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Monte Carlo Functional Expansion Calculation
of Free Molecular Flows*

By A. G. Petschek**, R. E. Williamson, W. J. Krauser and P. C. White

Abstract. A Monte Carlo technique for Knudsen flow, light transmission in tubes,
the flow of cold neutrons, phonon transmission, heat transfer calculations and other
problems involving free streaming in cylindrical enclosures is described. The coeffi-
cients of a functional expansion of the view factors are estimated by Monte Carlo,
are then perturbed in a least squares minimum sense to satisfy some consistency
conditions, and finally are used to calculate the collision density on the boundary
and the transmission of the enclosure. Without importance sampling or other vari-
ance reduction techniques, the calculational work required for a given accuracy is
reduced by a factor frequently near 10 when compared to a simple calculation in
which particles are followed from entrance to exit.

1. Introduction. We have developed a novel Monte Carlo (MC) technique suit-
able for application to Knudsen flow, heat transfer, and allied problems. In this tech-
nique the coefficients of a polynomial expansion of the collision density are estimated
by a stochastic process. Compared to the technique introduced by Davis [1] our code
gives comparable accuracy with a considerable saving in computer time. A preliminary
report on this method has appeared earlier [2].

Monte Carlo techniques have long been applied to streaming in pipes. For exam-
ple, Davis [1] and Garelis and Wainwright [3] have applied it to free molecular flow,
Fleck [4] to photon flow in a superradiant laser rod, Blechschmidt [S] to light trans-
mission in a cylindrical tube and Berceanu [6] to the flow of cold neutrons. The cal-
culation of view factors in heat transfer problems [7] is also amenable to MC estima-
tion and the heat flow resulting can be determined as we shall describe.

In Davis’ technique, particles are started at the source end of the tube (which
may have various bends and obstructions in it) and pursued by MC until they emerge
at one end or the other. The transmission of the tube is estimated from the number
of particles emerging from the far end. This procedure appeared to us to have the dis-
advantage that, unless sophisticated weighting techniques are used, the far end of the
tube is not well explored and large statistical errors result. As an alternative, one
might imagine cutting the tube into zones and estimating by MC the view factors, i.e.,
the probability that a molecule emitted by one zone will impact on another. These
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view factors can then be used in a deterministic calculation of the transfer problem.
This method suffers from the disadvantage that many zones must be taken to give a
good representation of the collision density. The large number of zones means parti-
cles cross many boundaries and adds to the labor of the MC estimates.

Polynomial expansions have been used with MC estimates of integrals [8] and
have been suggested for use in shielding [9] and electron transport [10] calculations.
We extend these notions to make a MC estimate of a double polynomial expansion of
view factors in both the point of origin and the point of impact.

The following sections describe the basic MC loop, the method by which the re-
sulting coefficients are made consistent with reciprocity and conservation requirements,
and the use of these stochastically determined coefficients in a calculation of collision
densities and transmission. It can be seen that this calculation leads to a small bias
which we estimate. To reduce this bias, we propose the use of a method akin to
Richardson extrapolation. Finally, we show our results and compare our calculational
labor to that in the Davis technique.

The geometries to which we apply the technique have cylindrical symmetry
throughout, but we do not believe this limitation is inherent in the method. As we
show later, for cylindrical symmetry, most of the improvement in accuracy is obtained
when the second polynomial (i.e. linear) term is included. Hence, in many geometries
without cylindrical symmetry we would expect to require only three or four harmonics
to obtain comparably good results. Functions that might be used for pipes with slight
bends, for example, are products of Legendre polynomials along the axis and trigono-
metric functions in angle. For ducts of rectangular cross section we would treat each
plane as a surface and use products of Legendre polynomials or trigonometric func-
tions.

2. Monte Carlo. In a cylindrically symmetric tube of variable cross section one
coordinate suffices to describe a position on the tube surface. We have divided the
walls of the tube into several zones or subsurfaces. Since no ambiguity should arise,
we denote both the kth subsurface and its surface area by S,. On each such subsur-
face, we define a coordinate a;. Ordinarily, we choose a; to be the cumulative area
along S from one end to the point considered, with values ¢; = 0 and g, = S, at
the two ends of the subsurface. The collision density 6, on each subsurface is ex-
panded in a set of orthogonal polynomials as follows

6] 0i(a) = 2 0%pi(ay).
r
Ordinarily, we choose jpj by
2a
©) pr(ay) =V2r +1 PZ(f - 1> ,
%

where Py is the rth ordinary Legendre polynomial, and the index k refers to the sub-
surface. In principle, of course, the sets of polynomials P;, may be different for dif-
ferent k, as may the definitions of the a,.

