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Quadrature Rule Methods for Volterra Integral
Equations of the First Kind

By Charles J. Gladwin

Abstract. A new class of quadrature rule methods for solving nonsingular Volterra in-
tegral equations of the first kind are introduced; these methods are based on an appro-
priate modification of the higher-order Newton-Gregory methods which are known to
be divergent. Methods up to order six are constructed explicitly and illustrated with
numerical examples.

1. Introduction. Consider the linear Volterra integral equation of the first kind,
(.1 [IKG, 0@ dt = f(),

where f and K (the kernel) are given functions which are continuously differentiable
to sufficiently high order with respect to each of their arguments on

S, ={x10<x<a} (a < ),
and on
S, ={(x, H)IC<t<x<a},

respectively. Furthermore, we assume that

1) f(0) =0, and

(2) K(x,x)#0 for all x € §,.
Then it is well known, [11, p. 14], that a unique solution y(x) exists and is continu-
ously differentiable to sufficiently high order on S,.

2. Method of Solution. We introduce the uniform mesh
Iy ={x, = nh|n = 0()N, Nh = a}

on the basic interval S;. The integral in (1.1) is then replaced by a quadrature rule of
the form

x n

2.1 fo " g(x)dx = h 'Zo W, 8(x;) + E,(8),
i=
where w,; are real-valued weights satisfying
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a;k, i= p(l)pa

wy= {1, i=p+1n-(p+1),

nt

a,_;, i=n-pQ)n.

Equation (2.1) will be denoted by Q(4*, A, m), where

(1) A* =(a}) ERP*!, 4 = () ERPT.

(2) m is the degree of precision of the quadrature rule [8, p. 301],
ie. E,(g) =0 Vg e ,,» space of real polynomials of degree m.

(3) (2.1) is “apparently” defined for n = 2p + 1. In Section 3, we shall extend
the definition forn =2 p + 1.

This yields the numerical method for the solution of (1.1),

n

(22) .Z_lo Wi Ko, x)y; = f(x,), n=p+1Q)N,

where y, denotes an approximation to the exact solution y(x,). If we have a set of
starting values y,, n = 0(1)p, then (2.2) may be used in a recursive fashion to generate
approximations for y,,n =p + 1(1)N.

In this paper we shall not deal with the problem of how to generate the necessary
starting values; we mention, however, that some useful higher-order procedures have re-
cently been derived in [1, p. 295] and [13, p. 45]. These methods could also be used
to approximate y on the entire mesh /,;; however, they are r* times as expensive (in
terms of the number of kernel evaluations per step) as the method defined in (2.2) (r is
the order of the method, to be defined below).

Definition 2.1. Let e, =y, — y(x,), n = 0(1)N, denote the (global) discretization
error of (2.2). Then (2.2) is said to be convergent of order 7 if 7 is the largest positive
integer for which there exists a finite constant C such that, for all sufficiently smooth f
and K,

le,| <Chn", n=0(1)N.

The aim of this paper will be to give a characterization of the weights w,; so that
the method (2.2) is actually convergent of order r (=m + 1, as we shall see later). Fur-
thermore, we shall construct explicitly families of such methods for r < 6.

This is significant in the light of the result in [S, p. 148], which essentially showed
that methods of the form (2.2) based on a wide class of interpolatory quadrature rules
yielded nonconvergent methods for r > 2.

It should be mentioned, however, that six interpolatory quadrature rules were dis-
played in [5, p. 148] which proved to yield convergent schemes up to order six. Un-
fortunately, these schemes give no indication as to whether methods of higher order
exist.

