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A Three-Dimensional Analogue to the Method of
Bisections for Solving Nonlinear Equations

By Krzysztof Sikorski

Abstract. This paper deals with a three-dimensional analogue to the method of
bisections for solving a nonlinear system of equations F(X) = 0 = (0, 0, O)T,
which does not require the evaluation of derivatives of F.

We divide the original parallelepiped (Figure 2.1) into 8 tetrahedra (Figure 2.2),

and then bisect the tetrahedra to form an infinite sequence of tetrahedra, whose

3

vertices converge to Z € R” such that F(Z) = 6. The process of bisecting a

tetrahedron <> E | E,E3E, with vertices E; is defined as follows. We first locate
the longest edge El-E]-, i#j,set D= (E; + E]-)/2, and then define two new tetrahedra
<> E;DE, Ej and <> DE,-EkE,, wherej # 1, 1 # i i+#k, k+#jand k # L.
We give sufficient conditions for convergence of the algorithm. The results
of our numerical experiments show that the required storage may be
large in some cases.

1. Introduction. It is of interest to find a globally convergent numerical method
for the solution of a nonlinear system of equations

(1.1) F(X)=0, where F: DCR" — R"and 0 =(0, ...,07 €r",

which does not require the evaluation of derivatives of F. In the scalar case n = 1 the
method of bisections satisfies the above requirements. In this paper we deal with a
three-dimensional analogue of the bisection method.

The main properties of the presented method are as follows:

(1) global convergence (i.e. starting polyhedron P can be arbitrary large, see
Section 2);

(2) the method requires only the evaluation of F;

(3) linear convergence of the method with a constant g which is independent of F.

However, we must admit that the required storage may be large in
some cases. Moreover, we will assume, that the topological degree deg(F, Int P, 6) # 0.
Then by Kronecker’s theorem [2] the equation (1.1) has at least one solution in
Int P. The topological degree deg(¥, Int P, 9) can be evaluated by means of the
algorithm described in [3].

The method is a generalization of the two-dimensional bisection algorithm pro-
posed by Harvey and Stenger; see [1]. We assume that the reader is more or less
familiar with the work of Harvey and Stenger [1], since our ideas and proofs are
similar to those presented in [1].
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2. Method of Bisection of Tetrahedra. Let the points E;, i = 1, 2, 3, 4, where
E; = E;, , be four noncollinear points in R3. A tetrahedron <> E\E,E E,,
where

4 4
<> E\E,ELE, ={X€R3:X= S NELN =0, YN = 1}
i=1 i=1

is bisected into two tetrahedra as follows. Find the longest edge EE;, i #j. Next,
set D = (E; + E;)/2 and define two new tetrahedra <P>E,DE} E; and <> DE,E,E},
wherej # 1 l#i,i#k k#*jand k # L

We now describe a simple test for determining whether or not the point 6 belongs to
<> E\E,ELE,.

If4=(a a,a)7, B= (b, by b3)T and C = (c, ¢, c3)T are three noncollinear
points in the space, then define a linear form

L(4, B, C; X) = (by —a;)c, —ay)(x3— a3) + (b, —ay)(c3 —a3)(x; —a;)
+ (¢ —al)(ba _a3)(x2 —a,) — (bs —a3)(02 ”az)(x1 _al)
- (b, - a,)(c, — al)(x3 —az)—(c3 — az)(b, - al)(x2 —-a,),
where X = (x; x, x3)T.
Let L, po = {XE€R? : L(4, B, C; X) = 0} denote the plane containing the

points A, B and C. The plane L , 5 divides the space into two regions R, and R,
where

R, ={XER> LA, B C;X)=>0}, R,={XER? LA, B C;X)<0}.

