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Bernoulli Related Polynomials and Numbers

By Ch. A. Charalambides

Abstract. The polynomials ¢, (x; a, b) of degree n defined by the equations

n-1,p
A pp(x;a, b) =T and  Ayp,(x;a, b) = ¢,_;(x;a, b)
b c(n—1)!
where (x),, 5 = x(x — b)(x — 2b) - - - (x — nb + b) is the generalized factorial and

A, f(x) = f(x + a) — f(x), are the subject of this paper. A representation of these
polynomials as a sum of generalized factorials is given. The coefficients, B(n, s),

s = a/b, of this representation are given explicitly or by a recurrence relation. The
generating functions of ¢, (x; a, b) and B(n, s) are obtained. The limits of

¢p(x;a, b) asa—>1,b—>0o0ra—~0,b—1 and the limits of B(n, s5) as s —

+ o0 or § = O are shown to be the Bernoulli polynomials and numbers of the first
and second kind, respectively, Finally, the generalized factorial moments of a dis-
crete rectangular distribution are obtained in terms of B(n, §) in a form similar to

that giving its usual moments in terms of the Bernoulli numbers.

1. Definitions and General Results. Let A, denote the difference operator de-
fined by A,flx) = flx + a) — flx) and (x),, , the generalized factorial of degree n de-
fined by (x)n'b = x(x — b)(x — 2b) - - - (x —nb + b). Let p,(x; a, b) be a polyno-
mial of degree n satisfying the following equation

(x)n——l ,b — b.__n +1 X

(1.1) A (x;a b) = .
2¥n ) T — n=1/»

From this equation and since

x x
Ab = b ) )
n-=1/)» n—2/b
it follows that
Ap A, pp(x5a, b) = A, ¢,_,(x; a b).

Performing the operation A;l on both members of this equation and noting that the
sperations A, and A, are commutative, we obtain

1.2) Ay 0u(x;a, b) =y, _,(x;a, b).
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Since we are dealing with polynomials only, this solution is univocal (see for example
Jordan [7, p. 102]) and the polynomials ¢, (x; @, b) are completely determined by the
equations (1.1) and (1.2).

The expansion of the polynomial into a Newton series may be written as

(1.3) ¢,(x;a b) = Zn: cmb—""""< x ),
b

m=0 n—m

where the coefficients are independent of the degree of the polynomial. To determine
them we may proceed as follows: From (1.1) we deduce A,¢,(x;a, b) = 1; and
hence, ¢,(x; a, b) = x/a + ¢, so that ¢, = 1/s, s = a/b. For n > 1 we have
A,¢,(0;a, b) = 0. On the other hand, we have from (1.3)

n—1 X
80,00 0)= T cpb "t [“( >] '
b} x=0

m=0 -m

[ < x >] [<x+a> ( x ) a
Aa = bl ] = >’
n—mj/bdx=0 —mjb n—mj/b}x=0 n—mj/b
we get
n—1 a
Z cmb—n'l-m =0
m=0 —mjJb
or

(1.4) e <n ) m> =0, s=ab

m=0

Since

Starting from ¢, = 1/s we may determine by aid of (1.4), step by step, the coeffi-
cients ¢,,, m =1, 2, ... . We note that these coefficients depend only on the ratio
a/b and not explicitly on @ and . From (1.4) we obtain ¢; = —(s — 1)/2s, ¢, =
(s — 1)(s + 1)/12s and so on.

Introducing the numbers B(m, s) = m!c,,, Eq. (1.3) may be written as

1.5 L (n

(1.5) ¢,(x;a, b) = — > < >B(m, 8$)x/b)y—
n! m=0 m

or symbolically as

' 1
Pn(x; 0, b) = E((x/b) +B(, )", (x/b)* = x/b), B™(,s)=B(m, ).

Performing the operation A;l if n > 1 and since A,¢,(0; a, b) = 0 we get the sym-
bolic formula

(1.6) () +B(,5)" —B(n,5)=0
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giving the numbers B(n, s). Starting from B(0, s) = 1/s, we may obtain B(1, s) =
—(s —1)/2s, B(2, s) = (s — 1)(s + 1)/6s and so on.

A second expansion of the polynomial ¢,(x; g, b) into a series of generalized
factorials (x), , may be obtained as follows: Using the expansion (see [4]),

n—1

prp =2 V"1 a¥Cn -1,k 9)X) 4 s=a/b,
k=0

(1.1) may be written as

Ayp,(x; a, b) = l)' -1, &, s)a_k(x)k,a'
Since
_ kt1,
Aa l(x)k,a = a(le) .
we obtain

n—

_ i+ 1,0
- 1)'kZ CoL b e K

©,(x;a, b) =

But ¢,(0; 4, b) = B(n, s)/n! and hence K = B(n, s)/n! so that
k1,4 B(n, s)

(1'7) ‘pn(x; a, b

( —1)' (k+1)ak+1 n!
From (1.7) it follows that
m—1)!
AT 0,(0; a, b) = (_)— Cn—-1,m-1,s)
(n-1)
and
(1.8) ¢,(0; a, b) = ¢,(a; a, b) = B(n, s)/n!.

