The Hankel Power Sum Matrix Inverse and the Bernoulli Continued Fraction

By J. S. Frame

Abstract. The $m \times m$ Hankel power sum matrix $W = VV^T$ (where V is the $m \times n$ Vandermonde matrix) has (i, j)-entry $S_{i+j-2}(n)$, where $S_p(n) = \sum_{k=1}^n k^p$. In solving a statistical problem on curve fitting it was required to determine f(m) so that for n > f(m) all eigenvalues of W^{-1} would be less than 1. It is proved, after calculating W^{-1} by first factoring W into easily invertible factors, that $f(m) = (13m^2 - 5)/8$ suffices. As by-products of the proof, close approximations are given for the Hilbert determinant, and a convergent continued fraction with mth partial denominator $m^{-1} + (m+1)^{-1}$ is found for the divergent Bernoulli number series $\sum B_{2k}(2x)^{2k}$.

1. Introduction. Defined as the product $W = VV^T$ of the $m \times n$ Vandermonde matrix $V = (j^{i-1})$ with its transpose V^T , the $m \times m$ Hankel power sum matrix $W = W_m$ has (i, j)-entry $S_{i+j-2}(n)$, where

(1.1)
$$S_p = S_p(n) = \sum_{k=1}^n k^p = \frac{n^{p+1}}{p+1} + \frac{n^p}{2} + \sum_{k=1}^{\lfloor p/2 \rfloor} \frac{B_{2k}}{2k} \binom{p}{2k-1},$$

and where B_{2k} are the Bernoulli numbers [3], [6]:

(1.2)
$$B_2 = 1/6$$
, $B_4 = -1/30$, $B_6 = 1/42$, $B_8 = -1/30$, $B_{10} = 5/66$, . . .

In solving a statistical problem involving the fitting of polynomial curves of degree m to n > m points, for increasing m and n, it was required [4] to find a function f(m), such that, whenever n > f(m), the eigenvalues μ_k of $M = W^{-1}$ would all be less than 1. We evaluate $w_m = \det W_m$ in Section 2 as

(1.3)
$$w_m = \det W_m = h_m \prod_{i,j=1}^m (n+i-j),$$

where h_m is the determinant of the Hilbert matrix H_m , and we obtain close estimates for h_m . In Section 3 we factor W_m as a product of easily invertible matrices of which only diagonal matrices involve n, and we also explicitly invert W_m and H_m . In Section 4 we estimate the trace of $M = W^{-1}$ and find that the function

$$(1.4) f(m) = (13m^2 - 5)/8$$

suffices for powers of M to converge when n > f(m).

As a by-product of this investigation, we find in Section 5 that the divergent

Received October 26, 1977; revised August 4, 1978.

AMS (MOS) subject classifications (1970). Primary 65F05, 15A09, 30A22.

© 1979 American Mathematical Society 0025-5718/79/0000-0078/\$04.00

asymptotic series B(x) with Bernoulli number coefficients

(1.5)
$$B(x) = \sum_{k=1}^{\infty} B_{2k} (2x)^{2k},$$

related to the Laplace transform of $x \coth x - 1$, has the convergent continued fraction expansion

$$(1.6) B(x) = \frac{x^2}{|1+1/2+|} \frac{x^2}{|1/2+1/3+|} \frac{x^2}{|1/3+1/4+|} \cdots$$

In fact, $B(1/12) = \pi^2 - 9.865$ is given with error $< 2 \times 10^{-12}$ by the sixth convergent of this continued fraction.