Thus, the tetrahedron <> E|E,ELF, is given by
4
<>E\EE3E, = () {XE R®: LE,E;, E'+2;Ei+3)L (Ey Eiyy, Ejas X) 2 0}

1

i=1

The point 6 belongs to <> E E,E4E, if and only if

21 L(Ey By Ervas By 3) LE, By o, By 3 0)>0 fori=1,2,3,4.

It is easy to observe that
22 L4, B, C; X) =—L(X, 4, B, C) = L(C, X, 4; B) = - L(B, C, X; 4),

(23) (4, B, C;0) - L(B, C, X;60) + L(C, X, A;0) — L(X, A, B; 0) = L(4, B, C; X).

These equations simplify the verification whether or not 6 belongs to <> E | E,E;E),.
Finally, let us set Tp, <> E|E,E E, = < F(E|)F(E,)F(E;)F(E,). Note that
all these concepts can be naturally generalized to the case n > 3.
Forming a Starting Parallelepiped. A starting parallelepiped is similar to the
rectanglar parallelepiped shown in Figure 2.1.
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i

We divide this polyhedron into 8 tetrahedra as in Figure 2.2.
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FIGURE 2.2

There are four tetrahedra congruent to the tetrahedron A and four congruent or plane
symmetrical to the tetrahedron B.

(]

—

z 3 :
It is evident that the tetrahedron B can be obtained by bisecting the tetrahedron A.

Let S be a family of tetrahedra with the property that each member of the

family is either similar to a particular member of that family, or else it is plane sym-
metrical to a member of the family.
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We shall see that bisecting of the tetrahedron A yields only four distinct families
S;i=1,2,3,4. From this we can easily compute the minimal angle of the consider-
ed tetrahedra. The bisection of the tetrahedron A yields the following four tetrahedra:

B

| bisection

~iSH

C. —————- D,
bisection
4>1 @2 plane symmetrical {b1 &2 congruent

In the sequel the bisection of D yields two tetrahedra belonging to the family of B;
see Figure 2.3.

FIGURE 2.3

By simple evaluations we have

(2.4) The minimal angle between edges of the tetrahedra A, B, C and D is equal
to v, ~ 35°16',sin vy, = /3/3.

(2.5) The minimal angle between the edges and faces of the tetrahedra A, B,
C and D is equal to y, = 30°.

(2.6) The angles between faces whose intersection is the longest edge in A, B, C
and D are equal to 90°, 45°, 60° and 90°.
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(2.7) The angles between faces in A, B, C and D are equal to 45°, 60°, 90°, or
120°.

(2.8) Bisection Algorithm. In this section we describe an algorithm which is a
generalization of the bisection method to the three-dimensional case.

(1) Divide P into tetrahedra <>, i =1, ..., 8; (see Figure 2.2)
M:=8;
I :=1;
G)sI<M
(No) Go to (7)
(Yes) 0 € T, <)?
(No) I:=1+1;Go to(3)
(Yes) Go to (5)
(4) Bisect <>; into <>, and <>,
;=P
forJ :=Mstep—1until/ + 1 do
Py =Py
Py =Py
M=M+1;
0 € Tp <>y
(Yes) Go to (5)
No) I:=1+1;
0 € Tp <>y
(Yes) Go to (5)
(No) Go to (6)
(5)g; := the length of the longest edge of <>;.
Isg; <e?
(Yes) Print g, the vertices of <[>, and (STOP)
(No) Go to (4).
(6) Let <>, = <> A, 4,E | E,, where A, A, is the longest edge of <>,
(Figure 2.4) and let D = (4, + 4,)/2.

2
e AZ.
E‘l
D
Ay
FIGURE 2.4

Compute the angle o between the planes of 4, 4,F, and 4,4,E,.
N :=2n/a;From Eq. (2.6), 27/a is equal to 4, 6 or 8.
K :=2;
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(6.1) Compute E , ; as the symmetrical point to £ _, with respect to the

plane of 4, 4,F.

Is E ., in P?

