On Faster Convergence of the Bisection Method for Certain Triangles

By Martin Stynes

Abstract. Let $\triangle ABC$ be a triangle with vertices A, B and C. It is "bisected" as follows: choose a/the longest side (say AB) of $\triangle ABC$, let D be the midpoint of AB, then replace $\triangle ABC$ by two triangles, $\triangle ADC$ and $\triangle DBC$.

Let Δ_{01} be a given triangle. Bisect Δ_{01} into two triangles Δ_{11} , Δ_{12} . Next, bisect each Δ_{1i} , i=1, 2, forming four new triangles Δ_{2i} , i=1, 2, 3, 4. Continue thus, forming an infinite sequence T_j , j=0, 1, 2, ..., of sets of triangles, where $T_j=\{\Delta_{ji}\colon \ 1\leqslant i\leqslant 2^j\}$. It is known that the mesh of T_j tends to zero as $j\to\infty$. It is shown here that if Δ_{01} satisfies any of four certain properties, the rate of convergence of the mesh to zero is much faster than that predicted by the general case.

1. Introduction. Let $\triangle ABC$ be a triangle with vertices A, B and C. We define the procedure for "bisecting" $\triangle ABC$ as follows: choose a/the longest side (say AB) of $\triangle ABC$, let D be the midpoint of AB, then divide $\triangle ABC$ into the two triangles $\triangle ADC$ and $\triangle DBC$.

Let Δ_{01} be a given triangle. Bisect Δ_{01} into two triangles Δ_{11} and Δ_{12} . Next, bisect each Δ_{1i} , i=1,2, forming four new triangles Δ_{2i} , i=1,2,3,4. Set $T_j=\{\Delta_{ji}\colon 1\leqslant i\leqslant 2^j\}, j=0,1,2,\ldots$, so T_j is a set of 2^j triangles. Define m_j , the mesh of T_j , to be the length of the longest side among the sides of the triangles in T_j . Clearly $0< m_{j+1}\leqslant m_j$ for all $j\geqslant 0$. It is shown implicitly in [3] that in fact $m_j\to 0$ as $j\to\infty$. Thus, this bisection method is useful in finite element methods for approximating solutions of differential equations (see e.g. [1]). A modification of such a bisection method can be used in computing the topological degree of a mapping from R^3 to R^3 ([4], [5]).

In [2] an explicit bound is obtained for the rate of convergence of m_j : $m_j \leq (\sqrt{3}/2)^{[j/2]} m_0$, where [x] denotes the integer part of x. In [2] it is also mentioned that computer experiments indicate that in many cases this bound is unrealistically high; this prompted the present results. We show that if Δ_{01} belongs to any one of four sets of equivalence classes of triangles, then we have the substantially improved bounds of Corollaries 1 and 2 below. Much of the notation used is taken from [3].

2. Results.

Definition. Given three positive numbers ρ , σ , τ such that $\rho + \sigma + \tau = \pi$, define (ρ, σ, τ) to be the set of all triangles whose interior angles are ρ , σ , τ .

Received February 14, 1978.

AMS (MOS) subject classifications (1970). Primary 50B30, 50B15; Secondary 41A63, 65N30, 55C25.

With this notation we divide the set of all triangles into similarity classes. Note that $(\rho, \sigma, \tau) = (\sigma, \rho, \tau)$ etc.

Definition. Given a triangle Δ , define $d(\Delta)$, the diameter of Δ , to be the length of the longest side of Δ .

Definition. Given a similarity class (ρ, σ, τ) choose any triangle $\Delta \in (\rho, \sigma, \tau)$ and join the midpoint of its longest side to the opposite vertex. The new side ratio r of (ρ, σ, τ) is defined to be the length of this new side divided by $d(\Delta)$.

Remark. The new side ratio is well-defined since it does not depend on the particular Δ chosen in (ρ, σ, τ) . By Lemma 5.2(i) of [4] we have $0 < r \le \sqrt{3}/2$ always.

Definition. Using the notation of the introduction, an iteration of the bisection method applied to Δ_{00} is defined to be the progression from T_j to T_{j+1} for any $j \ge 0$. A cycle of the bisection method is defined to be two successive iterations, i.e., the progression from T_j to T_{j+2} for any $j \ge 0$.