3. Selection of the Weights. In order to choose the vectors A* and 4 we consid-
er the decomposition of (2.1) into simpler quadrature rules
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Xn Xp n xi
Jemax= [Pemax+ ¥ [ gx)ax
j=p+1 ~ ¥j-1
(3.D)

={h f c;g(x;) + E,(e)
i=0

n p+1 N
D> sh .;) b;glx; ) + E &)

j=p+1
where

~ n ~
E,=E, &)+ 2 Eio.
j=p+1
Now we select:
(1) The c; to be the weights of the closed Newton-Cotes rule with p + 1 ab-
scissae.
(2) "The b; to satisfy the system of linear equations

52) p+1 iy = L =0y —1<p+1 0;_{1, ji=0
: 12% [ j+_r ] = r P = O, j>>0.

(In the following, conditions (3.2) will be referred to as the consistency conditions.)
With these choices, it follows that the degree of precision of (2.1)ism =r — 1.
Furthermore, if  — 1 = p + 1, the system (3.2) yields a unique solution (since

the coefficient matrix is essentially Vandermonde). In this case, the quadrature rule

(2.1) is the Newton-Gregory rule to pth differences. This case is useless for p > 0; see

[5, p. 148] or [6, p. 38]. Thus, in the remainder of the paper we shall assume r — 1

<p + 1 so that the weights of (2.1) will depend (linearly) on p + 2 — r free parame-

ters by, by, by, ..., bp+l—r’ say.
Finally, we associate with (2.1) the characteristic polynomial

pt+1
(33) p@)= 3 bjzPt17
i=0
4. Convergence of the Method. We need the following definition.
Definition 4.1 [10, p. 398]. Let p(z) € m,. Then
(1) p(2) is said to be a simple von Neumann polynomial if
(@ p(z2)=0=|z|<1,
(b) p(z)=0and |z| =1 = p'(z) # 0.
(2) p(z) is a Schur polynomial if p(z) = 0 = |z| < 1.
We now give necessary conditions for (2.2) to define a convergent method of
order 1.
THEOREM 4.1. Assume (2.2) is convergent of order 1. Then the polynomial
p(2), defined in (3.3), satisfies:
(1) p(2) is a simple von Neumann polynomial (stability condition), and
(2) p(1) =1 (j = 0in (3.2)) (consistency condition).
Proof. For (1), we apply (2.2) to the test equation

[oy@ar=0, y@x=o,



708 CHARLES J. GLADWIN

to obtain
p+1

P
h Zociyi Z h Z b;yji=0
1=

j=p+1 i=0
Backward differencing of this relation at n and n — 1 yields the difference equation

p+1
i=0

If the method is convergent, we must have
}'ilno yn=0=y(xn) (n—>°°3nh=xnesl)’

which entails that p(z) must be a simple von Neumann polynomial. See [7, p. 218]
for the details.
For (2), we apply the same procedure to the test equation

fo" y(f)dt = x

(whose exact solution is y(x) = 1) to obtain the difference equation

p+1
i=0

Thus, the result follows.

We now proceed to show that stability and consistency are sufficient for conver-
gence. Indeed, we shall show if we have the r conditions (3.2), we obtain convergence
of order r. :

Throughout the rest of the paper we assume that the following conditions hold:

A. f and K are sufficiently differentiable with respect to each of their arguments
on §; and S,, respectively.

B. p(z), defined in (3.3), satisfies the stability condition and the r consistency
conditions (3.2) (i.e. (3.2) withj=0,1,...,r—1).

C. The starting errors, {e,: n = 0(1) p}, are O(K").

It is easily seen that the global discretization error, e, satisfies

p
h Z ciK(xn’xi)ei +h Z Z b; K(xn’ —1) j—i =
@.1) =0 j=p+1 i=0
(n=p + 1(1)N),
where E,, is the quadrature rule error in (2.1) applied to the function K(x,, #) - y (?).

E, can be estimated asymptotically (n — e, h — 0, nh = x,, fixed), under assump-
tions A, B and C, by

“4.2) E, =ho,(x,) +h"1o,(x,) + B 205(x,) + O +3)
with (a) ¢; € C?[S,1,i = 1(1)3, (b) $,(0) =0
We shall also need the following lemma.

