin(6/2))*7*2.

A direct computation (see [19, p. 985] or (2.6) below) shows that
(1.12) 2(0) +ib(0)/6 = 0(0%P+2), 9 — 0.

This shows that the truncation error of (1.6) is O(h*P*?). A standard argument as
in [21], based on the energy method [12] and the positive definiteness of 4, shows
that for f(u, x, t) = N(x, t)u with X\ bounded and for solutions u of (1.1) with A in
the Sobolev space H,,, 5 the order of accuracy is O(h?P+3),

For p = 1 (linear splines) both Egs. (1.5) and (1.6) take the form

(1.13) (v,'—l + 40],‘ + l)]'-+1)/6 = (f}‘+1 —f}-_l)/(2h),

where f; = f(u;, x;, t). This equation could have been obtained by integrating (1.1)
from x;_; to x;, , and using Simpson’s rule. Hence, it is fourth-order accurate. For
p = 2 (quadratic splines) Eq. (1.6) becomes

V), + 26V}, + 66V, +26V.,; + v}, ,)/120
= (fi12 + 107, — 106, — f,,)/(24h).
Similarly, for p = 3 (cubic splines) Eq. (1.7) becomes
(v_3 + 120vj_, + 1191v,_; + 24160 + 1191v;,; + 120v;, 5 + v;, 3)/5040

(1.15)
= (fiy3 + 56f; 4, + 245F,,, — 245f,_ = 56f,_, — f;_3)/(720).

(1.14)

Note that we use the splines to generate the coefficients in a method of lines. After
that the splines are forgotten. The reader who regards (1.6) as a collocation method
will undoubtedly view this matter differently. We remark that Collatz [6, p. 528]
presents (1.13), and he also gives difference schemes with the same bandwidths as
(1.14) and (1.15) but with even higher orders of accuracy. The efficiency of all these
schemes was compared in [19].

In the next section we do a linear wave analysis of (1.6) in the case when
f(u, x, t) = —v. In particular, we determine the group velocities of propagating waves,
and we determine the behavior of the solution near a wave front. It is known from
the theory of dispersive waves [3] that the group velocity (velocity of a wave packet)
is the velocity which is observed. In the special cases p = 1 or 2 the group velocities
are given in [22] and [23]. Several authors have investigated phase velocities, most
notably, Swartz and Wendroff [19]. In Section 3 we prove the instability of (1.6)
when f(u, x, £) = —u?/2, and we show some computations which indicate the stabiliz-
ing effect of adding an artificial viscosity.
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2. Linear Wave Analysis. The system (1.6) is ordinarily solved by some finite-
difference method in time. In this section we discuss the stability of the resulting
time-difference scheme when f(u, x, t) = —u, and of more interest, we determine the
group velocities of propagating waves. We then describe the behavior of the solution
of (1.6) when the initial data has a step discontinuity.

For the equation u, + u, = 0 the method of lines (1.6) becomes

2.1 Av' = —Bu/h,
and by (1.8) the discrete Fourier transform of (2.1) is

(2.2) 29%/0t = - bV/h.

The amph’ﬁcati(zl function or symbol G for (2.1) is, therefore, G = exp{—ix[zp/h},
where ¥, = —ib/a. Note that it follows from (1.9)—(1.11) that ¥, (0) is a real-valued,
odd function of . In the following theorem we determine some of the properties of
the phase function ¥, and show their relevance to numerical computation.

THEOREM 2.1. The eigenvalues \ of —A™ B coincide with the interval on the
imaginary axis of values taken by the function

(2:3) A==y, 0) Cr<o<m).

If the component v, (t) in (2.1) is considered as an approximation to u(kh, t), then
the solution of Eq. (2.1) has propagating waves with group velocities given by the
values of Y, (0) for —m <6 <.

Remarks. (i) The matrices A and B are infinite, but if instead of the Cauchy
problem, we impose the boundary condition that the solution (and the splines) be
periodic in x, then 4 and B become finite cyclic matrices. In this case the eigenvalues
are A\, = —it,l/p(an/n) k=1,2,...,n).

