A Legendre Polynomial Integral

By James L. Blue

Abstract. Let $\{P_n(x)\}$ be the usual Legendre polynomials. The following integral is apparently new.

$$\int_0^1 P_n(2x-1) \log \frac{1}{x} dx = \frac{(-1)^n}{n(n+1)} \quad \text{for } n \ge 1.$$

It has an application in the construction of Gauss quadrature formulas on (0, 1) with weight function $\log (1/x)$.

1. Motivation. For integrals of the type $\int_a^b f(x)w(x) dx$, where w(x) is positive in (a, b), Gaussian quadrature formulas of the type

$$\int_a^b f(x)w(x)\,dx \approx \sum_{k=1}^n h_{kn}f(\xi_{kn})$$

are often useful. The $\{h_{kn}\}$ and $\{\xi_{kn}\}$ are chosen to make the formulas exact when f(x) is a polynomial of degree 2n-1 or less [1]. These formulas are especially useful when w(x) is singular at one or more points in the interval.

The method of modified moments [2], [3], [4] provides a stable method for calculating the $\{h_{kn}, \xi_{kn}\}$ if the set of polynomials orthogonal on (a, b) with weight function w(x) are known. That is, a set of $\{Q_k\}$, such that

$$\int_a^b Q_k(x)Q_m(x)w(x) dx = 0 \quad \text{if } k \neq m$$

is desired. Any such family of orthogonal polynomials obeys a three-term recurrence relation [5],

$$Q_{-1}(x) = 0, \qquad Q_0(x) = 1,$$

$$xQ_k(x) = a_kQ_{k+1}(x) + b_kQ_k(x) + c_kQ_{k-1}(x), \quad k \ge 1,$$

with $a_k \neq 0$.

For some intervals and weight functions, the orthogonal polynomials are known, and there is no problem. For example, if a = -1, b = +1, and w(x) = 1, the usual Legendre polynomials $\{P_k(x)\}$ are an orthogonal set,

$$\int_{-1}^{1} P_{k}(x) P_{m}(x) dx = 0 \quad \text{if } k \neq m.$$

For most intervals and weight functions, the corresponding orthogonal polynomials are not known. If the moments $\int_a^b x^k w(x) dx$ are known, the $\{a_k, b_k, c_k\}$ of the unknown set of orthogonal polynomials can be found [2], but the process is nu-

Received February 24, 1978.

AMS (MOS) subject classifications (1970). Primary 65D30.

merically unstable [3], [4]. More generally, if $\{\overline{Q}_k\}$ is any set of polynomials, not necessarily obeying any orthogonality relation, but obeying a three-term recurrence relation

$$x\overline{Q}_k(x) = \overline{a}_k \overline{Q}_{k+1}(x) + \overline{b}_k \overline{Q}_k(x) + \overline{c}_k \overline{Q}_{k-1}(x),$$

the $\{a_k, b_k, c_k\}$ of the unknown set of orthogonal polynomials can be found [4]. For this, the modified moments $\int_a^b \overline{Q}_k(x)w(x)\,dx$ are needed. The stability of the process depends on the $\{\overline{Q}_k\}$. Some particular examples [3], [4] suggest that, for finite a and b, the process is probably stable if the $\{\overline{Q}_k\}$ are themselves orthogonal polynomials with some weight function $\overline{w}(x)$.

The appropriate orthogonal polynomials for

$$\int_0^1 f(x) \log \frac{1}{x} \, dx$$

are not known analytically. The Altran symbolic algebra package [6] was used to calculate the modified moments for various sets of orthogonal polynomials. The shifted Legendre polynomials [5], $\{P_k^*(x)\}$, with $P_k^*(x) = P_k(2x-1)$, were found to have a particularly simple formula for modified moments, and the algorithm of [4] was found to be stable.

2. A Legendre Polynomial Integral.

THEOREM. Let $P_n^*(x)$ be the nth shifted Legendre polynomial. Define $\nu_n = \int_0^1 P_n^*(x) \log(1/x) dx$. For $n \ge 1$, $\nu_n = (-1)^n/n(n+1)$.

