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On Stable Calculation of Linear Functionals

By Sven-Ake Gustafson

Abstract. In this paper we discuss the recurrent task of evaluating a linear functional
defined by (generally infinitely many) linear constraints. We develop a theory for the
stability of this problem and suggest a regularization procedure, based on orthogonal

expansions. Simple and efficient computational schemes for evaluating the functional

numerically are given.

1. Calculation of Linear Functionals from Moment Conditions. We start by dis-
cussing the introductory

Example. b € C[0, 1], i.e. b is a continuous function over [0, 1]. Introduce
the maximum norm on C[0, 1]. Let L be a bounded linear functional. Consider the

problem
6)) Compute L(b) when
Q) L@)=¢, r=1,2,...,

where a,(f) = 1.
As a particular instance of the problem (1) and (2) we take

(3) L(b) = J-ol b(OIn(r V) dt.
Then
¢, =L@)=r? r=1,2,....

We shall call (2) moment conditions.

LEMMA 1. Use the same notations and assumptions as in Example 1. Then L(b)
is uniquely determined by the sequence ¢, = L(a,),r=1,2,... .

Proof. let b, be the polynomial of degree less than n which approximates b
best in the maximum norm. b, is uniquely determined and 5 — b, | — 0 when n
—> oo, Hence L(b) = lim,,_, ,L(b,,), and the conclusion follows. Q.E.D.

However, by practical calculations ¢, are known only with a finite accuracy and
only finitely,many of the conditions (2) may be taken into account. Hence, a certain
error is introduced in the calculated value of L(b) which is determined by approximat-
ing b (directly or indirectly) with linear combinations of a,, a,, . . . , a,. The purpose
of this paper is to extend and generalize the results in [6] and [7] as well as to de-
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STABLE CALCULATION OF LINEAR FUNCTIONALS 695

scribe efficient computational schemes for evaluating L(d) and assessing the associated
error.
Definition 1. Let S be a fixed set, F(S) the linear space of real-valued functions,

defined on S. Thus, if f, f; € S and a is a real number, we define as usual f + f; and
a * f through

(+106) = A5) +f1(); (@)6) = afls),  sES.

Ifa, € F(s),r=1,2,...,n, we denote by a the vector-valued function whose value
a(s), s € 8, is given by the column vector with components a,(s),r =1,2,...,n. If
L is a linear functional defined on F(S), we write L(a) for the column vector with com-
ponents L(z,),r = 1, 2, ..., n. Thus, L(z) € R", the n-dimensional Euclidean space.

LemMMA 2. Let ay, a,, . . ., a,, b and L be as in Definition 1 and let b be a
linear combination of a,, a,, . . . , a,,
) b(s) = yTa(s), s€S,

(where y € R™ and superscript T as usual denotes transposition). Put
(%) L@=c
Then

L(b) = c"y.
Proof.
Ty = yTe = yT(La) = L(yTa) = L(b). Q.E.D.

Remark. For examples and computational applications of Lemma 2 see [6] and
[8]. In the special case when S is a finite set, § = {s,, 55, ..., S5}, the functions
a, may be represented as vectors in RY. Since L(a,) then may be represented in the
form of scalar products, (5) takes the form of linear systems of equations.

We next establish a more general result.

THEOREM 1. S, a,, a,, . . ., a, and L are as in Definition 1. b € F(S) and y €
R". Introduce ¢ in F(S) through

(6) yla=b+e.

Let further ¢, 8 in R" satisfy

(7 L@) =c+8.

Then

®) Ty = L(b) = L(e) = 87.
Proof.

Ty - L(b) = yTe — LOTa — &) = y7(c ~ L@) + L(e) = L(e) = 8"y. QED.

The rest of the paper will be based on Theorem 1. We demonstrate first how it can
be used to derive bounds on L(b), provided € and L meet certain further conditions.
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Definition 2. L is called a nonnegative linear functional (L > 0), if f(s) > 0, s
€ S, implies L(f) = 0

COROLLARY 1. Use the same notations as in Theorem 1 and require further
that 8 = 0and L > 0. Then

1 Ta(s) < b(s) <y*Ta(s), sES,
implies
© 1 Te <L) <y*Te

Further put v; = sup L(b) over all L > 0 such that L(a) = c and v, = inf cTy over
all y € R" such that yTa(s) = b(s), s € S, then

(10 v; S,

Proof. With & = 0, (8) entails L(b) = ¢y — L(e). Since L >0, L(b) < cTy, if
y7Ta(s) = b(s), s € S, while yTa(s) < b(s) implies L(b) > ¢Ty. Thus (9) and (10) fol-
low. Q.E.D.