LEMMA 4.1. Let P(2) be a real simple von Neumann polynomial (with P(1) # 0)
of exact degree q and with no zeros at the origin. Furthermore, let the coefficients
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{7;: I = 0(1)e°} be defined by
“4.3)

1 s 1
= > 7z
ziP(1/z)  1=0 !

Then, for any ¢ € C'[S,], we have

n
2 M) | SM<e foral n=0Q1)N;x,=Ih
i=o0

Proof. Let P(z) = Z{, b;z?7". Then from (4.3) we obtain

q l, 1= 0,
“44) by, ; =
PR Y
with y,_; = 0 for I <i. For !> g, (4.4) is a linear, homogeneous difference equation
with constant coefficients together with g starting values {7,: / = 0(1)q — 1}. Thus,
using the hypotheses on P(z), we may write

@5 v= i Cizt + Dt + f DII-1)---(I—i+2u, 120,
i=1 i=2
where (a) C;, D; are arbitrary constants, depending linearly on the starting values;
(b) P(z) is assumed (for ease of notation and without loss of generality) to have s simple
zeros, z;, on the unit circle and one zero, p, of multiplicity v interior to the unit circle;
here,s + v =gq.
Thus, it suffices to see that

n

S Zo@h)| SM* < foralln=0(1)N, |zl =1,z # 1.
I=0
We have
n n
> o) = 3 (S-S Dekx),  x=1h,
I=0 1=0
where
n ] Zn+l -1
S, = j;oz =71 S_,=0, §,=0,

or, using summation by parts,

n

n—1
Z Zl¢(x1) = IZ—:O S0 —¢(x;11)] +S, P(x,)-

1=0
The result now follows by applying the Mean Value Theorem of Differential Cal-
culus. See [7, p. 269] for the details.
We are now prepared to show that stability and consistency are sufficient for
convergence.
THEOREM 4.2. Assume that e, satisfies (4.1) and that the conditions A, B and
C are fulfilled. Then the method defined by (2.2) is convergent of order r; Le.

e,=0#), n=0(1)N,ash— 0,Nh=a
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Proof. By using backward differencing in (4.1), and by observing Taylor’s formu-
la and assumption A, together with
@@ K,;,=K(x, x) i=0(1)n,
®) K, ,; =K, 0.5 10,41 <0 = maxg {IK,I},
(C) Kn—l-z = Kn hxn i + 0* h2
[Xpil < x = ng;x UKLy, 16k,1<6*= max {K,.,.1},

2
(d) 1K,,|=>\>0 for all n = O(1)N,

we obtain
p+l1 n—1
(4.6) Z bien—i = Kn—-rlt h Z dn'iei + h—l(En -F ._1) , n=p+I11)N,
i=0 i=0
where
(—Xn i + 0* h)si’ i= 0(l)p,
dpy =< (=X, + 010, i=p+1()n-(p +2),

Xt 00D Y w0, gy i=n—(p+ DD -1,

and where s;, ¢;, u; depend (linearly) only on c; and b,.

Here, the functions d,,.; = d,(x,) are sufficiently smooth in view of assumption
A. Multiply (4.6) by v,_, for each n = p + 1(1)N and form the sum. We first note
that (from (4 4))

p+1

p+1 p+1
(4-73) Z YN-n Z blen—l =én + Z Z bk7N—(p+k)ep+k—i‘
n=p+1 i k=1 i=k

Secondly, we have

Z 7N—nK;n Z d e

n=p+1
4.
( 7b) p N N—-1 *
= Z Z 7N—n nn dnt ¢; + Z Tn-i€i>
i=0 ( n=p+1 i=p+1
where 7., = ZN_.. YN-nKand,.;si=p + 1(1)N — 1. We note