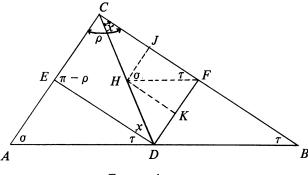


FIGURE 1

In Figure 1, $\triangle ABC \in (\rho, \sigma, \tau)$ and we have taken $\tau \leq \sigma \leq \rho$. Thus, $AC \leq BC \leq AB$ (where 'AC' denotes 'length of AC' etc.). D, E, F are the midpoints of AB, AC, BC, respectively. Under the additional hypothesis that $x + \tau \geqslant \max\{\sigma, \rho - x\}$ and $\pi - \rho \geqslant \rho - x$, bisections will take place exactly as in Figure 1 (see [3]).

Notation. To indicate that $\Delta_1 \in (\alpha_1, \beta_1, \gamma_1)$ yields $\Delta_2 \in (\alpha_2, \beta_2, \gamma_2)$ and $\Delta_3 \in (\alpha_3, \beta_3, \gamma_3)$ when bisected, we shall draw a pair of arrows emanating from the triple $(\alpha_1, \beta_1, \gamma_1)$ with one entering each of the triples $(\alpha_2, \beta_2, \gamma_2)$ and $(\alpha_3, \beta_3, \gamma_3)$.

We quote the following result from [3]; it uses the notation of Figure 1.

LEMMA 1 [3, LEMMA 4]. If $\tau \le \sigma \le \rho$, $x + \tau \ge \max \{\sigma, \rho - x\}$, and $\pi - \rho \ge \rho - x$, then we must have

$$(\rho, \sigma, \tau) \xrightarrow{\longleftarrow} (x, \tau, \rho + \sigma - x)$$

$$\downarrow \uparrow \qquad \qquad \downarrow \uparrow$$

$$(\rho - x, \sigma, x + \tau) \xrightarrow{\longleftarrow} (x, \rho - x, \pi - \rho)$$

Proof. See [3].

Thus, after one cycle of the bisection method applied to $\triangle ABC \in (\rho, \sigma, \tau)$, we have two triangles from (ρ, σ, τ) ($\triangle ADE$, $\triangle DBF$ above) and two triangles from $(x, \rho - x, \pi - \rho)$ ($\triangle CED$, $\triangle CFD$ above). Now d(ADE) = d(DBF) = d(ABC)/2. Also,

d(CED) = d(CFD) = CD (since $\pi - \rho \geqslant \rho - x$ by hypothesis, and $\rho - x \geqslant x$ from [3]), i.e., d(CED) = d(CFD) = rd(ABC), where r is the new side ratio of (ρ, σ, τ) . Similarly, after one cycle of the bisection method applied to $\Delta CFD \in (x, \rho - x, \pi - \rho)$, we obtain ΔHJF , $\Delta HKF \in (\rho, \sigma, \tau)$ and ΔCJH , $\Delta HKD \in (x, \rho - x, \pi - \rho)$. Here

$$d(CJH) = d(HKD) = d(CFD)/2,$$

and

$$d(HJF) = d(HKF) = HF = AB/4 = CD/4r = d(CFD)/4r$$
.

THEOREM 1. Assume that $\tau \le \sigma \le \rho$, $x + \tau \ge \max\{\sigma, \rho - x\}$, and $\pi - \rho \ge \rho - x$. Then for $n \ge 1$, after n cycles of the bisection method applied to

- (i) $\Delta \in (\rho, \sigma, \tau)$, we have 2^{2n-1} triangles in (ρ, σ, τ) each with diameter $d(\Delta)/2^n$ and 2^{2n-1} triangles in $(x, \rho x, \pi \rho)$ each with diameter $d(\Delta)r/2^{n-1}$;
- (ii) $\Delta' \in (x, \rho x, \pi \rho)$, we have 2^{2n-1} triangles in $(x, \rho x, \pi \rho)$ each with diameter $d(\Delta')/2^n$ and 2^{2n-1} triangles in (ρ, σ, τ) each with diameter $d(\Delta')/2^{n+1}r$.

Here r is the new side ratio of (ρ, σ, τ) .

Proof. We use induction on n. The case n = 1 is proven in the remarks following Lemma 1.