Proof. By induction. Using $P_k^*(x) = P_k(2x - 1)$, from [5] we obtain

$$P_0^*(x) = 1$$
, $P_1^*(x) = 2x - 1$, $P_2^*(x) = 6x^2 - 6x + 1$,
 $(k+1)P_{k+1}^*(x) = (2k+1)(2x-1)P_k^*(x) - kP_{k-1}^*(x)$, $k \ge 2$.

Note that $P_n^*(1) = 1$. The first three modified moments are $\nu_0 = 1$, $\nu_1 = -1/2$ and $\nu_2 = 1/6$. We define $\mu_n = \int_0^1 (2x - 1) P_n^*(x) \log(1/x) dx$.

Assume $\nu_k = (-1)^k/k(k+1)$ for $k \ge 2$. Using the recurrence relation,

(1)
$$\nu_{k+1} = \int_0^1 P_{k+1}^*(x) \log \frac{1}{x} dx = \frac{1}{k+1} [(2n+1)\mu_k - k\nu_{k-1}].$$

Also from [5], the derivative of $P_k^*(x)$ is

$$\frac{d}{dx}P_k^*(x) = \frac{-k}{2x(1-x)}[(2x-1)P_k^*(x) - P_{k-1}^*(x)].$$

Integrate by parts in the definition of μ_k to obtain

$$\mu_k = P_k^*(x) \left[x(1-x) \ln x + \frac{1}{2} x^2 - x \right]_0^1$$

$$+ \frac{k}{4} \int_0^1 \frac{x-2}{1-x} \left[(2x-1) P_k^*(x) - P_{k-1}^*(x) \right] dx.$$

$$- \frac{k}{2} \int_0^1 \left[(2x-1) P_k^*(x) - P_{k-1}^*(x) \right] \log \frac{1}{x} dx$$

Simplifying, and using $P_k^*(1) = 1$,

$$\mu_{k} = -\frac{1}{2} - \frac{k}{2}\mu_{k} + \frac{k}{2}\nu_{k-1} - \frac{1}{2}\int_{0}^{1}x(x-2)\left[\frac{d}{dx}P_{k}^{*}(x)\right]dx.$$

The last integral may be integrated by parts, giving

$$-\frac{1}{2}x(x-2)P_k^*(x)\Big|_0^1+2\int_0^1(x-1)P_k^*(x)\,dx.$$

The integrated term is 1/2, and the integral is zero for k > 1 because of the orthogonality of the $\{P_k^*\}$. Thus,

$$\mu_k = \frac{k}{2}(\nu_{k-1} - \mu_k), \quad \mu_k = \frac{k}{k+2} \nu_{k-1}.$$

Inserting this result in (1),

$$\nu_{k+1} = \frac{k}{k+1} \left[\frac{2k+1}{k+2} - 1 \right] \nu_{k-1} = \frac{k(k-1)}{(k+1)(k+2)} \frac{(-1)^{k-1}}{k(k-1)}$$
$$= \frac{(-1)^{k+1}}{(k+1)(k+2)} . \square$$

Bell Laboratories Murray Hill, New Jersey 07974

- 1. P. J. DAVIS & P. RABINOWITZ, Numerical Integration, Blaisdell, Waltham, Mass., 1967.
- 2. G. H. GOLUB & J. H. WELSCH, "Calculation of Gauss quadrature rules," *Math. Comp.*, v. 23, 1969, pp. 221-230.
- 3. W. GAUTSCHI, "On the construction of Gaussian quadrature rules from modified moments," Math. Comp., v. 24, 1970, pp. 245-260.
- 4. R. A. SACK & A. F. DONOVAN, "An algorithm for Gaussian quadrature given modified moments," *Numer. Math.*, v. 18, 1972, pp. 465-478.
- 5. U. HOCHSTRASSER, "Orthogonal polynomials," in M. Abramowitz and I. A. Stegun (eds.), Handbook of Mathematical Functions, Dover, New York, 1965.
 - 6. W. S. BROWN, Altran User's Manual, 4th ed., Bell Laboratories, Murray Hill, N. J., 1977.