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Hadamard Matrices, Finite Sequences, and
Polynomials Defined on the Unit Circle

By C. H. Yang

Abstract. If a (*)-type Hadamard matrix of order 2n (i.e. a pair (4, B) of n X n
circulant (1, — 1) matrices satisfying A4’ + BB’ = 2nl) exists and a pair of Golay com-
plementary sequences (or equivalently, two-symbol §-code) of length m exists, then a
(*)-type Hadamard matrix of order 2mn also exists. If a Williamson matrix oflorder 4n
(i.e. a quadruple (W, X, Y, Z) of n X n symmetric circulant (1, — 1) matrices satisfying
w2+ x?* + Y2 + 22
Goethals-Seidel matrix of order 4mn (i.e. a quadruple (4, B, C, D) of mn X mn circulant
(1, — 1) matrices satisfying A4’ + BB' + CC' + DD' = 4mnl) also exists. Other related
topics are also discussed.

= 4nl) exists and a four-symbol §-code of length m exists, then a

A sequence (c,) is called a (d, e) sequence if each ¢, = d or e. A finite (d, €)
sequence C,, = (¢x), = (c,, ¢,, ..., ¢,;) can be associated with a polynomial C,(z) =
7 ckzk“l, where z = exp(ix), x is a real number and i = \/:—1-

Definition. Two (1, —1) sequences 4, = (a;), and B, = (b, ), are said to be a
pair of Golay complementary sequences of length n (abbreviated as GCL(n)), if their
associated polynomials 4, (z) and B, (z) satisfy

6 14,,2)1* + 1B,(@)?

on the unit circle K = {z € C: |z| = 1} = {z: z = exp(ix), 0 < x < 27}, where C is
the complex field.

2n for any complex number z

Let ¢(j) = Ex;fl CiCy 4 for a given sequence (c),. The condition (1) is also
equivalent to the following Golay definition of GCL(n) (see [2]),

@) a(j) + b(j)=0 forj#0(ie. 1<j<n-1).

The above can be proved easily by observing that |C,(z)|? = C,(2)C,(z ') = ¢(0) +
217 e(k)(z® + 27%), ¢(0) = T2 = n, and z¥ + z7F = 2 cos kx for z = exp(ix).

Definition. Two finite (1, —1) sequences 4 = (a;),, and B = (b;),, are said to
be a pair of Hadamard sequences of length n (abbreviated as HL(n)), if their associated
polynomials 4(w) and B(w) satisfy

3) [Aw)|? + |BWw)|? =2n  for any w €K,
where K, = {w € C: w" = 1} is the set of all nth roots of unity. We shall omit the

subscript n of C,, or (c;),, from now on if there is no confusion. Let ¢*(j) = ¢(j) +
c(n —j) = 27 ¢xcy 4, where the subscript k& + j is congruent modulo n. Then
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ICW)I2 = Cw)C(w™1) = 871 c*(k)wF, where ¢*(0) = n, consequently the condi-
tion (3) is also equivalent to the following

)] a*(jY+b*(j)=0 forj#0 (ie. 1 <j<n/2).

We note here that ¢*(n —j) = ¢*(j). Since K,, C K, we obtain

LEmMMA 1. If (a;) and (by) are a pair of GCL(n), then they are also a pair of
HL(n).

It should be noted that if 4 = (g;) is a GCL(n) then -4 = (-a,) =
(-ay, —ay,...,~a,)and A" = (@}) = (@,_4 4+,) = (@, .., a,, a;) are also GCL(n).
Similarly, if 4 = (g,) is an HL(n), then —A4, A", and 4D = (a}cj)) =gy =
@y apay, ..., aj), for 1 <j<n -1, are also HL(n). GCL(n) and HL(n)
exist only if n = 1 or n is even (see [2], [16], [17]).