Using (1.7), we may determine the numbers B(m, s) in terms of the numbers
((n, k, s). From (1.7) and the relation

k+1
ies10= 2 YAk + 1, m, (R, 5, 7= bla=1/s,

m=0
we have
k+1
@, (x;a, b) = .—l)' Z Cn—-1,k, s) Z Ck +1,m, Db ()
B(n,
+ (n, s)

n!
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or

Cn—1,k s)Ck +1,m,r) b—'"(x)m'b

n—1 1 n—1
60 D)= ¥ T k+1

m=0 (n = D! x=m—1

4 B(n, s)

n!

Comparing the last relation with (1.5), we get

n\}-1 n-1 1
B(n—m,s)=n <m> > k+16(n—l,k,s)C(k+1,m,r), rs=1.

k=m—1

Putting m = 1 and writing n + 1 instead of n and since C(k + 1, 1,7) = (r); 4, We
finally obtain
Mr+1

(1.9) B(n, s) = kgo —k—:l-——l C(n, k, s),

which on using (see [3]) the relation
k9=~ 3 o em
n k,§)=— - sm
) T m n

may be written as

n

= L —1\k—m r k =
(1.10) Bn,s)= Y > (-1 <k+1><m>(sm)n, rs=1.

k=0 m=0

2. Generating Functions. Consider first the problem of expanding a polynomial

fx) of degree n into a series of polynomials ¢,(x;a, b),i=0,1,...,n,and let
n
2.1 fx) = Z ki‘f’i(x; a, b).
i=0
Since AT, (x; a, b) = ¢,_,.(x; a, b),

n
AR f(x) = kppo(x;a, b) + 3 kg, (x; 0, B)
i=m+1

n
=Ky bla+ 3 kg ,(x;a,b), m=0,1,2,....
i=m+1

Performing the operation A;l on both members of this equation, we obtain

n
APTf(x) =Ky - xfat Y Ky (60, D) T K

i=m+1

and since ¢,(0; a, b) = ¢,(a; a, b),

(2.2) k,, = [AP7U0)] =g = [AT O] oo = [8,85 711 ()] =0
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When f(x) is not a polynomial then the series (2.1) will be infinite and considera-
tions of convergence must be made. But the coefficients k,, will still be given by (2.2).

Let us now determine the generating function f(z; x) of the polynomials ¢,,(x; a, b).
In this case we must have

km = [AaAZ"_lf(f;x)lzzo =tm’ m = 0’ ly 2’ et

Since AP1(1 + O%/% = 711 + £)*/% and A, (1 + 6)*/° = (1 + )*/°[(1 + 0 - 1],

we get
(1 + py*/°
b = [agap-1 X
AQ+or-1 x=0
Therefore,
= 1 + t)*/®
2.3 ¢, (x;a )" = ——
(23) mZ=:0 " a+-1

Putting x = 0, we obtain the exponential generating function of the numbers B(m, s)

oo m t
2.4 B(m, s) — = ———.
The exponential generating function (2.4) may be expanded in the following way:
1 - Iy [a+-1 |»
t Is =>:()[( ) _s}
1+ -1 1+1 (1+t)‘—1_s n=o s"*1 t
N t
1 = 1"
1, o €D
s = S"+l
1 o m (—1)*
-+ 2 |8
§ m=1 [n=1 Sn"-l i= 1< >]
where k; > 2,i = 1,2,...,n, k, +k, +---+k, =m—n. Therefore, we con-

clude that

m (=1)" n s n
B(m, s)=m! Y I1 >, k;=2,i=1,2,...,n, D ki=m-—n.
e A = ki

=1

\%

3. Limits. Using the relations (see [3])
lim C(n, k, 5)/s* = s(n, k), lim Cn, k, s)/s" = S(n, k),

§—>0 §—>+ oo

- we get from (1.9)

n s(n, k)
3.1 lim sB(n, s) = =nl ,
( ) s—>0 ( kz=:o k+1 " n
n (—1)¢
G-2) lim s*'Br, )= 3 C istn, k)=B,,
§—>+ oo k=0 + 1
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where B, and b,, denote the Bernoulli numbers of the first and second kind, respec-
tively (see Jordan [7, pp. 236, 267]).
Similarly from (1.7) we may obtain

k+l
(3.3) lim ayp, (x;a, b) = Z s(n—1, k) + b, = y,(x)
a—>0 (n =D i=o "
b—1
and
lim ™%y (x;4q, b)_——-——— Z S(n—1,k) ()kH +ﬂ = ¢, (x)
(34) a1 n — 1)| k+1 n! n >
b—>0

where ¢, (x) and ¥, (x) denote the Bernoulli polynomials of the first and second kind,
respectively.