Remark. (9) may be used to find bounds for L(b). See [7]. (10) is a slight
generalization of the duality lemma of semi-infinite programming, [4, Chapter II] and
[10]. If Sis a finite set, then (10) coincides with the duality inequality of linear pro-
gramming. The conditions of Corollary 1 can generally not be met in practice, since
the exact values of ¢, cannot be represented in the computer. Thus, we arrive at the
more general result.

COROLLARY 2. Use the same notations as in Theorem 1. Put b, = yTa and
let the linear functional L satisfy La = c. Let further u > 0 be a given (small) number
and let ¢, be such that

le, —¢c, | <ule,l, r=1,2,...,
then
(11) IL®,) -yTel <u Z ly,e,l <u max lc,l Z
r=1 1<r<n r=1

Proof. Put e =0and 15,| <ulc,lin (8). Q.E.D.
Definition 3. Use the notations of Corollary 2 and put for yT¢ # 0,
n
K, = Y. Iyl IyTel.
r=1

We shall call «,, the condition number of the problem to evaluate L(b,)) from L(a)
=c

Remark. «k,u is an upper bound for the relative error in the value of L(b,)
caused by a relative error in the components of ¢,, bounded by u. However, we shall
be interested in comparing various sequences {5,,}”, of approximations to a fixed b.
When L(b), L given is sought, then it turns out to be simpler to use
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n
(12) k, = max lc,| 3 Iyl
1<r<n r=1
as a measure of stability. We have namely k, lyTc| <k,,; and hence, k,u is a bound
for the absolute error in L(b,) caused by a relative error in the components c,, bound-
ed by u. When we want to determine L(b) for a general b, we first approximate b by

b,,. Combining (8) with Corollary 2 and setting € = b, — b, we get
(13) leTy = L) < IL(b, - b)| +u - k,.
If we select a sequence of functions b,, n =1, 2, ..., such that L(b, —b) — 0

when n — o, we achieve that the first term of the right-hand side of (13) decreases
with n. However, k,, often increases with n and hence there is an optimal value, n =
ng, for which the right-hand side assumes its minimum value. n, depends on b, the

approximating sequence b,, b,, ... and u. We shall illustrate this fact on some sim-
ple but important problems in Section 2.

2. Stability of Some Convergence Acceleration Formulas. In this section we
treat the problem: Let L be a bounded linear functional on C[0, 1] when this space
is equipped with the maximum norm. Put ¢, = L(a,) fora,(s) =s",r=0,1, ... .
Compute for complex z

oo

(14) Fz)= 3 c(-z)
=0
using ¢, ¢y, . . . as input data. As explained in [9] this problem can be cast into the
form: Compute
(15) Fz) = L(f(z, -))
for
(16) L@)=c¢c, r=0,1,..., [fs)=(0+s)™".

Here (15) furnishes the analytic continuation of the function (14) to all z outside the
set defined by z real and z < —1.

We investigate the stability of the convergence acceleration methods in Sections
2 and 3 of [9] and prove

THEOREM 2. Let b, be the polynomial of degree n — 1 obtained by developing
(1+z)tina Taylor expansion around s = t and retaining the first n terms. Put
B = IzI(1 + 1t1)/11 +zt|. Then the condition number k, of (13) has the properties

k,/B" is bounded forn > 1,if B> 1,

k,/n is bounded forn'>1,if B = 1,

k, is bounded forn > 1,if B < 1.

Proof.
n—1 n—1 ( _ r
b)=> ysS =0+ Y !z___(t 9
r=0 r=0 (1 +1z
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Thus

Sy " B

vl < ;

E{) r Il +tz| r;O

and hence,
max _,le,l

17) k< —=ISPL Y (4 B4+ BTY)

11+ |

establishing the desired result, since c, is bounded, » = 1. Q.E.D.

Remark. It may be of interest to compare the accuracy of the results reported
in Table 2 of [9] with the estimates for k,, obtainable from Theorem 2. Thus ¢ = 1,
z =1 gives B =1, and by (17) k,, < 0.5.n maxy,<,_, lc,| in this case (Euler trans-
formation), t = 1,z = 10 gives B = 20/11 (generalized Euler transformation), and ¢ =
%,z =10 gives B = 5/2. The bounds for k,, are sufficiently large to explain the ob-
served loss in accuracy in our estimate of F(z) for z = 10. For each n the bound for
k,, is somewhat smaller for £ = 1 than for # = %. However, for = 1 the optimal
n-value is n = 30 but for £ = % it is n = 20 and the corresponding values of k,, for
optimal 7 turn out to be of the same magnitude.