2. The Determinants. Since $S_0(n) = n$ and n(n+1)/2 divides $S_k(n)$ for k > 0, it follows directly that $w_m = \det W_m$ has the algebraic factor $n^m(n+1)^{m-1}$. For r < m, $(n-r)^{m-r}$ is also an algebraic factor of w_m , since the matrix $W_m(n)$ has rank r and nullity m-r, when n=r for $r=1,2,\ldots,m-1$. Since the polynomials $S_p(n)$ are generated by the function

(2.1)
$$G(x, n) = (e^{xn} - 1)/(1 - e^{-x}) = \sum_{n=0}^{\infty} S_p(n)x^p/p!,$$

we see from the identity

$$G(x, n) + G(-x, -n - 1) + 1 = 0$$

that

(2.2)
$$S_p(n) + (-1)^p S_p(-n-1) + \delta_{p,0} = 0.$$

Hence, w_m has the algebraic factor $(n+1+r)^{m-1-r}$. We have found m^2 linear functions of n as factors of the polynomial $w_m(n)$ which is of degree m^2 in n. The remaining factor is the determinant of the leading coefficients 1/(i+j-1), namely the determinant h_m of the ill-conditioned Hilbert matrix H_m of order m [5], [7]. This proves Eq. (1.3).

If we take m = n in (1.3), the Vandermonde matrix V in $W = VV^T$ is square. Its determinant v_m is

(2.3)
$$v_m = \det V_m = 1! \ 2! \ 3! \cdots (m-1)! \equiv (m-1)!!.$$

Hence by (1.3) and (2.3)

(2.4)
$$h_m = \det V_m^2 / \prod_{i,j=1}^m (m+i-j) = v_m^4 / v_{2m}.$$

The ratio of successive h_m 's is

(2.5)
$$h_m/h_{m+1} = (2m+1)!(2m)!/(m!)^4 = (2m+1)\binom{2m}{m}^2.$$

The following theorem gives a close approximation for h_m .

Theorem 2.1. The determinant h_m of the Hilbert matrix H_m of order m is

given to 10 significant figures for m > 4 by

(2.6)
$$h_m = 4^{-m(m-1)} (\pi/2)^{m-1} m^{-1/4} \exp R_m,$$

where the remainder function R_m is defined by

(2.7)
$$R_m = \int_0^\infty (e^{-2t} - e^{-2mt}) \tanh^2 (t/2)(4t)^{-1} dt$$

and is approximated to 9 decimals for $m \ge 5$ by

(2.8)
$$R_m = 0.013081539 - 2^{-6}m^{-2} + 2^{-8}m^{-4} - 2^{-8.5}m^{-6} + 2^{-8}m^{-8} - 2^{-7}m^{-10}.$$

Proof. The ratio h_m/h_{m+1} in (2.5) is related to the Wallis approximation π_m for π by

(2.9)
$$\frac{\pi_m}{2} = \frac{2}{1} \frac{2}{3} \frac{4}{3} \frac{4}{5} \cdot \cdot \cdot \frac{2m}{2m-1} \frac{2m}{2m+1} = 2^{4m} h_{m+1} / h_m.$$

If we express $\ln n$ in the form

(2.10)
$$\ln n = \int_1^n \frac{ds}{s} = \int_0^\infty \int_1^n e^{-st} ds dt = \int_0^\infty (e^{-t} - e^{-nt})t^{-1} dt,$$

then $\ln(\pi_m/2)$ and its limit $\ln(\pi/2)$ are expressible as

(2.11)
$$\ln(\pi_m/2) = \int_0^\infty (e^{-t} - 2e^{-2t} + 2e^{-3t} - 2e^{-2mt} + e^{-(2m+1)t})t^{-1} dt$$
$$= \int_0^\infty (e^{-t} - e^{-(2m+1)t})(1 - e^{-t})(1 + e^{-t})^{-1}t^{-1} dt,$$