(a) IZn —p+1 YNenK iyl < I'; <eo, and
(®) V-l STy <o,

for all i and N, in view of Lemma 4.1.
Collecting the above results, we find

N—1
4.8) ley| <hS 3" lel +R, N=0,
i=0
where § = max{I';, T,},
p+1 p+1 N 1 -1
R= % ¥ Bl 1N -ty 1 €p il + 2 Wn Kl E, —E, )|
k=1 i=k n=p+1

The double sum is finite and O(h"), since it only depends on the starting errors
which, due to assumption C, satisfy e, = O(h") (n = 0(1)p). The second sum is O(#"),
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too, which may be easily verified by inserting (4.2) (using appropriate backward differ-
encing), applying the Mean Value Theorem, and observing Lemma 4.1.
Thus the solution of the recursive inequality (4.8) is [7, p. 244],

ley] <SR + ShYY <R - exp(WhS), Nh=a,
so that |ey| = O(h") for n = O(1)N. Thus the proof is complete.

5. Construction of Methods. We first consider the choice of the p + 2 —r free
parameters so that p(z) is a Schur polynomial. An equivalent (and more convenient)
approach is to ensure that the polynomial

+1
5.1 - P (W) R j
1) 0 =00 =D (NT) = T w
j=0
is a Hurwitz polynomial [3, p. 206]. (A Hurwitz polynomial is a polynomial such
that T(w) =0 = Re w <0.)
It is easy to see [3, p. 204] that

p+1 .
T]‘ = Z bp+1—i7i]‘9 ] = O(l)p + 19
i=0

where '7,] = 7,'.]:_1 - 7,‘—1.]'_1 - 7[.—1-]‘ (l,] = l(l)p + 1)’ with

Yio = (_1)p+l—~i, 70-]' = <p -; 1) (_1)P+l—i’

_ _(p+1
7i'p+l - 1: 7p+1.]'_< ]- >:

where we have used (3.3).

Remark. It can be easily shown that, for p(z) satisfying (3.2) and (3.3)

(i) or;/oby =0,i=11)p +1,r=p+1,

(ii) 9r;/0by = d7;/0b, =0,i=2(1)p + 1,r=p.
This permits the use of Theorem 5.1 which is a simpler form of the usual Hurwitz cri-
terion. It should be noted, however, that Theorem 5.1 is valid for arbitrary real poly-
nomials. In order to introduce a Hurwitz criterion, we define the sequence of determi-

nants
Tt T3 77T Tak—
To T2 ° 7 Tag2
0 7 = Taks
52 8, =0 To " Tak-a |, k=10)p+1@;=0if j>p+1),
o 0 -1

where 7; are as in (5.1).
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The reader should also note that 7(w) is a Hurwitz polynomial if and only if

* +1 (1 P&l +1-j
T¥%(w) = wP T<W> = Z riw” U
i=o0

is a Hurwitz polynomial. We then have the following result.

THEOREM 5.1. The following conditions are necessary and sufficient for T*(w)
to be a Hurwitz polynomial:

@) Tpt1 > 0, Tp1 >0, 7,.3>0, ... ;6,>0, 8pp >0,... 0r

(ii) Tpt1 > 0, ‘rp\> 0,7,.,>0,... 36, >0,6,,>0,....

Proof [2, p. 158]. To construct a simple von Neumann polynomial we chose the
free parameters so that

(@) 7(0)=0,

(b) 7(w)/w is a Hurwitz polynomial.

TABLE I
r p DOMAIN OF STABILITY
1 0 by > 1/2
2 1 by > 1/2
o(z) : 3 2 11/24 < by < 15/24
SCHUR
4 4 by = 0, 45/24 < by < 77/24
5 5 by = 0 L
3251/1440 < by < (-14518/5 + 7(289845) ?)/288
6 6 by = 0 L
941/360 < by < 133/60 + (1005)?/40
r p DOMAIN OF STABILITY
1 1 by > 174 , by = 1/2
2 2 by > 3/8 , by + by =1
p(z):
SIMPLE 3 3 5/12 < by < 11/12 , 16by + 8b, = 35/3
VON NEUMANN
4 4 5/12 < by < 25/48 , 3by + by = 15/8
5 5 115172880 < by < -1199/480 + (5/8) (1307/60)
128b + 32b; = 3251/45
6 6 by = 0
by = 941/360

For p = 3 and r = 4; 7, = 0 in the polynomial 7(w). Thus, p(z) cannot be a Schur
polynomial for any b, [3, p. 198].
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Conditions (a) and (b) are obviously sufficient for p(z) to have a single root at z = —1
and p roots in the interior of |z| = 1.