We next study the stability of the éeby§ev acceleration, which is described in
[9, Section 3]. For this purpose we need

LeEMMA 3. Let the function g satisfy (— l)kg(")(s) >0,k=0,1,...fors €
[0, 1] and let Q(s) = ZI=1 »,s, interpolate g at t, t, . . ., t, where 0 <t <t,
<---<t,<1. Then

n—1

z |yr| = Q(_l)

r=0

Further, if also (—1)%g®)(s) >0,k =0,1,...,s€ [-1, 1], then Q(-1) <g(-1).
Remark. g(s) = (1 + st)" 1, t > 0,and g(s) = ¢* are examples of functions
satisfying the assumptions in Lemma 3.
Proof. According to Newton’s formula with divided differences we can write

Q) =do+(s—t))d, +G—t,))Ms—t,)dy +- -+ —1) 6~ bty )y s,

where d, = g(¢,),d, =g(t,,t,),...,d,_, =g, t,,...,t,). Asknown, there
isa & €(0, 1) such that k!d, = g(k)(sk). Hence (— l)kdk >0,k=0,1,...,n—
1. Rewriting Q in power form, we get an expression

n—1
Q) =Y ys withy, =(-1Yhn,, b, >0.
r=0
Thus
n—1
o= =3 Iyl
r=0

proving the first assertion. Newton’s interpolation formula with remainder gives
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(n) n
g (E) H -1
where £ € [-1, 1]. Since (—1)"g™(¥) > 0 and ¢; € [0, 1], we get Q(—1) < g(-1).
QE.D.
LEMMA 4. Put g(f) = (11 + zI = Izl + tIzIY, () = (1 + z£)"! where Re(z)
—%,and let 0 <t, <t, <---<t, <1 be fixed points. Then the divided differ-
ences satisfy

g-) =01 +

A8) nty, ty, ..t I <EDF gty 2y, .8, k=1,2,...,n
Further if
n—1 n—1
0©) =3 »s5, R@)= Z w,s"
r=0 r=

interpolate g and h respectively at t |, t,, . .., 1, then
n—1 n—
19) > lwl< Z ly,l.
r=0 r=0
Proof. We have
k —1
Bty by oo s )= 2T (+z2)70,
i=1
K
(20) gt ty, .. t) = EDFTHZIFTE T (11 + 21 =zl + 41z1)78
i=1
For Re(z) > — %, I1 + z| > lzIl. Hence by (20), (- l)k_lg(tl, Ly, o oy 1)

> 0. Since |z|(|1 + zl = Izl + 41211 > 1z(1 + z¢,)" '], (18) follows. In order to
verify (19) we express Q and R by means of Newton’s formula with divided differ-
ences and evaluate y, and w,. Then the conclusion follows as in Lemma 3. Q.E.D.

We may now prove

THEOREM 3. Let Q, = =l v—o Y.t be the polynomial of degree less than n
which interpolates (1 +zt)™! at the zeros of T} where T} is the shifted 5eby§ev polyno-
mial of degree n defined by T}(x) = T,(2x — 1). Here T,, is the usual 5‘eby§ev polyno-
mial of degree n. See [2] Then

(21) Z ly, | <A -2)", ifzrealandz € (0, 1),

n
(22) Y Iy <1 +zl=20zIyY, i 1z - 1731 < 2/3.
r=1
Thus, if z meets the requirements indicated in (21) or (22), then the condition num-
ber k, of the éeby&'ev—acceleration in Section 3 of [9] remains bounded for all n.
Proof. Ifz € [0, 1], then (1 + z£)™! meets the assumptions of Lemma 3 and
(21) holds. (22) is established by Lemma 4, since if |1z — 1/3| < 2/3, then Re(z) >
—1/3. Thus, we may replace (1 +z£) ! by (I11 +z| = Izl + ¢lzI)™! and apply Lem-
ma 3 to that function, and the conclusion follows. Q.E.D.
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Remark. If z real and z > 1, we may still apply Lemma 3 to find Z7_, Iy, |=
Q,(-1), where Q,, is defined as in Theorem 3. Using the recurrence relation for T}
we establish as in Section 3 of [9] that Q,(—1) increases exponentially with n. If z
is complex but does not meet the condition associated with (22), we get the inequal-
ity

n

2 >0l

r=1
which gives lower bounds for the condition number. These are exponentially grow-
ing with n, if max(A;, X,) > 1 where \; = 12270 +1 + 2z 2 +271, A, = 1/A.
Compare [9, Section 3]. Thus Theorems 2 and 3 are consistent with the numerical
results reported in [9] which indicated the existence of an optimal # of modest magni-
tude giving the best estimate of L(b) in (13).