(ii) The significance of the eigenvalues is that if we solve (2.1) by a difference
scheme, the values of AA#/h must lie in the stability region of the difference scheme.
See the books by Gear [8] and Lapidus and Seinfeld [11] for stability regions of com-
mon difference schemes. For example, if v’ is replaced by a central difference
(u(z + Af) = v(t — A1))/(2A¢), the requirement for stability is At/h < 1/max|y,|. If
p = 1, we may use elementary calculus to show that max|y, | =+/3. Forp =2 or
3 we used Newton’s method to obtain

max |y, | =2.0781, max|y,l = 2.2813.
It follows from (1.9), (1.10), and (1.11) that
im y,(0) =0 (lol <m),

p—»uo
so that because of the periodicity of llfp we have
lim max|y,(0)! = .
p—)oo
We conjecture that this convergence is monotone increasing. The graphs of ¥, for.p =
1, 2, and 3 are shown in Figure 1.
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FIGURE 2. Group velocities

(iii) We shall say more about the group velocities shortly. The graphs of ll/;,
for p =1, 2, and 3 are shown in Figure 2. It seems curious that for these values of
p the range of ¥, is =2p — 1 < y,(0) <1.

Proof of Theorem 2.1. Suppose that \ is an eigenvalue of —4~!B and that w
is the corresponding eigenvector, so that Bw = —Mw. Upon taking discrete Fourier
transf%ms, we obtain 3% = —\aw, from which it follows that X has one of the values
N ==b(0)/@(0g) = ~it,(00)

We now show that all values X in (2.3) are eigenvalues. For this purpose we take
w to be the vector with components w, = ¢ %9 for some fixed §. Then each compo-
nent of Bw + Mw is 3(0) + N\a(8), so that we have (2.3). As expected in the case of
continuous spectra, our eigenvector is not in /, and is, therefore, an eigenvector only
in a generalized sense.

In order to study the group velocities of propagating waves, we solve (2.2) ex-
plicitly,
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W06, 1) = exp{—i(t/h)y,(8)} (0, 0).
According to the definition of the discrete Fourier transform (1.7), v is the sum of a
Fourier series. Hence, the Fourier coefficient v, is given by

24 vk(t)>= 1/(2m) f_"" (9, 0) exp{—i(t/h)y,(0) + ik0}do.

With the notation x, = kh Eq. (2.4) may be written

v() = 1/2n) [ 500, 0) exp{(~i/n)t,(0) — x,0)} db.

This integral has saddle points (also points of stationary phase) for real values of
such that

25) 10, (0) ~ 3, = 0,

and the behavior of the integral as # — 0 may be estimated by methods used in the
theory of wave propagation [3]. It is clear from (2.5) that the speed of propagation
is w;(G). The amplitude depends on v(0, 0). This proves the theorem.

We close this section with a description of the behavior of v, () as h/t — 0
when the initial value v,(0) is a step function v,(0) = 27! sgn(k). It follows from
[3] and [14] that wiggles move with the group velocities \l/;,(G). In particular, if
w;(oo) # 0, then the wave packet with speed ¢p(00) has amplitude

oM P 1121y2 @)1 %), hjt — 0.

The behavior of a wave packet corresponding to a multiple zero of 11/1', is more compli-
cated. The wave front itself is one such packet (6, = 0), for we know that [20] as
0 — 0 we have

(2.6) ¥, (0) =0 = cf2P+3 + 0(1912P+5)

for some ¢ # 0.
The behavior of v,(¢) near the wave front depends on the value of ¢, so we pro-
ceed to determine ¢ using (1.9)—(1.11),

¥,(0) = ~ib(0)/@(0), ¥,0) = 0 — 21 3 kq(0 — 2nk)/a(6).
For k # 0 and 6 — 0 we have
q(0 — 27k) = (0/(2mk))*PT2(1 + (p + 1)0/(nk) + 0(62))

uniformly in k. Thus, it follows that as & — 0 we have

2m 2" kq(0 - 2mk) = 4(p + 1)07P 3 T (2nk)2P2 4 0(p2P+4)
k=1

and

20) =2 q@6 - 21k) = 1 + 0(6?).



SIMPLIFIED GALERKIN METHOD FOR HYPERBOLIC EQUATIONS 653

Hence, we see that (2.6) holds with
c=4p +1) X k)72 =1B,,,,1/2p + 1),
k=1

where B, , , is the Bernoulli number [4, p. 298]. We note in passing that we have
also proven (1.12).

Now that the value of ¢ in (2.6) is known, the results of [5] show that near
the wave front v,(?) is asymptotic to the integral of a generalized Airy function,

27) o) ~ Allgpy3,5(0,0), » = wc O (yr)EPEDICERE),

Here, w is the relative distance from the wave front, w = (x — ¢)/t, and the estimate
(2.7) is valid so long as

le(t/h)(2p+2)/(2p+ 5) — 0.