(No) Go to (7)

(Yes) <>, := <> A Ey, | DEg

;1= <P DEg 1 4,Ex

for J := M step —1 until I + 1 do
Py =Py
Py =y
Poryr =Py

M =M+ 2,

I:=I+1;

0 € Tp <>

(Yes) Go to (5)

No)I:=1+1;

0 € T <>p?

(Yes) Go to (5)

No)K :=K + 1;

K<m

(Yes) Go to (6.1)

(No) Go to (7)

MNI:=M,
(7.1) Bisect <> into <>, and <>,

oo =Py
oy =Py,

I:=1-1,

I1>=1?

(Yes) Go to (7.1)

(No) M := 2M;

Go to (2)

3. Convergence. In this section we give sufficient conditions for convergence of
the algorithm (2.8).
3.1. Assumptions.
1. F=(f, f,f3)T, F: D CR3 — R3, F € C*(D), where P C D and D is an
open set;
2. j = minycp |det F'(X)| > 0;
3. d = minyg,pIF(X)I, > 0;
4. deg(F, Int P, ) # 0;
5. h <hg =min(1, h,, h,, hy,/d/(3r), d/(2p)), where h is the longest edge of
all tetrahedra in P, where
h, = 1/(rH,H3),

hy = 1/r{[(E +2p)* + 2j/M sin v,]'/* - (E + 2p)},
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hy = 1r{[(4/H, + EH)* + 2 sin v, sin v,(E + H, + r2)]'/?

— (4JH, + EH )} 1/(E + H, +r]2),
and where
2, 2 2 vz
E=maxe, e¢=max |3 it1x, Thivae)) » 1=1,2,3
i P \k=1
where f;, 3 = f};
3

p = Tax IF' Xz, where IF'(X)llg =< 3 (fi,xj(X))2> 1/2;

i,j=1

M =max |[F(X)l,; J=max |det F'(X)|;
XEP Xep

Hy=max IF'X)l,; H, = max [|IF'(X)"l,;
Xepr XepP

3 1/2 3 a2f >2>1/2
2 1
r= z q , where ¢, = max| )
<I=l l> ! P <i,j=l ( ax,-axj

anC v, and v, are the smallest positive angles defined by sin v, =+/3/3 and sin Y, =
14 (see (2.4) and (2.5)).

6. Let 0 < e <h;, where € appears in step (5) of the algorithm.

Note that all numbers E, p, M, J, H,, H, and r are finite since the considered
functions are continuous and P is compact.

THEOREM 3.2. Suppose that all assumptions 3.1 except the fifth hold. Then the
algorithm finds the points A, i=1,2,3, 4 such that l4; — ZIl, < 2, where Z is a
solution of F(Z) = 6.

Proof. We shall split the proof of this theorem into statements and proofs of a
series of lemmas.

For given positive 8, g and r consider a spindle-shaped region

Sg={XER? X =(x; x, x3)7 : 0<x, <fand

100 x5 x3)7ll, < 1/(B\/1 = (€*r/(28))*) %6 & rx (B — x,)}.

It is well defined whenever
@3.1) g2r/(26) < 1.

Suppose that 7 is as in the assumptions 3.1, 8 = ||F(4) — F(B)li, and g = |l4 — Bll,,
where A, B € P. We want to show that g < h implies that g%r < B and, of course,
(3.1) holds.

Indeed, the inequality g < & 1 is equivalent to |l4 — BII2H1H§ < 1/r. Since
14 = BllH, > IF(4) - FB)|l, and H,l|F(4) = F(B)ll, > Il4 — Bll,, then g?r < §
and (3.1) holds.