Fix k > 1. Assume that the theorem is true for $1 \le n < k$. We prove it true for n = k.

First, part (i). After one cycle of the bisection method applied to Δ , we have Δ_1 , $\Delta_2 \in (\rho, \sigma, \tau)$ with $d(\Delta_1) = d(\Delta_2) = d(\Delta)/2$, and Δ_3 , $\Delta_4 \in (x, \rho - x, \pi - \rho)$ with $d(\Delta_3) = d(\Delta_4) = rd(\Delta)$. Applying a further k-1 cycles to each of these four triangles, we obtain from Δ_1 and Δ_2 by the inductive hypothesis 2^{2k-2} triangles in (ρ, σ, τ) each with diameter $d(\Delta_1)/2^{k-1} = d(\Delta)/2^k$, and 2^{2k-2} triangles in $(x, \rho - x, \pi - \rho)$ each with diameter $rd(\Delta_1)/2^{k-2} = rd(\Delta)/2^{k-1}$; from Δ_3 to Δ_4 we get 2^{2k-2} triangles in $(x, \rho - x, \pi - \rho)$ each with diameter $d(\Delta_3)/2^{k-1} = rd(\Delta)/2^{k-1}$ and $d(\Delta_3)/2^{k-1} = rd(\Delta)/2^{k-1}$

By an analogous argument (ii) holds for n = k. This completes the proof.

COROLLARY 1. Suppose $\tau \le \sigma \le \rho$, $x + \tau \ge \max\{\sigma, \rho - x\}$, and $\pi - \rho \ge \rho - x$. Then in the notation of the introduction

- (i) If $\Delta_{01} \in (\rho, \sigma, \tau)$, then $m_j \leq \max\{r, \frac{1}{2}\}(\frac{1}{2})^{\lfloor j/2 \rfloor 1}d(\Delta_{01})$ for $j \geq 1$, with equality for even j;
- (ii) if $\Delta_{01} \in (x, \rho x, \pi \rho)$, then $m_j \leq \max\{1/2r, 1\}(\frac{1}{2})^{\lceil j/2 \rceil}d(\Delta_{01})$ for $j \geq 1$, with equality for even j.

Proof. Immediate from Theorem 1.

Remark. In practice the conditions of Theorem 1 are more easily checked if expressed in terms of the lengths of sides of triangles. Using the notation of Figure 1,

 $\tau \leq \sigma \leq \rho$ is equivalent to $AC \leq BC \leq AB$,

 $x + \tau \ge \max\{\sigma, \rho - x\}$ is equivalent to $AC \ge \max\{AB/2, CD\}$,

 $\pi - \rho \geqslant \rho - x$ is equivalent to $CD \geqslant BC/2$.

Thus, knowing the lengths of AC, BC, AB and CD one can immediately decide whether

or not $\triangle ABC \in (\rho, \sigma, \tau)$ satisfies the conditions of Theorem 1. Note that these inequalities and [4, Lemma 5.2(i)] give $1/4 \le r \le \sqrt{3}/2$.

Given a triangle such as $\triangle CFD$ with $CD \ge CF \ge DF$, to decide whether or not $\triangle CFD$ $\in (x, \rho - x, \pi - \rho)$ for some (ρ, σ, τ) where the various angles satisfy the conditions of Theorem 1, bisect CD at H and CF at J, then check (as above for $\triangle ABC$) whether or not $\triangle HJF \in (\rho, \sigma, \tau)$ satisfies the conditions of Theorem 1 with $HF \ge FJ \ge JH$.

We now give a theorem similar to Theorem 1 which deals with the other two similarity classes mentioned in Lemma 1.

Definition. The smaller sides ratio s of a similarity class (ρ, σ, τ) is obtained by choosing any $\triangle ABC \in (\rho, \sigma, \tau)$ with $AB \ge BC \ge AC$, then setting s = BC/AC.