When (a,) and (b;) are a pair of HL(n), they can be regarded as the first row
entries of n x n circulant matrices 4 and B, respectively, such that

A B
M= ’ ’
-B' 4

is an Hadamard matrix of order 2n, i.e. MM' = 2nl, since AA' + BB' = 2nl,, where '
indicates the transposed and / is the identity matrix. (See [16], [17].) Such a Hada-
mard matrix M is said to be of (*)-type.

Definition. A quadruple (a;),,, (by),, (ci),, and (d;),, of (1, —1) sequences is
said to be a quad of Goethals-Seidel sequences of length n (abbreviated as GSS(n)), if
their associated polynomials satisfy

Q) lAW)|? + |BW)|? + |Cw)|*> + |D(W)|® = 4n  for any w EK,,.
A sequence of vectors, (v;),, is an m-symbol 5-code of length n if

n—j
(6) 2 U " Vgy; =0 foreachj#0,
k=1

where vy is one of m orthonormal vectors i, ..., i, or their negatives (see [7]).
Definition. A quadruple (q,), (r;), (s;), and (z;) of (0, £1) sequences is said to
be a quad of Turyn sequences (abbreviated as TS(n)) of length n, if the sequence
(), of vectors v, = (qy, 7y, Sy, ;) forms a four-symbol §-code, where v, is one of
orthonormal vectors (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, 1), or their
negatives.
Let Q(2), R(z), S(z), and T(z) be the associated polynomials of a given quad of

TS(n), (q;), (), (s;), and (t,). Then we have
™ 10()12 + IR@)I? + 1S@)I? + IT)I2 =n for any z EK.

When (a,), (b;,), (c;), and (d,) are a quad of GSS(n), they can be regarded, re-
spectively, as the first row entries of n x n circulant matrices 4, B, C, and D such
that A4 + BB' + CC' + DD' = 4nl. Then a Goethals-Seidel (Hadamard) matrix
H= (Hl.j), 1 <i, j <4, of order 4n can be formed by the sixteen n x n matrices Hi]-
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such that the first, second, third, and fourth rows of H are, respectively, (4, BR, CR, DR),
(=BR, 4, -D'R, C'R), (—CR, D'R, A, —-B'R), and (-DR, —C'R, B'R, A), where

R = (r,.j), 1 <i,j<n, is the n x n symmetric matrix whose entries r;; = 1fori+j=
n+ 1 and r; = 0, otherwise. (See [1], [7].)

Definition. A quad of GSS(n), (wy), (x;), (i), and (z;) is said to be a quad of
Williamson sequences (abbreviated as WS(n)), if each sequence is symmetric, i.e. a; =

a, 4 ,—; for each j and each (a) of GSS(n), or equivalently A(w™1) = A(w) for each
w € K, and each associated polynomial A(w) of GSS(n).

It is well known that when (w;), (x;), (¥4), and (z;) are a quad of WS(n), they

can be regarded as the first row entries of # x n symmetric circulant matrices W, X,
Y, and Z, respectively, such that W? + X? + Y2 + Z2 =4nl. Then a 4 x 4 matrix H
is a Williamson (Hadamard) matrix of order 4n, where (W, X, Y, 2), (-X, W, —Z, Y),
(-Y,Z, W, -X), and (-Z, —Y, X, W) are, respectively, the first, second, third, and

fourth row blocks of H. (See [14], [15], [16].)

The following three theorems (on Hadamard sequences) are derived from the
known theorems (on Golay complementary sequences). (See [2], [7], and [10], re-
spectively, for Theorems 2, 3, and 4.)

THEOREM 2. Let (a;) and (b;) be a pair of GCL(m) and (c,), (d}), a pair of
HI(n). Then (e;) and (f;) is a pair of HL(2mn), where

eaj-2ym +x = UCp  Cj-nym+x = brdj and  fopaym 4k = "Udni1-j

f(2] —lym +k = =brCpi1—j for1<k<mand 1 <j<n

Proof. Since

2mn

n
Ew)= Y el =3 (w0™DmA(w) + dw DM B(w))
1 1

= A(W)C(wzm) + B(W)D(W2m)wm
and
F(w) = (~A(W)D(w™2™) + B(w)C(w "2™)w™)w ™2™ for any w €K

2mn?’

consequently w?™ € K, we therefore obtain from (1) and (3),
IEW)|2 + |[Fw)I? = (1AW)I? + [BW)I2)ICw?™)I2 + IDW?™)|?) = 4mn.