Let L, be the linear transformation which transforms the vector (8, 0, O)T onto
the vector F(B) — F(A). Let L,(X) = X + F(A) be a translation. We now define the
region S, 5 by: Sy 5 = {YER?*: Y =L,(L,X) for X € Sg}. The sets Sg and S,
are ilustrated in Figure 3.1.
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*;}

FiGURE 3.1
We can now formulate the first lemma.
LemMmA 3.3. If A, BE Pand g <h,, then the curve
Z = {Z() ER® Z(t) = F(tB + (1 — A) for t € [0, 1]}

liesin S, p.
Proof. Let A = (a, a, a;)7, B = (b, b, b3)" and X(¢) = tB + (1 — DA for
t € [0, 1]. We know that

, b, —a

d? afz>
— (X)) =0, —a,, b, —a,, by —a b, —a
7 X)) = @, =y, by~ a3, by 3)<ax,-ax,; eiaa | P2
by —ay

By Schwarz’s inequality we get

3 3%f, \2\1/2 s
<|IB-A4l3 max< > FE™ ) ) =g%q,
P \ij=1 i

Define Y(f) = tF(B) + (1 — H)F(A) for ¢t € [0, 1]. Then by the use of Lagrange
interpolation we get

d2
ey F(X(2))

_ 2 2 2 T
FX(@0) = Y(0) = ’—(’—2—‘l<:7 A emry S OOy, S f3(X(t))I,=,3> ,

where LE [0,1],7=1,2,3. Combining these formulas, we get

(32) IFCX@) - Y(O)ll, < %e(1 = D)gr.

For ¢ € [0, 1], let W(¢) denote an envelope of the family of balls with centers

Y(¥) and radii %#(1 — )g?r; see Figure 3.2. Then (3.2) states that the curve F(X(?))
lies in a bounded and closed set W whose boundary is W(#). One can simply verify
that W C S, g, which completes the proof of Lemma 3.3. O
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X Ar W(t) an envelope of the family of balls

>
x'

FIGURE 3.2

LemMA 34. Let <> A,A,E E, be a tetrahedron lying in P, with the edges of
length < min(h, h,) and the face angles > v,. Then the intersection of the
regions S 4 1Ay S4 \Ey and Sy 1B, has exactly one point F(A).

Proof. Let [, denote the length of the longest edge of <> A4 ,4,E F,. Note
that [, < h, implies that the spindle-shaped regions S, Ay S4 Eq and S4 (B, are
well defined.

We first wish to get a lower bound on the modulus of the sine of the angle
¢ between F(4,) — F(A,) and F(E,) — F(A,); see Figure 3.3.

" E - A F(E,)
E1 )
Y 4 1
K h % .
%, %
FIGURE 3.3

For this purpose set

E;-A, =L5: 5, =1, j=0,1,2, where E; = 4,
and |IF(E;) — F(4,)ll, = 8;. By Taylor’s formula we get
(3.3) F(E) - F(4,) = LF'(A))5, + ¢, where ¢ , | < %i%q,
for k = 1, 2, 3. Finally,
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Isin ol = {[(£,(4,) — [,(A DF(E,) — f3(4,))
— (f3(4,) — [A G E) — LA )]
+ [(F5(4,) — FA D E)) — F1A4,))
— (f,(4,) — FADE) — A )]
+ [(f,(4,) = FA G E,) — ,(4)
— ((Ady) — AT, E)) = [ANIP Y - 1(808,)-

By Schwarz’s inequality and (3.3) we get

4 a 43
Isingl > 1/(/3808)) {|loly det| fo o fo, Fry, | TMtE
‘f3,x1 f3,x2 f3,X3

fl,xl fl,x2 fl,x3
(34) |lh det] a ) az [+m t &
f3,xl f3,x2 f3,x3

fl,xl fl,x2 fl
ol det] fon fax, faxg|tmstEs ||,

X3

a, a, as

where the all derivatives are evaluated at A, and

Ex = €okr1 €1k+2 " Coks2  Erxr2  K=1,2.3

3 3
M =lo [el,k+2 12:1 (fk+l,xls0,l) € kt1 O (fk+2,x,so,1)]
= i=1

3 3
+ [eo,k+1 lzl(fk+2,xlsl,l)—eo,k+2 IZ (fk+1,x,s1,z)] ’
= =1

where €; ;3 = ej,k,]'= 0,1,and
a; =S0251,3 " 50,351,220 % =%0,351,1 ~0,151,3° 43 = S0,151,2 7 S0,251,1>
3.5) g 1< Wloh @hrr + dir2):
Iy | < Yol (g + ll)(q?cﬂ + q?c+2)%ek’
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where q; 4 3 =q,.
From Cramer’s formula, (3.5) and the equationsin Q = (a> + a2 + a3)* we
finally get

