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A Legendre Polynomial Integral

By James L. Blue

Abstract. Let { P”(x)} be the usual Legendre polynomials. The following integral is
apparently new.
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fo n(x 1) ogxdx n(a + 1)

forn > 1.

It has an application in the construction of Gauss quadrature formulas on (0, 1) with
weight function log (1/x).

1. Motivation. For integrals of the type f f F(x)w(x) dx, where w(x) is positive
in (a, b), Gaussian quadrature formulas of the type

[lrem@acs 3 bt
k=1

are often useful. The {A;,} and {&;,} are chosen to make the formulas exact when
f(x) is a polynomial of degree 2n — 1 or less [1]. These formulas are especially useful
when w(x) is singular at one or more points in the interval.

The method of modified moments [2], [3], [4] provides a stable method for cal-
culating the {h,,,, &} if the set of polynomials orthogonal on (e, b) with weight func-
tion w(x) are known. That is, a set of {Q,}, such that

I: Qk(x)Qm(X)W(x) dx =0 ifk#+m

is desired. Any such family of orthogonal polynomials obeys a three-term recurrence
relation [5],

Q—-](x) = 07 Qo(x) = 13

X0 (%) = a0y 1, (x) + by Qs (x) + xQx—1®), k=1,

with g, # 0.
For some intervals and weight functions, the orthogonal polynomials are known,
and there is no problem. For example, if a =—1, b = +1, and w(x) = 1, the usual

Legendre polynomials {P;(x)} are an orthogonal set,
f_‘l P (x)P,,(x)dx =0 if k # m.

For most intervals and weight functions, the corresponding orthogonal polyno-
mials are not known. If the moments fabx"w(x) dx are known, the {a;, by, ¢;} of
the unknown set of orthogonal polynomials can be found [2], but the process is nu-
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merically unstable [3], [4]. More generally, if {Q,} is any set of polynomials, not
necessarily obeying any orthogonality relation, but obeying a three-term recurrence
relation _ _
xak(x) = Ekék-u(x) + kak(x) + ‘—'ka—-l(x)’

the {a;, by, ¢;} of the unknown set of orthogonal polynomials can be found [4]. For
this, the modified moments [° Q,(x)w(x) dx are needed. The stability of the process
depends on the {Q, }. Some particular examples [3], [4] suggest that, for finite  and
b, the process is probably stable if the {ak} are themselves orthogonal polynomials
with some weight function w(x).

The appropriate orthogonal polynomials for

Jo1G) 108 1

are not known analytically. The Altran symbolic algebra package [6] was used to cal-
culate the modified moments for various sets of orthogonal polynomials. The shifted Le-
gendre polynomials [5], {P(x)}, with P(x) = P, (2x — 1), were found to have a particular-
ly simple formula for modified moments, and the algorithm of [4] was found to be stable.

2. A Legendre Polynomial Integral.

THEOREM. Let P,‘,"(X) be the nth shifted Legendre polynomial. Define v, =
Jo PYx) log(1/x)dx. Forn>1,v, = (-1)"/n(n + 1).

Proof. By induction. Using Pg(x) = P,(2x — 1), from [5] we obtain

Pox) =1, Pf@)=2x-1, PXx)=6x2—-6x+]1,
(k+ P, (x) = (2k + 1)(2x — 1)PE(x) — kP, (x), k=>2.

Note that P,’,"(l) = 1. The first three modified moments are vy, = 1, »; = —1/2 and
v, = 1/6. We define u, = [ (2x — 1)PX¥(x) log (1/x) dx.
Assume v, = (= 1)¥/k(k + 1) for k > 2. Using the recurrence relation,

1 1 1
m Vierr = [ PiesG) log 3 dx = T Cn + Dy — vy 1.
Also from [S], the derivative of Pf(x) is
L prer) = o [2x =~ DPEG) ~ PE, ()]
dx ¥ 2x(1 — x) k k-1
Integrate by parts in the definition of u, to obtain

1
My =P,’:(x)[x(l -x)Inx + %xz —x]
0

k r1x—-2
+4 ol —x

[(2x - DPE) - Py, ()] dx.

=5 Jo 1ex = DPIG) - P2, 0] tog 1-ax

Simplifying, and using P(1) = 1,
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1 % k 1 1 d
Be ==7% T3k + V-1~ Efo x(x = 2)[d—;P;:(x)] .

The last integral may be integrated by parts, giving

- %x(x = DPi(x)

Y42 L (x - 1)P*(x) dx

o f 0 k ’

The integrated term is 1/2, and the integral is zero for k¥ > 1 because of the orthogo-
nality of the {P;}. Thus,

k __k
M = E(Vk—-l _Ilk), My = k+2 Vg—1-

Inserting this result in (1),

__k J2k+1 _ k(-1 (=¥
V"“—k+l[k+2 l]"k—l“(k+1)'(k+2)k(k—1)

-1 k+1

.0
*k+ 1DE+2)
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