THEOREM 2. Assume that $\tau \le \sigma \le \rho$, $x + \tau \ge \max\{\sigma, \rho - x\}$, and $\pi - \rho \ge \rho - x$. Then for $n \ge 1$, after n cycles of the bisection method applied to

- (i) $\Delta \in (\rho x, \sigma, x + \tau)$, we have 2^{2n-1} triangles in $(\rho x, \sigma, x + \tau)$ each with diameter $d(\Delta)/2^n$ and 2^{2n-1} triangles in $(x, \tau, \rho + \sigma x)$ each with diameter $sd(\Delta)/2^n$:
- (ii) $\Delta' \in (x, \tau, \rho + \sigma x)$, we have 2^{2n-1} triangles in $(x, \tau, \rho + \sigma x)$ each with diameter $d(\Delta')/2^n$ and 2^{2n-1} triangles in $(\rho x, \sigma, x + \tau)$ each with diameter $d(\Delta')/2^n$ s.

Here s is the smaller sides ratio of (ρ, σ, τ) .

Proof. Analogous to that of Theorem 1.

COROLLARY 2. Suppose $\tau \le \sigma \le \rho$, $x + \tau \ge \max\{\sigma, \rho - x\}$, and $\pi - \rho \ge \rho - x$. Then in the notation of the introduction

- (i) if $\Delta_{01} \in (\rho x, \sigma, x + \tau)$, then $m_j \leq s(\frac{1}{2})^{\lfloor j/2 \rfloor} d(\Delta_{01})$ for $j \geq 1$, with equality for even j;
- (ii) if $\Delta_{01} \in (x, \tau, \rho + \sigma x)$, then $m_j \leq (\frac{1}{2})^{\lfloor j/2 \rfloor} d(\Delta_{01})$ for $j \geq 1$, with equality for even j.

Note that since we are assuming that $AC \ge \max\{AB/2, CD\}$ in Figure 1, we have $1 \le s \le 2$.

Remark. Given a triangle $\triangle RST$ with RS = d(RST), to decide whether or not $\triangle RST \in (\rho - x, \sigma, x + \tau)$ or $(x, \tau, \rho + \sigma - x)$ for some (ρ, σ, τ) where the various angles satisfy the conditions of Theorem 2, bisect RS at W (say). Examine the triangles $\triangle RWT$ and $\triangle WST$. If one of these is in (ρ, σ, τ) , where the angles satisfy the conditions of Theorem 2, then

- (i) $2WT \ge RS \Rightarrow \Delta RST$ is in the corresponding $(\rho x, \sigma, x + \tau)$,
- (ii) $2WT \le RS \Rightarrow \Delta RST$ is in the corresponding $(x, \tau, \rho + \sigma x)$.

Various conditions sufficient for a given triangle ΔXYZ to lie in one of the four sets of similarity classes considered can be obtained by elementary calculations using the cosine rule for triangles. For example, given $\Delta XYZ \in (\alpha, \beta, \gamma)$ with $XY \geqslant YZ \geqslant XZ$ and $\alpha \geqslant \beta \geqslant \gamma$, then

- (i) if $\cos \gamma \le 3/4$, then $\Delta XYZ \in (\rho, \sigma, \tau)$ satisfies the conditions of Theorem 1;
- (ii) if $XY/YZ \ge 2/\sqrt{3}$ and $\cos \gamma \le \sqrt{3}/2$, then $\Delta XYZ \in (\rho, \sigma, \tau)$ and $\Delta XYZ \in (x, \rho x, \pi \rho)$, both satisfying the conditions of Theorem 1;
- (iii) if $3/4 \ge \cos \beta \ge \max\{XZ/XY, XY/4XZ\}$, then $\Delta XYZ \in (x, \tau, \rho + \sigma x)$ satisfies the conditions of Theorem 2.

Department of Mathematics University College Cork, Ireland

- 1. G. DAHLQUIST & A. BJORCK, Numerical Methods, translated by N. Anderson, Prentice-Hall, Englewood Cliffs, N. J., 1974.
- 2. R. B. KEARFOTT, "A proof of convergence and an error bound for the method of bisection in \mathbb{R}^n ," Math. Comp., v. 32, 1978, pp. 1147-1153.
- 3. I. G. ROSENBERG & F. STENGER, "A lower bound on the angles of triangles constructed by bisecting the longest side," *Math. Comp.*, v. 29, 1975, pp. 390-395.
- 4. M. STYNES, "An algorithm for numerical calculation of topological degree," Applicable Anal. (To appear.)
- 5. M. STYNES, "On the construction of sufficient refinements for computation of topological degree," *Numer. Math.* (Submitted.)