1,1 1
Isin o] > 1/(\/55051)[1011,'/M sin v, — ~5= (o +1,)rE - Elollrz].
The angle ¢ belongs to (0, ), so

g0y > lsin Q.

tan(¢/2) = 1+cosp = 2

The region Sq. 4, (rsp. S4 g ) lies entirely in a cone C, A2 (tsp. Cy ) With
vertex at F(A4,) opening in the direction F(4,) — F(4,), (tsp. F(E|) — F(4,)) and
with interior angle 2u, (rsp. 2u, ), where
Ir .
tan u; = = =, J=0,1
28,V/1 = (Ir/(28)
The regions S 4 1A, and S4 By have only one common point F(4,) whenever the
corresponding cones C4 1A, and C4 By have only one common point F(4,), that
is if
(3.6) tan u, < Y%sing,

(3.7 tan u; < %sing.
We will first prove (3.6). Denote X(f) =4, + Ilt;: for t € [0, 1]. Then

6,=

—)T 1 ’
15, fOF(X(t))dt“ L <hp
and similarly 8, </yp. Since 0 <[, <], (3.6) holds whenever

2
Ior

l . . 2 3.2 l
< [loj/Msiny, — IgrE — %iI3r*]
20V — @285 23 e " 7 808,

Note that (3.8) is a quadratic inequality for /;,. This has a solution whenever

(3.8)

(3.9) 0 <Iy <h, = 1r{[(E + 2p)* + 2j/Msiny,]* — (E + 2p)}.

It is easy to show that (3.9) implies (3.7). Thus, if 0 <Iy < min(h,, h,), then
SA1A2 N SAlEl ={{F(A4,)}. By an analogous argument we get SA1A2 N SA1E2 =
{F(4,)} and SAlEl N SA1E2 = {F(A4,)} for 0 <, < min(h,, h,). These equations

imply that
SA1A2 ﬂSAlEl r'\SAlE2 ={F,))}. O

LEMMA 3.5. Let the tetrahedron <> A, A,E | E), lie in P and let it belong to the
family generated by A, B, C, or D; see Section 2. Let I, be the length of its longest
edge, such that 1y <h,, where h, = min(1, h, h,, hy). If 0 € T > A, A,E\E,,
then 0 € Ty <T>;, where <>, is one of the tetrahedra constructed in step (6) of the
algorithm.
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Proof. Let us illustrate the tetrahedra constructed in step (6) (see Figure 3.4). We
shall prove that for I, < h, and for all pairs of the indices m, j where m € {i + 1,
..., i+N2-1},jE{i-1,...,i=N/2+1}i=1,..., N, the points F(E,,)
and F(E j), (E;. 5 = E}) lie on the opposite sides of the plane defined by the points
F(A,), F(A,) and F(E;). For N = 6 we get Figure 3.4.

e,

F(Eg)
FIGURE 34

We first want to get the cosine of the angle between the vectors F(E}) — F(4,) and

Tv’i forj=1,...,N,j+#1i, where ;v: is a normal to the plane defined by the points

F(A,), F(A,) and F(E};). For this purpose set

E-A, =155, =1, i=0,...,N E,=4,,
IF(E) - FAN, =8; ¥, -4, E;—A))=0,
> .
Wy p Ei—A)=w, Bt=1,...,N,

where ;v)l iisa normal to the plane defined by the points 4,, 4, and E;.