(2.12)
$$\ln(\pi/2) = \int_0^\infty e^{-t} \tanh(t/2)t^{-1} dt,$$

(2.13)
$$\ln(\pi/\pi_k) = \int_0^\infty e^{-(2k+1)t} \tanh(t/2)t^{-1} dt,$$

(2.14)
$$(\pi/2)^{m-1} \prod_{k=1}^{m-1} (\pi_k/\pi) = 2^{2m(m-1)} h_m/h_1.$$

Summing in (2.13) from k = 1 to m - 1 yields

(2.15)
$$\ln[(\pi/2)^{m-1}2^{-2m(m-1)}/h_m] = \int_0^\infty (e^{-2t} - e^{-2mt})(e^{t/2} + e^{-t/2})^{-2}t^{-1} dt$$
$$= (1/4)\ln(2m/2) - R_m$$

by (2.10), where R_m is defined by (2.7). Equation (2.6) follows from (2.15). To obtain (2.8) we evaluate $R_4 = .012119610988$ from (2.6) setting $h_4 = 1/6048000$ in (2.6). Then we compute $R_{\infty} - R_m$ from (2.7) by replacing $\tanh(t/2)$ by the first five terms of its series, and set m = 4 to get R_{∞} in (2.8). We check the tenth decimal by working from h_5 instead. This gives $\exp R_m$ and h_m accurate to 10 significant figures.

For m = 20 we find $R_{20} = .0130425009$ and

$$(2.16) h_{20} = 4.206178954 \times 10^{-226}.$$

The matrices H_m and $W_m(n)$ are ill conditioned. In fact, $W_3(3)$ has the eigenvalues $\lambda_1 = 113.4132$, $\lambda_2 = 1.564253$, $\lambda_3 = .02254695$ and the conditioning ratio $\lambda_1/\lambda_3 = 5030$. So the usual computer methods for inverting $W_m(n)$ are unreliable [5], [7].

3. Inversion by Factoring. To invert the ill-conditioned $m \times m$ matrix $W = W_m(n)$ with (i, j)-entry $S_{i+j-2}(n)$, we first factor it into easily invertible factors, restricting the variable n to diagonal matrix factors $EP = (\text{diag } e_i p_i)$ and $Q = (\text{diag } q_j)$, where

(3.1)
$$e_i = (-1)^{i-1}, \quad p_i = \binom{n+i-1}{n-m}, \quad q_j = \binom{n-j}{n-m}.$$

We denote by $T = (t_{ii})$ the lower Pascal triangle matrix with

$$(3.2) t_{ij} = {i-1 \choose j-1} = {i-1 \choose i-j} = (-1)^{i+j} {-j \choose i-j}.$$

We note that ETE has entries $\binom{-i}{i-i}$, so

(3.3)
$$(TETE)_{ij} = \sum_{k=j}^{i} {i-1 \choose i-k} {-j \choose k-j} = {i-j-1 \choose i-j} = \delta_{ij}$$

and $T^{-1} = ETE$. Next, we define an $m \times m$ lower triangular row stochastic matrix $A = (a_{ij})$ that converts the integral powers in V into binomial coefficients by the formula

(3.4)
$$(AV)_{ik} = \sum_{r=1}^{i} a_{ir} k^{r-1} = {k+i-2 \choose i-1}, \quad k=1,2,\ldots,n.$$

The a_{ir} are related to Stirling numbers of the first kind, and

(3.5)
$$A = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & \cdots \\ 0 & 1 & 0 & 0 & 0 & \cdots \\ 0 & 1/2! & 1/2! & 0 & 0 & \cdots \\ 0 & 2/3! & 3/3! & 1/3! & 0 & \cdots \\ 0 & 6/4! & 11/4! & 6/4! & 1/4! & \cdots \end{bmatrix} = (a_{ij}).$$

From (3.5) and (3.4) we obtain

$$(3.6) (AV)_{ik} = {i+k-2 \choose i-1} = \sum_{j=1}^{i} {i-1 \choose i-j} {k-1 \choose j-1} = \sum_{j=1}^{k} t_{ij} {k-1 \choose j-1}.$$