THEOREM 3. Let (a;), (b,) be a pair of GCL(m) and (c,), (d}) be a pair of
HL(n). Then (ey), (f;) is a pair of HL(mn), where

eGi-1)ym+k = [(ak + bk)cj + (ak - bk)dj] 12
and
fi-1ym+x = = [(ay - bk)C,,+l_j —(a; + bk)dn+l—j] 2

forl<k<mand1<j<
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Proof. Since
E(w) = [(A(w) + BW))CW™) + (A(w) = Bw))D(w™)] /2
and
Fw) = [(A(w) = BW)C(w™) = (A(w) + Bw))D(w™™)]w™™/2

foranyw€Kk, ,,

consequently w” € K, , therefore, we have
|Ew)I2 + [Fw)I2 = (14W)I? + 1Bw)I2)(ICW™)I? + [DW™)I)/2 = 2mn.

It should be noted that if (a;) and (b,) are a pair of GCL(m), then the sequence
(vg) of vectors v, = (x4, y,), where x; = (g + by)/2 and y, = (a;, — b;)/2,is a
two-symbol §-code of length m with the two orthonormal vectors i; = (1, 0) and
i, = (0, 1), and conversely.

THEOREM 4. Let (a;) and (by) be a pair of HL(n). Then (a), (b%); (a%), (b2);
(@), (b%); and (a?), (b?) are also pairs of HL(n), where (%) is the sequence obtained
from (c;) by changing the sign of ¢, if and only if the subscript k is even, i.e. ¢y, =
(—1)¥ ey, and ¢ = (—1)¥c, for ¢ = ay, or by.

Proof. Let A(w) = Ay(w?) + wA,(w?) and B(w) = By(w?) + wB,(w?) be, re-
spectively, associated polynomials of (a;) and (b,). Then A%(w) = Ay(w?) — wd (W?),
B%(w) = By(w?) — wB,(w?), A°(w) = —4,(Ww?) + wA ,(w?), and B®(w) = —B,(w?) +
wB,(w?) are, respectively, associated polynomials of (%), (b%), (a2), and (b2). Since
l[AW)I2 + [BW)I? = |45(W?) + wa,(W?)|2 + |By(w?) + wB, (w?)|? = 2n for any
w € K, which is equivalent to IAo(w2)|2 + IAe(w2)I2 + |BO(W2)|2 + IBe(w2)|2
= 2n and

w(d o(w 72)A4,(w?) + By(w™?)B,(w?))
+ w_l(Ao(w2)Ae(w_2) + BO(W2)Be(W"2)) =0
for any w € K,,.* Consequently, we have
l4°(W)|% + [BEW)I? = 14,(W?) — wA ,(W?)|2 + |By(W?) — wB,(w?)|?
= [4,WH)I% + 14,wWH)1% + 1By(w?)I? + B, (W?)I? = 2n.

Other cases can be proved similarly.
THEOREM 5. Let (wy), (x), (¥), and (z;) be a quad of WS(m) and (q,,),
(), (s¢), and (t,) a quad of TS(n). Then (a;), (by), (cy), and (d;) are a quad of
GSS(mn), where
Un—-1)n+j = Wnd; + Xpti + VnS; + zht]-,
b(h_l)n +j = Xpd; ~ Wil; + ZpS; —yhtj,
Clh—1)n+j = Yl ~ Zpli — WpS; + xht].,

—wut; forl<h<mand1<js<n.

dn—1yn+j = Zndj T Yulj T XnS; T Walj

*We use the fact that w € Kn implies —w € Kn for even n.
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Proof. For any w € K, ,,, we have
mn m n .
Aw) = X2 awWh ™ =30 3 wq; + xur t vs zhtj)w(h_l)" +i-1
1 11

= Ww™")Qw) + XW"R(W) + Y(W")S(w) + Z(W") T(w),
similarly,
B(w) = X(W")Q(w) — WW™"R(W) + Z(W")S(w) = Y(w")T(w),

C(w) = Y(W")Q(w) — Z(W")R(w) — W(w™)S(w) + X(W")T(w),
and
D(w) = Z(W™)Q(w) + Y(WR(W) — X(W")S(w) — W(w") T(w).