The differential view factor v, (a, 4;), which represents the probability density
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that a particle leaving da; on S, will impact da; on S}, is expanded in a double poly-
nomial series

2 2
_ 2r + D(2s + 1 It “r
@ Yl a) = X MG [T T P\s 7Y

k

The values of M;j are to be estimated by Monte Carlo. Inversion of Eq. (3) gives

2a 2a

Gr T (& T 1) K !
4 MrS= r_____1PY< —1>7 (a’a)’
@ M=/ 5,5, fsk day, fsldatpk<sk ) I\s, kil 4

To evaluate this integral we start from each subsurface N, particles with weight uni-
formly distributed in a;, headed in directions determined by the cosine distribution
(diffuse reflection). Once the point of first collision of the ith particle is determined
to be, say a}ci) on S, the quantity

2 22
P;-K—l Pf—sl——l

is added to tallies proportional to M,?,' for all orders » and s less than some cutoff (typ-
ically set at 5). Since P° and P! are at hand, and recursive calculation of higher or-
der polynomials is rapid, the tallying adds little to the total running time. The squares
of the contributions are tallied as well. When /N, particles have been run, we have
estimates of the finite area view factors (as given by Eq. (4)) and the associated vari-
ances for one particular / and all , 7, and s.

3. Adjustment of Coefficients. Consider a lossless system with a vacuum inte-
rior. In equilibrium the system must satisfy the requirement of detailed balance; i.e.,
equal numbers of particles must be exchanged between any infinitesimal pair of wall
regions. Conservation requires that each particle emitted by a wall region must even-
tually strike either the same wall region or some other wall region.

By definition, detailed balance gives us

(5) Y@y @)dayda; = vyla, a,)dada,

and conservation gives us

©) > f day Y@y a) = 1.
k JSg

Substitution of (5) into (4) gives, by inspection,

Q) Mg = My,

which is the condition for detailed balance. From (4) we have

Os =10y daiﬂﬂ—lpsﬁ—l (a, @)
My = SS; J;'k akJ:S'z PR\ Sk '\s; Vel G0

Using P? = 1, Eq. (6), and
k
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2a
[ vEFT 1Pf<s—l - 1) da, = 5,45,

gives
S Mo =
®) > 35 M = %os
k 1

The Monte Carlo generated view factors M3, in general, satisfy neither (7) nor, unless
s = 0, (8). Thus, the direct use of the ﬁ,:’, in an equilibrium flow calculation results
in a nonuniform collision density and nonconservation of particles. Furthermore, we
find the accuracy of the transmission estimate in a flow calculation to be poor when
the ]fl,’j are used directly. In one case we found the standard deviation of the result
to be four times the standard deviation of a calculation using adjusted coefficients
(the adjustment procedure is described shortly), and there are biases of about 8 stand-
ard deviations and opposite sign at the two ends of the pipe leading to the loss of
1.017 + 0.002 particles for each particle entering. Therefore, we find it highly desir-
able to adjust the ﬂ,?} (in a least squares sense, for instance) so that the modified val-
ues M5 do satisfy (7) and (8).
Thus, we might seek to minimize
0'= 3 -y,
k,Lr,s
subject to the constraints (7) and (8). However, the Monte Carlo estimates ]fl,’ci gener-
ally have a considerable variation in precision, so in minimizing Q’, we do not make
use of all the available information. To put the adjusted moments M5 on an equal
basis, we choose instead to minimize

(Mg = M3)°

k,r,s o

0=

where &) is the Monte Carlo estimate of the variance of M3,
If we have NV subsurfaces and P + 1 moments, the constraint equations reduce to

ME-M7=0, k=1,...,N;I=1,...,k
and,ifl=k:r=1,...,P;s=0,...,r—1
(Lagrange multiplier = — X}*)
but,if I<k:r=0,...,P;5=0,...,P
(Lagrange multiplier = — Y7),
-and

S
% S—lkM’(:;—as():O, l=1,"”N;s=0"'.’P
(Lagrange multiplier = — V%),

Using the method of Lagrange multipliers, we seek the minimum of
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— M S
oz M- Mg 2k s _p
© A
where
ys, 1<k,

X5, 1=k s<r,
Ui =X 0, I=k s=r,

=Xy, Il=ks>r

-y, 1>k
Solve (9) for M}j:
(10) Mg = OpfUgy + V8,0 VSk;SI) +Ml?;

Note that we are done when we have solved for Uy and V. Substitute (10) into (7)
O + V38,oVERIS) + M5 = G (Ul + Vid oo VS[ISy) + Mg

But Uy = —Ujy, so we get

1 9 P A r Sl A~ rs S Sk
1) U = ———— (17 - 315 + oy V\/:—w 5 V/:.
11 Uy o + o ( e~ My isoVk /5, kOr0'1 /g

Now we are done when we have solved for V. Substitute (10) into (8):
Sk ¢ N
(12) X /s [@R(URS + Vi VLIS + I = 8.