To factor W we now write

(3.7)
$$(AV(T^{-1}AV)^{T})_{ij} = \sum_{k=j}^{n} {k+i-2 \choose i-1} {k-1 \choose j-1}$$

$$= {i+j-2 \choose i-1} \sum_{k=j}^{n} {k+i-2 \choose j+i-2}.$$

Summing over k yields

(3.8)
$$(AW(T^{-1}A)^{T})_{ij} = {i+j-2 \choose i-1} {n+i-1 \choose j+i-1}$$

$$= p_{i} {i+j-2 \choose i-1} {m+i-1 \choose j+i-1} / q_{j}.$$

THEOREM 3.1. The inverse matrix $M = W^{-1}$ has the factorization

(3.9)
$$M = W^{-1} = A^T E B E A, \quad B = T^T Q T T^T T P^{-1},$$

where E, P, Q, T, A are defined in (3.1), (3.2) and (3.5).

Proof. Entries of TT^T and TT^TT are

(3.10)
$$(TT^T)_{ik} = \sum_{r=1}^{i} \binom{i-1}{i-r} \binom{k-1}{r-1} = \binom{i+k-2}{i-1},$$

$$(3.11) \quad (TT^TT)_{ij} = \sum_{k=i}^m \binom{i+k-2}{k-1} \binom{k-1}{j-1} = \binom{i+j-2}{i-1} \sum_{k=i}^m \binom{k+i-2}{j+i-2}.$$

Summing over k yields

(3.12)
$$(TT^TT)_{ij} = {i+j-2 \choose i-1} {m+i-1 \choose j+i-1}.$$

Combining (3.8) and (3.12), we have

$$(3.13) AWA^T = PTT^TTQ^{-1}T^T.$$

Since the diagonal sign matrix E commutes with P and Q but transforms T and T^T into their inverses,

(3.14)
$$(AWA^{T})^{-1} = ET^{T}QTT^{T}TP^{-1}E = EBE$$

and (3.9) is proved.

Equation (3.12) provides a simple method for inverting the Hilbert matrix H. Theorem 3.2. The inverse of the $m \times m$ Hilbert matrix $H = (h_{ij})$ with (i, j)-entry $h_{ij} = 1/(i+j-1)$ is given by

(3.15a)
$$(H^{-1})_{ij} = d_i d'_i h_{ij} d_j d'_j,$$

(3.15b)
$$d'_{i} = {\binom{-m-1}{i-1}}, \quad d_{j} = m {\binom{m-1}{j-1}}.$$

820 J. S. FRAME

Proof. Factoring (3.12) yields

$$(3.16) (ETT^TT)_{ij} = (-1)^{i-1} \binom{m+i-1}{i-1} \frac{m}{i+j-1} \binom{m-1}{j-1} = d'_i h_{ij} d_j.$$

Since ETT^TT is involutory, $D'HD = (D'HD)^{-1}$. Also,

(3.17)
$$h_m = \det H_m = \pm 1 / \prod_{i=1}^m d_i d_i'.$$

Although the matrix B in (3.9) is symmetric, its symmetry is not obvious from formula (3.9).

THEOREM 3.3. The symmetric matrix $B = (b_{ij})$ in (3.9) has entries expressible in terms of descending factorials $(x)_r = x(x-1) \cdot \cdot \cdot (x-r+1)$ as follows:

(3.18)
$$b_{ij} = \sum_{r \geqslant i+j-1} \frac{(m+i-1)_r (m+j-1)_r}{(n-m+r)_r r!} {r-1 \choose i-1, j-1},$$

where $\binom{r-1}{i-1}$ is the trinomial coefficient

$$\binom{r-1}{i+j-2} \binom{i+j-2}{i-1}.$$

Proof. To transform B in (3.9) we evaluate

$$(T^{T}QTT^{T})_{is} = \sum_{r=i}^{m} {r-1 \choose i-1} {n-r \choose n-m} {r+s-2 \choose r-1}$$