Since w" € K,,, and U(w ™) = Uw") for U= W, X, Y, and Z, by replacing the right-
hand sides of the above into the following sum and by rearrangements and simplifica-
tions, we obtain from (5) and (7),

lAW)I2 + 1BW)I? + [CW)I* + ID(W)I?
= (W2 +X* + Y?* + Z2)(101* + IRI? +|SI? + |T|?) = 4mn,

where U= Uw") forU=W, X, Y, and Z;P=Pw) for P=Q, R, S, and T.

It should be noted that a Hadamard matrix of order 4mn has been constructed
by Turyn [7] using Baumert-Hall units if a Williamson matrix of order 4m and a four-
symbol §-code of length n are known. Williamson matrices of order 4m exist for
m <31 or m = (q + 1)/2, where q (a prime power) = 1 (mod 4), and others (see [4],
(71, [8], [11], [13], [14], [15]).

Four-symbol §-codes (including two- and three-symbol codes) of length n exist
for n < 61, or n = 2410°26¢ (two-symbol codes) and n = 2°10°26° + 1 (three-symbol
codes) for all @, b, ¢ =0 (see [7], [9], [11]), as well as for n = 2910726 + 2910267
(four-symbol codes) for all @, b, ¢, d, e, and f = 0.

For example, in the two-symbol §-code (1, i) of length 2, by letting 1 =
(1,0,0,0) and i = (0, 1, 0, 0), we obtain a quad of TS(2): (g,) = (1, 0), (r,) =
(0, 1), and (s;) = (t,) = (0, 0). Similarly, by letting 1 and i as above and j =
(0, 0, 1, 0) in the three-symbol code (1, i, j) of length 3, we obtain a quad of TS(3):
(qx) =(1,0,0), (r,) = (0, 1, 0), (s,) = (0, 0, 1), and () = (0, 0, 0). Thus, for the
given quad of WS(3): (w,) = (x;) = (¥4) = (-, 1, 1) and (z;) = (1, 1, 1), where —
stands for —1, we obtain from Theorem 5 the following quads of GSS(n) for n = 6
and 9. n = 6: (ay), (by), (cy), and (d;) are, respectively, (—, —, 1, 1, 1, 1), (=, 1, 1,
-1,9,--,1,-,1,9),and (1,-,1,1, 1, 1);n=9: (—,—,—, 1,1, 1,1, 1, 1),
-,1,1,1,-,1,1,-1,(-,-,1,1,-,—-,1,-,9),and (1,—,1,1,1,—-, 1, 1, ).

