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On the Preceding Paper
“A Legendre Polynomial Integral”
by James L. Blue
By Walter Gautschi

Abstract. The modified moments of the distribution do(x) = x* In(1/x)dx on [0, 1],
with respect to the shifted Legendre polynomials, are explicitly evaluated.

The result in the theorem of Section 2 of [1] can be generalized as follows: Let
v, (@) =f0‘ x*n(1x)PFx)dx, a>-1, n=0,1,2,...,

where Py(x) = P,(2x — 1) is the shifted Legendre polynomial of degree n. Then

) M__ll , a=m<n,m 20 an integer,
(n+m+1)
1) (@)=

1) 1, (1 1 noatl-k _
atlfatl + kz=:1(a+l +k a+l—k)$kgl at1+k otherwise.
The result in [1] is the case @ = 0 of (1). For the proof, we note that
Vn(a) = —2"(a+l)f:1(l + t)a In (%(1 + t))Pn(t)df

)]
=2+ iy { j_‘l(l + % In(1 + P, (£)dt —1n 2 - f_‘l a1+ t)"‘P,,(t)dt},

v—n
where P,(¢) is the Legendre function of degree v. It is well known [2, p. 316, Eq.
(15)] that
1 2a+ll-\2(a + l)
+ O = s > - l.
©) JLa+orR@ar Na+v+2)fa+1-v °

Differentiating (3) with respect to « gives

f_‘l (1 + 0% In(1 + )P, dt

) 29T (0 + 1)

T Ta+v+ 2@+ 1-1)

{In2+2y@+1)-yY@+v+2)-yYa+1-v)}

with Y(x) = I'(x)/T'(x) the logarithmic derivative of the gamma function. The assertion
(1) now follows by inserting (3) and (4) in (2) and by using the recurrence relations
I'(x + 1) = xI'(x), ¥(x + 1) = Y(x) + 1/x, together with the fact that for any integer
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Y(-r+e)

— (-1 — 0.
rCr+ o 1)t ase

The method of proof also allows the evaluation of integrals of the form

b 1@ = | 0‘ x[In (1/x)] *P* (x) dx,

by repeatedly differentiating (4) with respect to a.
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