In the following table we list a number of polynomials p satisfying the conditions
mentioned above; the derivation of these results is then illustrated by means of two
examples. '

Examples. 1. p(z) is a Schur polynomial, with r = 3, p = 2. Here,

23 16 5
3 _ 2 - -
p(2) = byz +<12 3b0>z + <3b0 12>z+<12 b0>

(W) = <8b0— 4—4) + 200+ 2w+ W,

and

12 3
For Theorem 5.1(ii) we use

n=lon=2 1 =2, 1, =8, %,
and obtain
I
8, = =1-2-—8b0,
85— 3 2

which then yields the condition stated in Table I.
2. p(2) is a simple von Neumann polynomial, with r = 2, p = 2. Here,

p(z) = byz> +b,2% + (%—3b0 —2b1)z + <2b0 +b, - %)
and

T(W) = (4 —4by —4b,) + (12b, + 4b, — T)w + 2w? + wd.
Thus, condition (a) yields
4—-4b, —4b, =0,
while (b) implies
12by +4b, —7>0,
which may be written as

126 + 4(1 = by) =7 > 0.

6. Examples and Conclusions. It can be shown that the global discretization
error, e,,, contains terms of the form z3d, (x,), where z, are the roots of p(z) and
d,(x) are solutions of the initial value problems

6.1) K(x, x)dp(x) =z, K, (x, x)d,(x) =0,  d(xq) = &
(See [6] for details; compare also Kobayasi [9] where a corresponding analysis is given
for the trapezoidal method.) Thus, in the case of quadrature rule methods based on

simple von Neumann polynomials, we get “marginally stable” approximations depend-
ing on whether |d, (x)| is monotone increasing or decreasing (with increasing x).
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TaBLE II(a)

le,!
n at x, =2
len+l|
PROBLEM
METHOD  h I(a=1) I(a=-1) I1(a=1) I1(a=-1)

: 3.0x103 | s1ax103 | a6 x10? | 2.7 x107°
3.0x10%0 | 21 x103 | 2.7 %102 | -3.4 x 1072

A
s |l 19 x 10t | w70 %107 | s x0T | a4 x 1073
21 x10% | 32x10% | w7 x103 | a7 x1078
. 5.7x107° | —2.2x107% | 5.ax103 | 214 x 1073
7.0x107% | 46.9x107° | —2.0x107% | -2.3x 1073

B
s || +1.8 %107 | 13 107° | +3.6x10% | 1.3 %107t
5.5 x10° | s1ax10° | -3.2x10 | 1.7 x107t
. A7x107° | c1ox10? | c22x10 | 6.3x1073
+3.3x107° | —2.3x107% | 76 x107% | 7.0 x 1073

c
s || H1.7x07° | 2.8 x 10° | a.9x10® | 8510
a.6x10° | —2.8x10° | #1.7x107° | 9.0 x107*
8.2x10% | 426 x10% | s x10? | 3.3 %1073
-1 9.0x107% | w7x100 | aaxi0t | 437 x1073

D
05 || 6.1 x 100° | 6.0x107 | +6.2x10° | +2.4x10™
6.0 x10° | s.0x107 | 45.9x10% | 42.6 x 1074
+22x10% | wax10® | a8x107 | -8.5x10°
1 25x10% | w4o0x10® | 17 x107 | -9.4x10°

£
a.4x107 | +3.0x100 | st x108 | 5.5 x 1077
05 s <107 | 43.0x10% | s1.0x10® | 5.8 x 077

y(x,) 7.3890561 .1353353 .1353353 7.3890561

We shall illustrate this phenomenon with the following examples.

