On the Preceding Paper "A Legendre Polynomial Integral" by James L. Blue

By Walter Gautschi

Abstract. The modified moments of the distribution $d\sigma(x) = x^{\alpha} \ln(1/x) dx$ on [0, 1], with respect to the shifted Legendre polynomials, are explicitly evaluated.

The result in the theorem of Section 2 of [1] can be generalized as follows: Let

$$\nu_n(\alpha) = \int_0^1 x^\alpha \ln(1/x) P_n^*(x) dx, \quad \alpha > -1, \quad n = 0, 1, 2, \dots,$$

where $P_n^*(x) = P_n(2x - 1)$ is the shifted Legendre polynomial of degree n. Then

$$(1) \ \nu_{n}(\alpha) = \begin{cases} (-1)^{n-m} & \frac{m!^{2}(n-m-1)!}{(n+m+1)!}, & \alpha = m < n, m \ge 0 \text{ an integer,} \\ \frac{1}{\alpha+1} \left\{ \frac{1}{\alpha+1} + \sum_{k=1}^{n} \left(\frac{1}{\alpha+1+k} - \frac{1}{\alpha+1-k} \right) \right\} \prod_{k=1}^{n} \frac{\alpha+1-k}{\alpha+1+k}, \text{ otherwise.} \end{cases}$$

The result in [1] is the case $\alpha = 0$ of (1). For the proof, we note that

$$\nu_{n}(\alpha) = -2^{-(\alpha+1)} \int_{-1}^{1} (1+t)^{\alpha} \ln(\frac{1}{2}(1+t)) P_{n}(t) dt$$

$$= -2^{-(\alpha+1)} \lim_{\nu \to n} \left\{ \int_{-1}^{1} (1+t)^{\alpha} \ln(1+t) P_{\nu}(t) dt - \ln 2 \cdot \int_{-1}^{1} (1+t)^{\alpha} P_{\nu}(t) dt \right\},$$

where $P_{\nu}(t)$ is the Legendre function of degree ν . It is well known [2, p. 316, Eq. (15)] that

(3)
$$\int_{-1}^{1} (1+t)^{\alpha} P_{\nu}(t) dt = \frac{2^{\alpha+1} \Gamma^{2}(\alpha+1)}{\Gamma(\alpha+\nu+2)\Gamma(\alpha+1-\nu)}, \quad \alpha > -1.$$

Differentiating (3) with respect to α gives

$$\int_{-1}^{1} (1+t)^{\alpha} \ln(1+t) P_{\nu}(t) dt$$

$$= \frac{2^{\alpha+1} \Gamma^{2}(\alpha+1)}{\Gamma(\alpha+\nu+2)\Gamma(\alpha+1-\nu)} \{ \ln 2 + 2\psi(\alpha+1) - \psi(\alpha+\nu+2) - \psi(\alpha+1-\nu) \},$$

with $\psi(x) = \Gamma'(x)/\Gamma(x)$ the logarithmic derivative of the gamma function. The assertion (1) now follows by inserting (3) and (4) in (2) and by using the recurrence relations $\Gamma(x+1) = x\Gamma(x)$, $\psi(x+1) = \psi(x) + 1/x$, together with the fact that for any integer

Received May 31, 1978.

AMS (MOS) subject classifications (1970). Primary 33A65.

 $r \ge 0$,

$$\frac{\psi(-r+\epsilon)}{\Gamma(-r+\epsilon)} \longrightarrow (-1)^{r-1}r! \quad \text{as } \epsilon \longrightarrow 0.$$

The method of proof also allows the evaluation of integrals of the form

$$\nu_{n, k}(\alpha) = \int_0^1 x^{\alpha} [\ln (1/x)]^k P_n^*(x) dx,$$

by repeatedly differentiating (4) with respect to α .

Department of Computer Sciences Purdue University West Lafayette, Indiana 47907

- 1. J. L. BLUE, "A Legendre polynomial integral," Math. Comp., v. 33, 1979, pp. 739-741.
- 2. A. ERDÉLYI (Ed.), Tables of Integral Transforms, Vol. II, McGraw-Hill, New York, 1954.