—
Iwy, FE)—F(A)) =9, ;and 8y, y =8y, Ly iy =1y Wpa v, = Wrpo Pran,i = oo
Qi:n =0; Taylor’s formula then yields

F(E)-FA,)=LFA,)5+¢ i=0,...,N,

where |¢; .| < %l,-zqk, k=1,2,3.
, ) N
From the formula for the cosine between two vectors, the equation a,-j cs, =
oS Wy ; sinQ,, i, t =1, ..., N, where

$0,25,3 ~ 50,3%,2
—
a; =| 80,351 ~ 50,153

$0,15,2 ~ 50,25%,1

and from the considerations similar to those used in the proof of Lemma 3.4 we get
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COS ¢ ; = — {det F'(A,)1 1], cos w, ;sin Q,
I w; 11,8,
(3.9) +det F'(4,)a,TF'(4,)"" - €,
. Ing - - .
LT HEDF @A) S +@F +ED Y #i
where

3 3
Nk =lo [ei,k+2 2 (fk+1,xlso,l) TCik+1 Y (fk+2,x,so,1)]
=1 =1

3 3
+ [eo,k+1 ) Ghr2,x5i0) ~ €042 IZI (fk+1,x,si,1)] ’
I=1 =

ik =C€ok+1 €tz " €okr2  Gri1r K=1,2,3,
and
€ik+3 = €k Jers =Tk

Schwarz’s inequality yields
|det F'(4,) a7 F'(4,)~1 &, | <TIF'(4,)" 1, % 21,r,

(7 + BYTF'A,)s, | < IF(A)ILCAR R R + %L1 (1, + 1
(3.10) (m; + &) F'(A))s, | <IFADI,CLE21G 1o; + 1,)7E),

7y + E)T e < CARIZR +411,(, + 1,)7E) - W2r.
From (2.4), (2.5), the assumption /; <[, <1, and (3.10) we find
lcos ¢, 4 II?v,-II2
(A1) > 1/8,11,( sin v,sin v, — BCAH,r* + BEF* + Y%r’) = l,(ATHyr + EH,1))
=PR,

where ¢ # i. Furthermore, the inequalities 5; < /;p and a simple transformation yield

(3.12) PR >0 for 0 <[, <hj,.
Next, (3.9) and (3.10) imply that
—>
(3.13) lcos w, ;lwill, ~ L, | <P,
where
L,;=1/8,det F'(A 111, cos w, sin @,

P,; = 1/8,[82 11 JHyr + BLIERH r* + %111, + 1)rEH,

t,1

+ BRI + BI1(1; + 1)E)].
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Moreover, (3.12) implies that for 0 <7, < min(1, 4,)
(3.14) Lyl > Py .

From the construction sign(cos W, ;) = —sign(cos w; ). This equation, (3.13) and
(3.14) give sign(cos Pm,) = —sign(cos ‘pi,i)’ which we wanted to get. From this,
Lemmas 3.3, 3.4 and a geometric interpretation (see Figure 3.4) we get Lemma 3.5. O

The next two lemmas will be proven in the n-dimensional case, where n > 2.

3.15. Assumptions.

1. Let F: D C R® — R" belong to C?>(D), where D is an open set.

2. Let P C D be the n-dimensional polyhedron, and P = U f‘i 15;, where §; are
the n-dimensional simplexes such that Int S; N Int Si =@ i#]

3. minyc,p IFAX)I, =d > 0.

4. deg(F, Int P, ) # 0.

5. g is the length of the longest edge (one-dimensional face) of any simplex .S;
in P.

6. TpS; denotes a simplex with the vertices F(s; ;), where s; ; are the vertices of
a simplex S;.

7. r= (2% ,q})", where

n azfl 2\1/2
q1=m§x<z<m>> s l=l,...,l’l.

ij=1

8. p = maxycplF'(X)llg, where

POl =< 3 (ﬁ,xj(X))2>1/2

i,j=1

We can now formulate

LEMMA 3.6. If the assumptions (3.15) (1=7) are satisfied and g < /d[(rm),
then 0 €T FSio for some simplex S; o NP

Proof. Let us define a linear transformation G; on every simplex S; such that
G(s,-,j) = F(s,., j). The resulting transformation G is defined as G(X) = G(X) if X € S;.
Observe that G is continuous on P.