$$= {i+s-2 \choose i-1} \sum_{r=i}^{m} {r+s-2 \choose i+s-2} {n-r \choose n-m}$$

$$= {i+s-2 \choose i-1} {n+s-1 \choose m-i},$$

$$(RP) = \sum_{r=i}^{m} {i+s-2 \choose n-m} {n+s-1 \choose m-i},$$

$$(BP)_{ij} = \sum_{s=j}^{m} {i+s-2 \choose i-1} {n+s-1 \choose m-i} {s-1 \choose j-1}$$

$$= {i+j-2 \choose i-1} \sum_{s=j}^{m} {i+s-2 \choose s-j} \sum_{r \geqslant i+j-1} {s-j \choose r-i-j+1} {n+j-1 \choose m+j-1-r}$$

$$= \sum_{r \geqslant i+j-1} \sum_{s=j}^{m} {i+s-2 \choose r-1} {r-1 \choose i-1,j-1} {n+j-1 \choose n-m+r}.$$

Summing over s and dividing by p_i , we have

$$(3.21) \quad b_{ij} = \sum_{r \geqslant i+j-1} {m+i-1 \choose r} {r-1 \choose i-1, j-1} {m+j-1 \choose r} / {n-m+r \choose r}.$$

Writing $(x)_r = r!\binom{x}{r}$, Eq. (3.21) becomes (3.18).

To conserve space in displaying the symmetric matrices $M_m(n) = W_m^{-1}(n)$ we show the upper half of M_3 and the lower half of M_4 . (3.22)

$$\frac{M_4}{(n)_4} = \frac{9(n^2+n)+6}{(n)_3} = \frac{-18(2n+1)}{(n)_3} = \frac{30}{(n)_3}$$

$$\frac{-120(n^2+n)-100}{(n)_4} = \frac{1200(n^4+4.5n^3+7n^2+5n+11/6)}{(n+3)_7} = \frac{(24n+12)(8n+1)}{(n+2)_5} = \frac{-180(n+1)}{(n+2)_5}$$

$$\frac{120(2n+1)}{(n)_4} = \frac{-300(n+1)(3n+2)(3n+5)}{(n+3)_7} = \frac{360(2n+1)(9n+13)}{(n+2)_5} = \frac{180}{(n+2)_5}$$

$$\frac{-140}{(n)_4} = \frac{280(6n^2+15n+11)}{(n+3)_7} = \frac{-4200(n+1)}{(n+3)_7} = \frac{2800}{(n+3)_7}$$

4. Estimation of tr M. Since W and M are positive definite for n > m, all eigenvalues μ_k of M will satisfy $\mu_k < 1$ if tr $M \le 1$, m > 1. For A in (3.5) and $e_i = (-1)^{i-1}$, the first and last diagonal entries of $M = M_m$ are b_{11} and $b_{mm}/((m-1)!)^2$. Numerical computation shows that the maximum n for which $\det(W_m(n) - I) = 0$ are given for m = 1, 2, 3, 4 by

$$(4.1) (m, n) = (1, 1), (2, 5.82090), (3, 13.3776), (4, 24.24453).$$

The parabola through the first three points is

$$(4.2) n = g(m) = 1.5679m^2 - .0828m - .4851,$$

and we find g(4) = 24.270 > 24.24453. A slightly higher value than (4.2) will be required for tr $M \le 1$. We first estimate the dominant diagonal entry b_{11} of M.