Substituting (11) into (12) gives N - (P + 1) linear equations /=1, ...,Nands=
0,...,P)in N- (P + 1) unknowns (¥}), and machine solution is straightforward.
The use of variances correlated with the estimates of M leads to a bias because
the weight assigned to a particular M on a run on which that M happens to be small
is larger than the weight assigned in a run in which it happens to be large. In the sim-
ple case of two equal surfaces only weakly coupled to each other, one can see that
the result of using variances from the same run to estimate M,?,o gives the geometric
rather than the arithmetic mean of the number of hits. With good statistics (large N)
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this bias becomes small. We have not found the bias significant, but it appears wiser
to take M and & for different MC runs and average later. We have been unable to find
a suitable unbiased set of weights not derived from a MC run.

Occasionally, furthermore, no particles happen to have gone from one zone to
another, and this leads to an infinite weight for the associated M’s. We have generally
modified this large weight one way or another, but this seems not to have a significant
effect on the results.

It is often the case that the Monte Carlo particles are started with uniform prob-
ability in @, and unit weight. Under these conditions, the coefficients M,?,O are propor-
tional to the fraction of particles emitted by S, which subsequently strike S, on first
collision. Thus, these coefficients are multinomially distributed which would allow us
to use the method of maximum likelihood rather than the method of least squares in
the adjustment procedure. One could, therefore, improve the coefficient adjustment
scheme by using a hybrid procedure whereby the 112,?,0 are treated in a manner that
utilizes the known form of the distribution function, and the IVI;‘; (r, s > 0) are treated
by the least squares method described earlier. The adjustment equations have been de-
rived and do admit a solution. As before, of course, the adjusted coefficients would
be biased.

4. The Flow Problem. We assume that the surfaces S; completely define the
boundaries of the enclosure of interest and fall into two classes, for one of which
(called source and sink surfaces) the total particle emission rate 6,(a,) is known while
the fluxes ¢, (a;) are not, whereas for the other class of surfaces, 6 is to be calculated
while the fluxes either vanish for a lossless system, or are proportional to the emission
rate 6 for a partly reflecting surface.

The balance equations

(13) o) = 0,(a) — 2 f dayy; (@, a)0(a))
178

allow the calculation of all unknown ¢, ’s and 6, ’s. Doing an expansion as in Eq. (1)
gives

N P 5,
(4 G=0i-% ¥ /5 Ml

=1 s=0

This is a set of N(P + 1) equations in as many unknowns, some unknowns being 0’s
and others ¢’s. The solution of these equations is straightforward.

5. Biases. At the end of the third section we discussed bias due to correlation
between MC estimates of a quantity and of its variance. This bias can be avoided us-
ing independent MC estimates of the quantity and the variance, for example by break-
ing a run into two subruns and using the quantities (#s) estimated in one with the
variances (w’s) of the other.

Another source of bias arises because the solution of a set of simultaneous equa-
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tions with stochastic coefficients is biased away from the solution of the equations
with the expected value of the coefficients. To see this, suppose A = A4, + 4, isa
nonsingular matrix whose expected value (entry by entry) is A, but which has a sto-
chastic part A, with zero expectation value. Similarly, let v = v, + v, be a vector
whose expectation value is v, term by term and let 4 be an unknown vector. We
wish to compare the expectation value of the solution of

@15) Au=v

with the solution u, to

16) Agtg = v,.

We have

a”n ug = Ag'v,,

and

(18) Ag Ay + A u=A5" vy +vy)

Subtracting gives

(19) u=—uy +Ag'4,u = A5,

or since the expectation of v; and A4, are zero

(20) (u—ugy =—Ag (A (U — up).