Let X be any point in P. Then there exists a simplex S; such that X € S;. Let
us find an upper bound on |[F(X) = G(X)ll,. Note that X =¢s; ; + (1 —¢,)t,5;, +
et A=t (-t ) (tnsi,n + (1= 1,)8; p4y) for some £y, 25, ..., 1,
where #; € [0, 1] forj =1, ..., n. Then from the inequality (3.2), which also
holds for n = 2, we obtain

IFC0) - GOll, <g%r/8 + (1 —2,)g%r/8 + - - -+ (1=t )A—1) - (1 = 1,_y)
- g2r/8 < ng*r/8.
If g <~/d[(rn), then
IF = Gllp = sup IF(X) = GOOl, < ng’r/8 < dj8.

Moreover, 0 < miny, pllF(X) — 0ll, = d > 7/8d. These inequalities and Theorem



736 KRZYSZTOF SIKORSKI

6.2.1 of [2] give

deg(F, Int P, 9) = deg(G, Int P, 9).
Since deg(F, Int P, 6) # 0, we get deg(G, Int P, 8) # 0; and by Kronecker’s theorem
(see [2]), there exists a point Z € P such that G(Z) = §. Thatis, Z € S"o for some
S,-0 C P. This implies, however, by the linearity of G on S; o that § € TGS,'0 =
TFS,-O. |
LEmMMA 3.7. Let all of the assumptions (3.15) be satisfied; let S; o C P be a simplex
such that § € TFS,-0 and g <d|(2p). Then

min X-Y|, >¢.
(3.16) XES; ;Yeap I =g

Proof. Every point Z of TpS; o can be uniquely represented in the form

Z= 2]’-'="'llajF(s,~o,,-), where ¢; € [0, 1],j=1,...,n + 1, and E]’-':llaj =1. Let

X, YEPand X(1) = Y + (X - Y), t € [0, 1]. Then

FX)-FAY =x-17 [ ; F'(X(®)dt and [IRX) - FY)l, < IX - Yl,p.

Now let || X — Yl, =k and X € S,-o, Y € 0P be such points that
mjnVESio;WEb pllV — Wi, = IIX — Yll,; these exist because the sets P and S,-0 are

compact. By the triangle inequality,

: n+1 n+1
Iz, =, AX) - E ajF(X) + ajF(sioj)
=1 =1 2
n+1
= IFXOll, - 2:1 o lF(X) = F(si Dl
]=

However, IIX —s; jll, <g forj=1,...,n+1,and IFX)Il, = IFMI, -
I F(X)— F(Y)Il,. From these inequalities we get

n+1
G17) NZly 2 IF)Il, —kp—= 3 apg = IF(N)Il, — (k + gp =d — (k + g)p.

=1
Since Z is an arbitrary point of T #Siy> then (3.17) and the assumption that g <d/(2p)
yields 6 & TS; o Whenever k <g. Hence, (3.16) holds. O

Completion of Proof of Theorem 3.2. a. Let us assume that all assumptions
3.1 are satisfied. We thus arrive at step (3) of the algorithm and by Lemma 3.6
we there find a tetrahedron <P>; such that § € T, <T>;. We thus arrive at step (5)
in which we check whether or not g;, the length of the longest edge of <P>,, is less than

or equal to €. If so, we print out g; and the vertices < i of <>; and go to (STOP).
" If no, we proceed to step (4).