(4.3)
$$\binom{n}{m}b_{11} = \sum_{r=1}^{m} \binom{m}{r}^{2} \binom{n}{m} / \binom{n-m+r}{r} = \sum_{r=1}^{m} \binom{m}{r} \binom{n}{m-r}$$

$$= \binom{n+m}{m} - \binom{n}{m}.$$

$$1 + b_{11} = \binom{n+m}{m} / \binom{n}{m} = \prod_{r=1}^{m} \frac{2n+1+(2k-1)}{2n+1-(2k-1)},$$

(4.5a)
$$\ln(1+b_{11}) = \sum_{k=1}^{m} \ln \frac{1+(2k-1)/(2n+1)}{1-(2k-1)/(2n+1)} = \sum_{r=1}^{\infty} \frac{\theta(m,r)}{(2r-1)(2n+1)^{2r-1}},$$

where

(4.5b)
$$\theta(m, r) = \sum_{k=1}^{m} 2(2k-1)^{2r-1} < \int_{0}^{2m} x^{2r-1} dx = (2m)^{2r}/2r.$$

We now assume the inequalities n > f(m) in (1.4).

THEOREM 4.1. The matrix $M = W_m^{-1}(n)$ has trace < 1 if

$$(4.6) n > 1.625m^2 - .625 and m \ge 5.$$

822 J. S. FRAME

Proof. If (4.6) is satisfied for m = 5, then $n \ge 40$, and

$$(4.7a) b_{11} \le (45)_5/(40)_5 - 1 = 62639/73112 = .856754.$$

If (4.6) is satisfied for $m \ge 6$, then $(2n + 1)/2m^2 > 1.6215$ and

(4.8)
$$\ln(1+b_{11}) < \frac{2m^2}{2n+1} \sum_{r=1}^{\infty} \left(\frac{2m}{2n+1}\right)^{2r-2} / r(2r-1) < \frac{1}{1.6215} \sum_{r=1}^{\infty} \left(\frac{1}{9.729}\right)^{2r-2} / r(2r-1) < .62777,$$

(4.7b)
$$b_{11} < .8734$$
 for $m \ge 6$, $n > (13m^2 - 5)/8$.

The rest of tr M is given by

(4.9)
$$\operatorname{tr} M - b_{11} = \sum_{k=2}^{m} \sum_{i,j=k}^{m} a_{ik} (-1)^{i} b_{ij} (-1)^{j} a_{jk}.$$

We replace i, j, r by i + 1, j + 1, r + 2 and write

$$(4.10) \ b_{i+1,j+1} = \sum_{k=1}^{m-1} \ y_{ij}^{(r)}, \ y_{ij}^{(r)} = \frac{(m+i)_{r+2}(m+j)_{r+2}}{(n-m+r+2)_{r+2}(r+2)!} \binom{r+1}{i,j} = y_{ji}^{(r)}.$$

Then

(4.11)
$$\operatorname{tr} M - b_{11} = y_{11}^{(1)} \sum_{r=1}^{2m-1} \varphi_{mn}(r), \quad \varphi_{mn}(r) = \sum_{i+j=2}^{r+1} c_{ij} y_{ij}^{(r)} / y_{11}^{(1)},$$

where the entries of the $(m-1) \times (m-1)$ matrix $C = (c_{ii})$ are

(4.12a)
$$c_{ij} = (-1)^{i+j} \sum_{k=1}^{m-1} a_{i+1,k} a_{j+1,k} = c_{ji},$$

The dominant term $y_{1,1}^{(1)}$ satisfies

$$(4.13) y_{11}^{(1)} < \frac{(m+1)_3(m+1)_3/3}{(13m^2/8 - m + 19/8)_3} \le \frac{6_3 6_3/3}{(38)_3} = \frac{200}{2109} < .094832,$$

since the rational function decreases for $5 \le m$. The function $\varphi_{mn}(1)$ is 1, but for r > 1, then $\varphi_{mn}(r)$ in (4.11) are bounded by rational functions which increase for

 $m \ge 5$, and which we replace by their limits as $m \to \infty$.