L f%(@® +1)cos(x — H)y(t)dt = ae®™ + sin x —a cos x, y(x) = e**, d(x) =
8-

. a f% e*® Dy(f) dt = sinh ax, y(x) = €%, d,(x) = 8¢, z, = —1 (for our
methods).

Thus, we expect serious stability problems in example II with @ > 0.

The following methods will be used for the solution.

A: p(z) (simple von Neumann polynomial): r =p =3, b, = %, b, = %;

3
b1=§';

B:  p(z) (simple von Neumann polynomial): r=p =4, b, = %,

C: p(2) (Schur polynomial): r=3, p=2, b, = %;
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5
D: p(2) (Schur polynomial): r =p=4, by, =0, b, = —2%;

E: block method: u; = i=1(1)4 (see Weiss [13, p. 51]).

i
4 b
Exact starting values were used, when needed. All computations were performed

on the CDC 6400 at Dalhousie University (in double precision 120 bit word).
TaBLE II(b)

le, |
g n zatxn=4

Ien+1|
PROBLEM

METHOD  h I(a=1) I(a=-1) 11(a=1) I1(a=-1)
.7 x102 | s2.8 x10t | 2.3 x10° 2.2 x 107!
3 2.6 x1072 | 219 x1073 | 42,1 x 100 -2.5 x 107

A
a1 x103 | +2.8x10°° | -3.5 x102 | -3.2 x107?
05 1 g6 107t | -3 x10™t | 43.6 x107% | -3.3 x107?
+3.2x10°3 | 13 %10t | +2.8x1072 | -1.4 x 1072
3 a1 x10°3 | s7.2x10% | 2.6 x102 | 1.6 x1072

B
+2.5 x1070 | 1.2 %108 | 427 x1073 | 21 %1073
05 11 430 x107? | a0 %108 | 2.9 x1073 | a1 <073
2.6 %1073 | 2.0 x107% | w60 x107° | a7 x107?
] .8 %103 | —2.0 107t | c2.5 x1078 | 5.2 x 1072

c
9.3x10°° | 2.8x10° | +2.5 x10® | 6.3 x1073
05 )y x10t | 2.8 x10 | s2.4ax10® | 6.6 x 2073
6.0 %1073 | +2.7 21075 | s1.6 x107% | 42,5 x 1072
1 6.6 x10°3 | +2.7x10° | .5 x10% | 427 x 1072

D
a5 x10% | s70x107 | +80x107 | +1.8x1073
05 0l 47 x10% | 7.0 x1077 | 8.0 x107 | #1.9 x1073
.6 x100° | 46.0x10° | 25 x108 | 6.3x107°
q A8x10° | wsox10? | 2.3x108 | 6.9 x107°

£
1.0 x 107 ol .0 x1079 | -4 x1078
05 )1 4. %108 ol .0 %107 | -a.3x10°
y(x) 54.5981500 .0183156 .0183156 54.5981500

Remarks. (1) The errors for II(a = 1) are diverging from the exact solution for meth-
ods A and B (simple von Neumann polynomial), although not as markedly for # = 0.05.

(2) Methods A and C are order 3 while B and D are order 4.

(3) Method E requires 7> as many kernel evaluations as the others for a given

stepsize, h.



716 CHARLES J. GLADWIN

The results in this paper are a summary of the author’s Ph.D. thesis written at
Dalhousie University. Families of quadrature rule methods for the numerical solution
of Volterra integral equations of the first kind have been constructed.

The quesfion of existence, for arbitrary r, hinges on the possibility of whether one
can construct polynomials p(z) (which are Schur or simple von Neumann polynomials)
by choosing p + 2 — r (the number of free parameters) sufficiently large.
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