3. Calculation of Linear Functionals by Means of Orthogonal Expansions.

Definition 4. Let F(S) be as in Definition 1 and let do be a nonnegative mea-
sure over S. We denote by Lé(S) the space of functions which are square-integrable
over S with respect to da and equipped with the scalar product

& ) = | FO)(s) dos)

for f, g in L2(S) and the norm given by If12 = (£ f. The functions a,, a,,...,a,
are said to be linearly independent in L2(S), if | ZI_, z,4,l, = 0 implies z; =z, =
B Zn = 0.

We prove

LEMMA 5. Leta,,a,, .. .,a, be an orthonormal system in Li(S) and put

(23) b, =yTa withy, = (b, a,.
Then
n
(24) Y Iyl <nlib,ll,.
r=1
Proof. Since a,,a,, . .. ,a, are orthonormal, yIy =1 b, ||§. Next maximize
27, ly,! under the condition yTy =_|I b, 12 and (24) follows. Q.E.D.
Thus, k,, increases at most as Vn, if a,,a,, .. .,a, meet the conditions of
Lemma 5. Consider again the problem:
Estimate L(b) when L(a,) = c¢,,r =1, 2, ..., n, are given numerically and a,,
a,, ...,a, are linearly independent in the sense of Definition 4 for a certain mea-

sure da. In view of Lemma 5 it may be advantageous first to orthogonalize a,, a,,
...,a, in a preliminary step and then approximate L(b) with L(b,). This type of
stabilization of a problem is often advantageous. See [3, Chapter 1]. If this orthog-
onalization must be carried out numerically for a general system, then the modified
Gram-Schmidt method [1] should be used in order to secure numerical stability of
the transformation.

We describe now how to perform the transformation in the important case when

1

S is a real interval and a,(s) = s . Then we select da such that the corresponding

system q, q,, . . . , of orthogonal polynomials has a three-term recurrence relation
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with coefficients u,, v,, which are known as analytic expressions,

(25) 40 =1, q,(=5-u,,

(26) qn(s) = (s - un)qn——l(s) - vnqn-2(s)’ n= 2’ 3’ cc e

(The so-called classical orthogonal families: Jacobi, Hermite, Laguerre, etc., meet
these requirements.) Afterwards, we normalize g, q,, . . . by putting

(27) er = qur-l 4

where the constant w, is determined (analytically) to render lle, Il = 1. There is a
discrete measure do,,,

(28) [ £ dey® = 3 mpifGud

=1

such that m;, >0,i=1,2,...,and
(29) fs ¢(8)er(s)day,(s) = 8,4, 1<j<k<n
m,,; and s, ; are weights and abscissae in the n-point Gaussian quadrature rule corre-

sponding to the measure da and are efficiently calculated using the computer codes
in [5]. (29) follows from the relation

5 = Jo 0e0)de® = 3 mye e = [ efe(s)day o),
i=1

which is valid since the n-point Gaussian rule gives an exact result for polynomials o
degree 2n — 1 or less.

We next determine Lg, which is done by means of the recurrence relations (25),
(26). Put fi(s) = s*q,(s) Iy, = L(fy,). We first calculate the auxiliary entities ,
fork+r<mk=0,1,...,n—1. (25), (26) give the relationships

(30) lk,0=ck+l, k=0,1,...,
(31) lk,l =ck+2_ulck+l’ k=0, 1,...,
(32) lk,n = lk+l,n—-l - unlk,n—l - vnlk’n_2, n= 2, 3, e oo e

We arrange the numbers [, , in a triangular array

10,0
lo,l

Lo lo,2
[
1,1

(33)

12,0 11,2

12,1
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By (27), L(e,) = w,L(q,—;) = W)y ,_1, 7 =1,2,...,n The desired elements Iy,
appear in the top of the columns of the array (33). The numbers /,, are calculated
along ascending diagonals, i.e. in the order lo,o’ ll,O’ lo,l’ 12’0, 11,1’ Iogsee--
Then, it follows from (30), (31), (32) that in order to calculate the elements in a
certain ascending diagonal one needs access only to the two preceding diagonals.
Hence, it is not necessary to store the entire array (33) simultaneously. In total
about n? addition/subtractions and about n?2 multiplications are required for deter-
mining L(e).