4. The C and the Stirling Polynomials and the Numbers B(n, s). It was shown
in [4] that the C-number ((x, x — n, 5)/s*~" is a polynomial of x of degree 2n

@“.1) O, x — n, 5)/st" = :é D(n, k s — 1)<2nx_ k>

with the coefficients satisfying the recurrence relation
4.2) D(n, k, s)=Qn—k + 1)sD(n, k, s) + [(n —k + 1)s —n]D(n, k-1, 5)

with D(1, 0, s) =s and D(n, k, s) =0ifk >n—1.
Following Nielsen (see Jordan [7, p. 224]), let us call a C-polynomial the ex-
pression
ED"Cx +1,x —n, 5)

(4.3) c,(n=x—-1;5)= ,  x>n,
ST+ 1,4,

which on using (4.1) may be written as

oy N
@a  mx-ho= CF 3 Dol ks Qn-k+2)!

The generating function of c,(x; s) may be obtained as follows: From (4.3)
we have

ED"Om,n—n-—1,5)

sm-—n—-l ’ (m)n +2

c,(n—m;s)=
and puttingn =m —x — 1 we get

Cpexm1 (X = 13 8) = (1)1 - 5XC(m, x, )x — 1)!/m!
or

x!
- am, x, 5) = ()" - xs¥c, . (-x—1;5).

Multiplying by ™ and summing form =x +1,x +2, ..., we get
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[+ —1]* =% = x5 i D, o x = ™.

m=x+1

Dividing by xs***! we obtain

CIFL-Q+0% 1

xsxtx+1 xt

D)™, (-x = 1; 9™,
0

M

Putting —¢ instead of ¢ and x instead of —x — 1, we finally get

> - g 1
(45) 2, mi 9 S DI - - D

From (4.4) and using (4.2) we may obtain for the polynomials c,, (x; s) the
recurrence

4.6) [(s=1D(x +1)+nlc,_;(x;5) = (n—x)c,(x;5) + (x + 2)c,(x +1;5)

with co(x; 5) = (s — 1)s*+1/2.
If we put x = 0 into the generating function (4.5), we have

z"’: 0; )™ st 1

c ;8 =—— """

meo 1-(1-0s ¢t

or
1 hnd c 0;s t
ey mm O L
S om=1 s aQ+o05-1

The second member of this relation is the exponential generating function (2.4) of the
numbers B(m, s); therefore, we have
CD"s

m!

Cm—1(0;5) = B(m, ).

Using the relation limg_,, .. C(n, k, s)/s" = S(n, k), we may obtain from (4.3)

lim c,(x;5)/s"*! = S,(x),
sotoo

where S, (x) is the Stirling polynomial (see Jordan [7, p. 228]).
Similarly, using the relations

im Cn, k, s)/s* = s(n, k), lim Cn, k, —5)/(—=5)* = s(n, k),

50 50

we get from (1.3)

lim c,(n—x—1;s5)=-8,(x).
§=>0
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5. Applications. From (1.1) and (1.5) we obtain

A;lb_”<z> =¢,1(5a b)) +K= ((x/b) + B(, s))"*! + K,
b

1
n+ 1)

and hence,

5 5 *) = —— () + B P~ B + 1, 9]
=0 nly (@m+1)! ’ S

where the a in the symbol of the sum indicates that the summation is taken for equi-
distant values of x with increment a.

Using this formula, we may determine the sum aZzla f(x) of the function f(x)
a=0
which is given by its differences A} f(0)

=2 b’”(x) AZF(0).
n=0 nj/p

Performing on both members of this relation, the operation A;l, we get

AN f(x) = Z @p41(x;a, DYALF(0) + K;

and finally,

(5.2) z 79 = F s ) 4B 97 = B+ 1,91 4470)
n=0
As a special case of (5.1),let a =b = 1. Since B(0,1) =1,B(n, 1) =0if n >
0 we obtain the well-known formula 2%_ o (¥) = (,% -
A useful formula may be obtained from (5.2) if we take fix) = (x)_,, ,. Since
Ap()_ . p = B (M), (X)_py—p, p» We get from (5.2)

z ), (_m)m o [((sz) + B(, s)™*! = B(m + 1, 9)].