The following new pairs (¢;) and (b,) of HL(26) have been found, which are
listed as the following pairs of C and D, respectively, where C = {k: a;, = —1} and
D={k:b,=-1}. Cand D are: {1,2,3,7,9,11, 12, 14, 15, 17, 18} and {1, 2,
4,89, 11,13, 16, 17, 21}; {1, 2, 3,5, 6, 8, 12, 13, 15, 21} and {1, 2,3, 5, 7, 11,
12, 13, 16, 19, 24}; {1, 2, 4,6, 8,9, 12, 13, 15, 22} and {1, 2, 3,4, 8, 9, 13, 16,
17,19, 25}; and {1, 2, 3, 5, 6, 10, 12, 13, 15, 23} and {1, 2,3, 7,9, 10, 12, 13, 16,
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21, 23}, respectively. From Theorem 4, we also obtain the following pair corresponding
to (ag) and (bg) of the first pair above, {2, 5, 12, 13, 14, 18, 19, 21, 23, 25} and
{2,3,4,5,7,8,15,16, 19, 23, 25}. Other pairs of HL(26) corresponding to (ag)
and (b9), or (af) and (b%), can be obtained from Theorem 4 in a similar way. We
note here that (c¢) = (~¢%) for ¢, = a;, or b,.
In Theorem 3, for example, from the given pairs of GCL(10) and HL(4): (a;) =
(la la 17 1’ g 17 la T 1)’ (bk) = (1’ ) 13 T 13 13 13 1’ T _) a-nd (ck) = (dk) =
(-, 1, 1, 1), we obtain the following E and F representing the pair (e;) and (f;) of
HL(40):
E={k e, =-1}=1{1,2,3,4,6,7, 10, 15, 18, 19, 25, 28, 29, 35, 38, 39}
and
F={kf,=-1}
={1,3,5,6,7,8,11,13,15,16, 17, 18,21, 23,25, 26, 27, 28, 32, 34, 39, 40}.

Department of Mathematical Sciences
State University of New York, College at Oneonta
Oneonta, New York 13820

1. J. M. GOETHALS & J. J. SEIDEL, ‘A skew Hadamard matrix of order 36, J. Austral.
Math. Soc., v. 11, 1970, pp. 343—344.

2. M. J. E. GOLAY, “Complementary series,”’ IRE Trans. Information Theory, v. IT-7,
1961, pp. 82—87.

3. M. J. E. GOLAY, ‘“Note on complementary series,” Proc. IRE, v. 50, 1962, p. 84.

4. E. SPENCE, “Hadamard matrices of order 2¢"(q + 1) and q"(q + 1),” Notices Amer.
Math. Soc., v. 23, 1976, p. A-353.

5. E. SPENCE, “Hadamard matrices of the Goethals-Seidel type,” Canad. J. Math., v. 27,
1975, pp. 555—560.

6. E. SPENCE, “Skew-Hadamard matrices of order 2(q + 1),” Notices Amer. Math. Soc.,
v. 22, 1975, p. A-303.

7. R.J. TURYN, ‘“Hadamard matrices, Baumert-Hall units, four-symbol sequences, pulse
compression, and surface wave encodings,” J. Combinatorial Theory Ser. A, v. 16, 1974, pp. 313—
333.

8. R.J. TURYN, “An infinite class of Williamson matrices,” J. Combinatorial Theory Ser.
A, v. 12, 1972, pp. 319-321.

9. R.J. TURYN, “Computation of certain Hadamard matrices,”” Notices Amer. Math. Soc.,
v. 20, 1973, p. A-1.

10. Y. TAKI et al., “Even-shift orthogonal sequences,” IEEE Trans. Information Theory,
v. IT-15, 1969, pp. 295—300.

11. J. S. WALLIS, “On Hadamard matrices,” J. Combinatorial Theory Ser. A, v. 18, 1975,
pp. 149—-164.

12. A. L. WHITEMAN, ‘“Skew Hadamard matrices of Goethals-Seidel type,” Discrete Math.,
v. 2, 1972, pp. 397—405.

13. A. L. WHITEMAN, “Williamson type matrices of order 2q(q + 1),” Notices Amer.
Math. Soc., v. 21, 1974, p. A-623.

14. A. L. WHITEMAN, “An infinite family of Hadamard matrices of Williamson type,” J.
Combinatorial Theory Ser. A, v. 14, 1973, pp. 334—-340.

15. J. WILLIAMSON, ‘“Hadamard’s determinant theorem and sum of four squares,” Duke
Math. J., v. 11, 1944, pp. 65—81.

16. C. H. YANG, “On Hadamard matrices constructible by circulant submatrices,’’ Math.
Comp., v. 25, 1971, pp. 181—186.

17. C. H. YANG, “Maximal binary matrices and sum of two squares,” Math. Comp., v. 30,
1976, pp. 148—153.