Next we put b, = yTe, where y is the optimal solution of

(34) min J:S [6(s) — zTe(5)] ? da, (s).
zERM

If we take z7e as the unique polynomial of degree n which interpolates b at the zeros
$,; of e,, then by (28) the integral (34) assumes the value 0; and hence, this z7e is
optimal. But as known, the unique optimal solution of the least-squares problem (34)
is given by z = y, where
n
¥, = J, b6)e,(5)det,(5) = 2 Maiblsn e
i=
The calculation of y requires about n2 multiplications and the same number of addi-
tions. Now to determine L(b,) only the computation of a further scalar product is
called for.
Remark. If n is increased, da,, is changed and most of the work including cal-
culating functional values b(s,,;) must be redone from scratch.
We next discuss the case when S is a bounded interval, and we shall assume
that by a linear transformation it has been transformed into the standard interval
[-1, 1]. Then it is often suggested to take b, as the polynomial of degree < n which
interpolates b at the zeros of the éeby§ev polynomial of degree n, T, (x). See, e.g.,
[3], [12] and [14]. Then

i-%

35) Spi = COS m, m,; = 7/n

If the cost to evaluate b(s;,) is great in comparison to an arithmetic operation and
it is not known which n-value is finally accepted, then one wants to avoid discarding
previously calculated functional values. In this situation [11] suggests that one
should start with an odd n-value, advance n according to

(36) Nhew = 2'nold +1

and select s,,; as the zeros of U,, the nth degree éebygev polynomial of the second
- kind. Thus,

G mi 1 L, M
s .= Cos , m .= sin® ———,
ni n+1 | n+1

From (37) we find that when 7 is advanced according to (36), all earlier computed
functional values are retained.
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It is known, that if » may be continued analytically to an ellipse in the complex

plane with foc; at +1 and —1, s,,; are given by (35) and b,, is the polynomial of de-

ni

gree < n which interpolates b at s,,;, then
(€1 Ib(s) = b, (5)I < AN",

where 4 and A are constants and A < 1. But if s,; are given by (36), then we get a
bound

(39) |b(s) — b,,(s)| < nA ",

where A4 is another constant and X has the same value as in (37). See [11]. A spe-
cial case occurs in the éebyEev acceleration scheme treated in Section 2 and in [9].
The bounds (38) and (39) are easily established by means of a straightforward appli-
cation of Cauchy’s integral formula.

Let A be a bound for the magnitude of the absolute error in the value of c,.
If q,(¢) = z7Ta(¢) for some z € R™, then the resulting error in L(g,,) is bounded by
AZ_ lz,
= U,, by means of:

LEMMA 6. Let t, and u,, denote the sums of the absolute values of the coeffi-
cients of T,, and U,, the nth degree Cebysev polynomials of first and second kind.
Then

|. We may derive simple expressions for this bound for q,, = T,, and q,,

t, = %[0 +V2)" + (1 -V2)],
1 —n+1 =n+1
= — 1 - 1 - 2 .
u, 2\/2 [( + \/2) ( \/ ) ]
Proof. 1t is well known that

T 2)=%{E +V2-1D" + -V - 1"},

Un(@) =5;/;1‘T_=1{(z MG A Gl CEE A

Since t,, = |T,,()!, u,, = |U,()! the stated result follows immediately. Q.E.D.
Remark. The result for ¢, is also given in [13, p. 792, Eq. (14)]. We treat
also the case S = [0, 1]. Then we use the shifted éebyEev polynomials T and U}
defined by T}(x) = T,,(2x — 1) and U}(x) = U,(2x — 1). See e.g. [9]. Lemma 6 is
replaced by
LEMMA 7. Let t} and u} denote the sums of the absolute values of the coeffi-
cients of T}} and U}. Then

=% +V2)* + (1 -2,

1 —2n+2 =2n+2
*=—— {(1 +2 +(1 -2 ).
u : {1 +v2) (1-v2)

Proof. Use the fact that T#(x?) = T,,(x) and 2 x U*(x?) = U,,,, ;(»).
Q.ED.



704 SVEN-AKE GUSTAFSON

Remark. 1t is apparent from the above that if b, = Z7_, »,T,_,, the error in
L(b,,) computed with L(a), a,(s) = &~ ! as input data depends on how rapidly y, de-
creases with . We have namely

Lo = T 3T, ),

and the errors in the calculated values of L(T,_,) are bounded by a quantity of the
form A(1 ++/2) where A4 is a constant.

Also, if the relative error in the calculated value of L(T,) is greater than 100%
we might as well put L(T,) = O since this value is consistent with given data and as-
sociated error bounds. In this situation, the addition of more moments ¢, does not
improve upon our estimate of L(b).
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