If we construct the tetrahedra around each edge of <P, as in step (6) of the
algorithm, then (2.7) and Lemma 3.5 imply that Tp<]>; C U}le(<l>j), where <P>;
are the constructed tetrahedra. Since § € T, there exists a point Z € <I>]-0,

Jo € {1,2,...,t} such that F(Z) = 0. From Lemma 3.7 each of these tetrahedra
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lies entirely in P. Moreover, from the construction ||Z — <I>,., il <28, <2 k=
1, 2, 3,4. Now suppose that g; > €. Then, in step (4) we bisect <P, and check
which of the new tetrahedra <>, j = 1, 2, satisfies § € Ty, <]>].. If one of the
T <> does contain 8, we return to step (5). If no Ty <> contains §, we proceed
to step (6). By Lemma 3.7 the newly formed tetrahedra in step (6) lie entirely in P.
Moreover, by Lemma 3.5 there exists a <>, such that 6 € T, <>;. We then return
to step (5). In all cases we remain in steps (4), (5), (6). At every bisection the
longest edge of a tetrahedron is halved—so after a finite number of returns to step
(5) the inequality g; < € has to be satisfied.

b. Let us now assume that all of the assumptions 3.1 except 5 hold. In this
case we either achieve convergence in steps (4), (5), (6); or we may pass to step (7)
from step (3), because 6 is not contained in any T, <T>; fori=1,2,...,M, or
from step (6) because the newly constructed tetrahedron is not entirely in P or
0 ¢ Tp <>, for all <>; constructed in step(6). However, each time we arrive
at step (7) the longest edge of each tetrahedron in P is halved, so after a finite number
of steps the assumption 3.1—5 becomes satisfied. [

The Rate of Convergence. If we traverse the route steps (4), (5), (4), (5). ..,
then the error after n evaluations of F is O(2~"/3) as n —> oo, In the worst case, if
we traverse steps (5), (4), (6), (5), (4), (6) . . . then the error after n evaluations of
Fis O(27™/15) as n — o, Numerical tests indicate that a bond O(2~"/3) is rather
practical when 4 is sufficiently small.

4. Numerical Tests of the Algorithm. The algorithm (2.8) has been tested on
the CDC 6000 computer for the following functions:

(x - 0.5'°% - 0.5)
(4.1) F(x, y, z) = | cos((y = 0.5)%) = (x — 1.5) |,
0 +z-10)>

exp(sin(x +y +4z-3))-1.0
4.2) Fx,y,z2)= | cos((y —0.5%) - (x-1.5)?* |,
o +z-1.0)

(x + 1.5% - 16(y + 2)3
(4.3) F(x, y, z) = | cos((y — 0.5)?) — (x — 1.5)* |,
0 +z-1.07?
(x —0.5'°(% - 0.5)z
4.9 F(x,y,z) = | cos((? = 0.5)%) — (x = 1.5 | >

cos(x +y +z-1.5)
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(x - 0.5y - 0.5)
(4.5) Fix,y,2)=| cos((y - 0.5)%) - (x - 1.5)
' (x-05)'° + (¥ - 0.5)(z - 0.5)

In the case (4.1) we get convergence starting from the three parallelepipeds
Py = [-V2/2,v22] x [-1,1] x [-v2/2,v/3/2],
Py =[-V2,V2] x [-2,2] x [-V2,V2],

Py = [- 22, 24/2] x [-4,4] x [- /2, 23]

We solved (1.1) in 144 steps within an error of 107!*. For the functions (4.4) and
(4.5) we obtained solution to 10~2 accuracy only, because there too little storage was
reserved in the computer (we required over 36000 words). That is why we did not
. obtain solution for the functions (4.2) and (4.3). It seems to us that the amount of storage
needed for the algorithm can sometimes be significant.

5. Final Comments. There are a number of interesting problems to study
regarding this algorithm—for instance:

1. Can the algorithm be generalized to the n-dimensional case?

2. For the function (4.1) we obtained root Z such that det F'(Z) = 0. Does the
algorithm always converge in this case?

3. How might this method be combined with one which converges more rapidly
near a root?

4. How can one solve the problem of excessive storage requirements?

We shall study these problems in the future.
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