$$\varphi_{mn}(2) = (y_{11}^{(2)} - y_{12}^{(2)})/y_{11}^{(1)} = 3(m-2)(m-6)/(13m^2 - 8m + 27)$$

$$(4.14a)$$

$$< 3/13 = .23077,$$

$$\varphi_{mn}(3) = (y_{11}^{(3)} - y_{12}^{(3)} + 2y_{13}^{(3)}/3 + y_{22}^{(3)}/2)/y_{11}^{(1)}$$

$$(4.14b)$$

$$< 17(m^2 - 6m + 32)(m - 2)(m - 2.4)/(120)(13m^2/8 - m + 35/8)_2$$

$$< (17/120)(8/13)^2 = .05365.$$

Similar calculations yield

$$(4.14c) \varphi_{mn}(4) < (1/32)(8/13)^3 = .00728.$$

Since the coefficients of $(8/13)^{r-1}$ in $\varphi_{mn}(r)$ decrease as r increases, the remaining sum of $\varphi_{mn}(r)$ is $< 2.6\varphi_{mn}(4)$. Hence, (4.11) implies

$$(4.15) tr M < .8734 + .095(1.23077 + .05365 + 3.6(.00728))$$

$$< .8734 + .095(1.3107) < .998 < 1.$$

This proves Theorem 4.1. We check directly for m = 2, 3, 4 that

(4.16)
$$\operatorname{tr} M_2(6) = 97/105, \quad \operatorname{tr} M_3(14) = .95 + 1/7280,$$
$$\operatorname{tr} M_4(25) = .87755 + .09359 + .0073 + .0000005 < .9719.$$

This proves the parabolic bound $n > f(m) = (13m^2 - 5)/8$ to be sufficient for tr M < 1. Although some bound between this and n > g(m) in (4.2) might also suffice for all n, the tight inequality (4.15) indicates that it would be difficult to prove.

5. The Bernoulli Continued Fraction. The entries $S_{i+j-2}(n)/n$ of the matrix $W_m(n)/n$ have as constant terms the Bernoulli numbers B_{i+j-2} given in (1.2). The limit as $n \to 0$ of the leading principal minor of $W_m(n)/n$ is the determinant b_{m-1}^* of order m-1 expressible as

(5.1)
$$b_{m-1}^* = \det(B_{i+j}) = \lim_{n \to 0} (nb_{11})(n^{-m}w_m(n)).$$

Recalling b_{11} from (4.3), $w_m(n)$ from (1.3), v_m from (2.3) and h_m from (2.4), we have

(5.2)
$$\lim_{n=0} nb_{11} = \binom{m}{m} m / \binom{-1}{m-1} = (-1)^{m-1} m,$$

(5.3)
$$\lim_{n=0} n^{-m} w_m(n) = h_m v_m^2 (-1)^{m(m-1)/2},$$

(5.4)
$$b_{m-1}^* = (-1)^{(m-1)(m-2)/2} m v_m^6 / v_{2m},$$

$$(5.5) b_m^*/b_{m-1}^* = (-1)^{m-1}(m-1)!(m!)^4(m+1)!/(2m)!(2m+1)!.$$

Since $B_{i+j}=0$ for odd i+j, we can rearrange rows and columns of the matrix (B_{i+j}) so the odd numbered ones precede the even numbered ones, and thus factor b_{m-1}^* as the product $d_{m-1}d_{m-2}$ of two determinants, where

$$d_{2k-1} = \begin{vmatrix} B_2 & B_4 & \cdots & B_{2k} \\ B_4 & B_6 & \cdots & B_{2k+2} \\ & & & & \\ B_{2k} & B_{2k+2} & \cdots & B_{4k-2} \end{vmatrix},$$

(5.6)

$$d_{2k} = \begin{bmatrix} B_4 & B_6 & \cdots & B_{2k+2} \\ B_6 & B_8 & \cdots & B_{2k+4} \\ & & & & \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ B_{2k+2} & B_{2k+4} & \cdots & B_{4k} \end{bmatrix},$$

(5.7)
$$d_m/d_{m-2} = b_m^*/b_{m-1}^*,$$

$$-d_{m-3}d_m/d_{m-1}d_{m-2} = (m-1)m^4(m+1)/(2m-1)(2m)^2(2m+1)$$

$$= (1/4)((m-1)m/(2m-1))(m(m+1)/(2m+1)).$$

THEOREM 5.1. The divergent asymptotic alternating series

(5.9)
$$B(x) = \sum_{k=1}^{\infty} B_{2k}(2x)^{2k} = 4x^2/6 - 16x^4/30 + 64x^6/42 \cdots$$

has the convergent continued fraction expansion (1.6).