Graphs and tables of Aii5’2(0, ) and Aii, ,(0, ») may be found in [S]. There are
oscillations both ahead of and behind the jump. Note that if we were to add an arti-
ficial viscosity of order r to (1.6), the oscillations away from the wave front would be
exponentially damped, and the behavior near the wave front would be

v(8) ~ Aligy 4 5,(0 )
for some positive « depending on the amount of artificial viscosity.

3. A Nonlinear Equation. We begin this section with an example showing the
instability of the simplified Galerkin scheme (1.6) for Burgers’ equation. This example
is an adaptation of Fornberg’s example [7] showing the instability of the leapfrog
scheme. Note that the true Galerkin method (1.2) is stable for this equation [17].

THEOREM 3.1. Let the method of lines (1.6) be used for the problem

(3.1) U, + @2, =0, ulx, 0) = uy(x).

Define constants o and (8 by
o= Zo (a3i - a3i+1)’ ﬁ = z%) (b—3f—l - b__3i__2).
l= ]:

Suppose that 3 # 0, as is true if p = 1,2, or 3. Let € be any positive number. Then
for every fixed h there exists a periodic function u, with maxlu,| = € such that the
solution v, (1) of (1.7) becomes infinite within the time 2ch/(|1Bl€).

Remark. This behavior is disturbing because it is known [9] that every solution
of (3.1) with u, periodic and locally of bounded variation decays as O(1/¢) as ¢ — .

Proof of the Theorem. 1t is clear from the definition (1.4) of a; and from the
bell-shaped graphs of the B-splines [13] that a; ,; <a, (k > 0) and a; <a,. Hence,
a> 0. It is also clear from (1.13), (1.14), and (1.15) that 3 > 0if p = 1, 2, or 3.
For larger values of p, though, the behavior of ¢, as p — o [1] shows that § is no
longer a sum of nonnegative and positive terms. We do not know whether § is ever
zero.
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If B > 0, we take u, such that
uy(xg) = 0, k =0 (mod 3),
uyx;)=-¢€, k=1 (mod 3),
uy(x;) =€, k =2 (mod 3).
Because a_; = a; and b_, = —b,, the solution of (1.6) may be written
v (1) =0, k =0 (mod 3),
v =-y(t), k=1 (mod3),
V(1) = »(), k =2 (mod 3),
where y is the solution to the initial-value problem,
(3.2 o' =2 (2h), y(0)=e.
The solution of (3.2) is
¥(t) = 2eha/(Qah — Pet),

thus proving the theorem for g > 0.

If 3 <0, we replace-u,, in the above argument by —u,.

Finally, we close the paper with some graphs illustrating the effect of an artifi-
cial viscosity for the problem (3.1) with p = 1. In place of the method of lines (1.13)
we used

Wiy T W) +0,_)/6 = (-}, + v ))/(4h)
(3-3) + (/M) Wi 1 ~ v+ oV — %)
—(e/M)Vy — v 1 + oy, — vk_l)2).

In effect, Eq. (3.3) is an approximation to
(3.4) up + @*2), = eh 3fox[(1 + ahul)u,].
We used initial data

uyx)=0  (IxI>1/2),

upx) =12 (Ixl =1/2),

uy(x) =1 (Ix1 <1/2)

in all our runs. We used boundary conditions u(— 1, ¢) = u(1, £) = 0 and stopped the
computation before the shock hit the right-hand boundary. The grid size used was

h = 1/200. The system (3.3) was integrated using Hindmarsh’s version [10] of the
Gear ordinary differential equation solver. The stiff version was used, but since the
eigenvalues lie near the imaginary axis, we restricted the order to at most four. The
graphs of the solutions are shown at time ¢ = .25.
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Figure 3 shows the case when a = 0 and € = .01. The wiggles behind the shock
are very clear, and it is also clear that some of them move to the left. Figure 4 has
a = 0 and € = .1 and shows damping of the wiggles. Figure 5 has @ = 0 and € =
0.25. In this case the solution mimics the solution of (3.4) (see [2]). Finally, Figure
6 illustrates the effect of a; we used & = 59.26 and € = 0.01. Note that the wiggles
in Figure 6 are much smaller than those in Figure 3, where the value of e is the same.
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