In statistical theory the nth factorial moment about an arbitrary origin ¢ may
be defined by the equation (see e.g. Kendall and Stuart [8, p. 63])

(5.3) “'(n;b)(c) = Z (x; = )y, ,PX = x),
i

where (x),, 5, = x(x - b) -+ (x —nb + b) is the generalized factorial of degree n.
They are used almost entirely for discrete distributions or continuous distributions
grouped in intervals of width 5. Formula (5.1) may be used for expressing the fac-
torial moments y(n b) = u(m ;5)(0) about ¢ = 0 of the discrete rectangular distribution
with probability function

(5.9 PX=x)=1/N, x=a, 2a,...,Na.
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From (5.3) and using (5.1), we get
(5.5)

n

Hosn) = yor gy L9 + B OY' ! =B + 1, 9)].

The factorial moments u'(n ;b)(c) may be obtained from (5.5) using the formula
’ L n ’
Hin;p)© = 2 <k (= ik (a;p)-
k=0

The factorial moment generating function G(¢) = Z_, uzn; b)t" /n! of the dis-
tribution (5.4) may be obtained from the frequency generating function

Na ltx 1 tﬂ_ta(N+l)
t) = f— —_———
i E;azv N 1-f

if we replace ¢ by (1 + #/b)!/® (cf. Kendall and Stuart [8, p. 66]). We get

1 1-( + ¢/b)Ns
—_— S . —_— = b.
G(?) ~ (1 + t/b) TSy s = af

The factorial cumulant generating function K(r) = Z,_, x{n; b)t”/n! is then given by

(1 +¢/bYNs -1 _1 (1 +¢/b) -1

K(?) = lo
® s Nst/b o8 st/b

+ slog(1l + ¢/b),

which can be expanded by using (2.3). Writing (2.3) in the form

= s+ 1
§ a-bya, byl = —— ——
,,,Z=:1 o ) A+0-1 1t
and integrating from O to ¢, we get
hd 1+ -1
(5.6) s 2 ¢m@a—b;a b)"/m = log (_—st)s—
m=1

Hence,

b

KO =5 3 (Nop®a - b5 Na, b) - g (@ - b3, b) + (1"}

m=1

and

KEn;b) = (n = 1)!sb™"{Ng,(Na - b; Na, b) - p,(a — b; a, b) + (—1)*"1}
—n

= ST {MWVs=1) + B(.,Ns))* + (s = 1) + B(., s))* + (=1)*"1}.

For a = b =1 it reduces to

b=t N & !
Ky = *ms) =7
m=

n
Zo <m>B(m, MW = Doy +——,

which may be compared with the result obtained by David and Barton [5, p. 54].
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In applied statistics when moments are calculated from a numerically specified
distribution which is grouped, there is present a certain amount of approximations
due to the fact that the frequencies are concentrated at the midpoints of intervals.
The problem of eliminating the errors due to grouping has attracted the attention of
several authors (see Kendall and Stuart [8] and the references therein). Abernethy
[1] and Graig [6] gave a derivation of the corrections in the moments of a discrete
variable. The corrections for the cumulants were expressed by Graig in terms of the
Bernoulli numbers. The corrections for the factorial cumulants can be expressed in
terms of the numbers B(n, s). Let us suppose that V consecutive values of a random
variable (r.v.) are grouped in a frequency of width a. Following Graig, we write x; =
x + €, where x; is the class mark of the ith frequency class, for any true value, x, of
the discrete r.v. included in this frequency and € is a r.v. with probability function

1 a
P(€=€k)=;’ ek=;(k—(N+1)/2)’ k=1’2"-"N'

If G, (#) and G,(¢) are the exponential generating functions of the calculated factorial
moments ﬁ'(n) and the corrected factorial moments u'(n), respectively, then

N 1
Gy () =G, (t) 3 — (1 +0)fF
k=1N

or
1—(1+t)“]

1
Gy (1) = Gx(t)[ﬁ(l + fre(V-D/2N . T

Taking the logarithms of both sides and remembering that the logarithm of the fac-
torial moment generating function is the factorial cumulant generating function, we get

¢! +t)"—1_1 Q+N-1 aWN-1)
° at/N

Using (5.6), we finally obtain for the corrections for the factorial cumulants

K. () =K, [() - [log log(1 + t)].

! -1 1 N_l
Kiny = Kny — (0 — 1)!a|:cpn(a -1;a,1) —1—v¢n(a -N;a, N) + v (—1)"]

a 1 N-1
=Kk, ——{(@-1)+B(.,a))" ——((a—-N)+B(., "+ —CDY .
By =~ [« )+ B(, @) =~ (@@= N) + B, alN)" +——=( )]
Remark. The polynomials ,,(\) defined by Carlitz [2] by their exponential
generating function
() O AR
m=o om! 1+

are closely related (for given s) to the numbers B(m, s). Indeed, comparing (5.7)
with (2.4), we get

(5.8) B(m, 5) = s"1B,,(s71).
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Though our interest is mainly concentrated on statistical applications, it should be
noted that using (5.8) and the results obtained by Carlitz we may infer for the B(m, s)
some interesting arithmetic properties analogous to those of the Bernoulli numbers.
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