Inserting (19) gives, to lowest nonzero order,

(1) (= ug) = —Ag" (¢4, 45" v, — (A, 457 Adug )

A bias from this cause will appear both due to the least squares adjustment of
the Ms and from the solution of the flow equations for the 6’s and ¢’s. The error,
being quadratic in the stochastic quantities, should be proportional to N L

We find the bias to be undetectably small in ordinary running. To verify its ex-
istence we did a long series of runs for a hollow cylinder, with diffusely reflecting
walls, of length to radius ratio L/R = 5, using four zones altogether: two on the cyl-
inder wall and one for each end. The exact transmission probability for this cylinder
(see next section and compare also Berman [11]) is 0.310525. Table I gives the re-
sults. They are consistent with a bias in the transmission of —1.1Ny ! or 0.3% at N,
= 103. This is insignificant. Furthermore, we believe most of the small error can be
eliminated by extrapolation to N, = o= using correlated runs. To do this, we would
use the same random numbers to generate sets of runs with two values of ANO. Then,
assuming the error proportional to Ny ! we could extrapolate to Ny =0

We expect a third source of bias to occur because of truncation of the polyno-
mial series. It should arise in those situations where the higher order polynomials are
important. However, in our experience, the contributions due to higher order polyno-
mials are generally small, and we have seen no evidence for this bias, even in runs with
large numbers of particles.
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TABLE I
L/R = 5 CYLINDER TRANSMISSION VS.
NUMBER OF PARTICLES STARTED PER ZONE

_I_O_-ii‘—l Ei Transmissionb Std. Dev. of Mean 1()5 X Bias
40 9 0.310569 0.00037 4 + 37
20 11 0.310196 0.00038 -32 + 38
10 11 0.310612 0.0010 + 9 * 100
5.2 11 0.310356 0.0011 -17 + 110

2 1000 0.309888 0.00017 -63 + 17
1 1000 0.309713 0.00025 -81 + 25

3number of independent runs with this No
bexact result: 0.310525 ...

6. Results. We have run several geometries, including some run by Davis. For
some of these an exact (nonstochastic) answer can be obtained by the numerical solu-
tion of an integral equation. In almost all cases, we have repeated each run with sev-
eral random number chains, so that we have not only the mean answer but its stan-
dard deviation as well. We calculate a figure of merit by comparing the labor required
for a given accuracy by our method to that required in a calculation like Davis’ where
particles are followed from injection until they emerge at either the source or the sink
end. Since the labor is essentially proportional to the number of collisions, it is the
ratio of the number of collisions required that we compare.

In the Davis type run, the variance would be

0% =P1-P)Np
where P is the transmission probability and N, the number of particles started. Most
of our runs have had a unit source at one end, a perfect sink at the other, and have
had, in addition to cylindrical symmetry, reflection symmetry about the mid-plane.
Then the collision density with the wall will be one half the source plus an odd func-
tion of displacement from the symmetry point so that the number of collisions is N,
times the wall area divided by twice the source area. Thus the labor required for a
given accuracy in the Davis calculation can be predicted without running a problem.

Table II gives results for a number of simple cylindrical problems. The table
shows that the figure of merit is always greater than 1, and frequently 5—20. Using
only P° is clearly inadequate. Most of the benefit from the expansion is obtained
with P! and succeeding polynomials help only a little. Note that the runs which com-
pare results for different orders of polynomial expansion are not independent in that
the same MC run is used for estimating the coefficients of all orders. Also, it appears
that very coarse zoning leads to poor results.

Table III describes results for three other geometries we have run. Here there is
no exact solution. The figures of merit are again substantial, and again we find that
using constant collision densities is inadequate and that the linear polynomial fit gives
most of the improvement. However, because of the more complex geometry, higher
polynomials now make a statistically significant contribution.
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FIGURE 1

Figure 1 deals with a cylinder whose wall reflects only 10/11 of the incident
particles. The curvature of the collision density is apparent. The P® + P! polynomial
fit now misses substantially. The transmissions are: Exact 0.18681, §°P° + ¢! p!
(i-e., 2 polynomials) 0.18673, 3 or more polynomials 0.18603. While P2 does not
make an important contribution to the transmission, it does improve the calculated
collision density. Figure 2 shows the deviation of our calculation from the exact cal-
culation for various polynomial fits. We have observed that the coefficients of the
higher order polynomials (P 2 3) are not well established by the Monte Carlo calcula-
tions with 4 x 10° total particles, and this lack of definition is evident in Figure 2.

7. Conclusions. We have demonstrated a MC calculation of Knudsen flow in
cylindrically symmetric channels which is significantly more efficient of computer time
than more straightforward calculations. A bias that is theoretically expected turns out
to be very small and is not ordinarily detected. We have also discussed how to remove
the bias. Further possible modifications include using some analytic view factors to-
gether with some estimated by MC or to select view factors from a library previously
calculated. The results presented here have been for free flow in vacuum enclosures.
However, the method has also been applied to cases where the enclosure contains a
conservative scattering medium. In such situations, analytic calculation of the view
factors is not generally possible.
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