Proof. By the general theory of continued fractions [2], [9], if a formal power series (5.9) with arbitrary coefficients B_{2k} is expanded into continued fractions of the form

(5.10)
$$\frac{a_1(2x)^2}{|1+|} \frac{a_2(2x)^2}{|1+|} \cdots = \frac{x^2/c_0}{|c_1+|} \frac{x^2}{|c_2+|} \frac{x^2}{|c_3+|} \cdots$$

and if the d_k 's are defined by (5.6), then

$$(5.11) a_m = 1/4c_{m-1}c_m = -d_{m-3}d_m/d_{m-2}d_{m-1}, m \ge 1.$$

For the Bernoulli series Eqs. (5.5) and (5.11) imply

$$(5.12) c_m = (m(m+1)/(2m+1))^{-1} = 1/m + 1/(m+1), m \ge 1,$$

while the condition $1/c_0c_1=4B_1=2/3$ implies $c_0=1$. Since Σc_m is divergent, the continued fraction (1.6) converges, and Theorem 5.1 is proved.

We can apply this continued fraction to approximate π^2 . It would require about a billion terms of the series $\Sigma_1^{\infty}(1/k^2)$ to approximate $\pi^2/6$ to nine decimals. But the Euler-Maclaurin summation formula gives the remainder after 5 terms by the expression

(5.13)
$$\int_{6}^{\infty} x^{-2} dx + 1/2 \cdot 6^{2} + \sum_{k=1}^{\infty} B_{2k} (1/6)^{2k+1}.$$

This alternating series diverges, with minimum remainder of about 10^{-15} after the 19th term. Using the convergent continued fraction instead, we have

(5.14)
$$\pi^{2} = 6(1 + 1/4 + 1/9 + 1/16 + 1/25 + 1/6 + 1/72) + B(1/12)$$
$$= 9.865 + \frac{12^{-2}}{|1 + 1/2|} \frac{12^{-2}}{|1/2| + 1/3|} \frac{12^{-2}}{|1/3| + 1/4|},$$

(5.15)
$$\pi^{2} = 9.865 + \frac{1/12}{|12+6+|} + \frac{1}{|6+4+|} + \frac{1}{|4+3+|} + \frac{1}{|3+2.4+|} + \frac{1}{|2.4+2+|} + \frac{1}{|2+r|},$$

where the sixth convergent with r = 12/7 has an error about 10^{-12} , and the tenth convergent (which changes this r to 1.9976) has an error less than 10^{-15} , giving $\pi^2 = 9.869604401089359$.

The function $s^{-1}B(s^{-1})$ is the Laplace transform of $x \coth x - 1$.

Continued fractions for the Laplace transforms of $\tanh x$, sech x and x csch x can also be obtained by similar methods, but have already been derived by Stieltjes [8] and others, and are listed by Wall [9, p. 369]. The author has not found the continued fraction (1.6) in the literature, nor the determinantal formula (5.4) which evaluates the first principal $m \times m$ minor $b_m^* = |B_{i+j}|, i, j = 1, \ldots$, (omitting B_0 and B_1) of the determinant $|B_{i+j-2}|$ of order m+1 called $\Delta_m(B)$ by Al-Salam and Carlitz [1, p. 93, (3.1)] which in the notation of (2.3) becomes

(5.16)
$$\Delta_m(B) = (-1)^{m(m+1)/2} (m!!)^6 / (2m+1)!!.$$

Comparing (5.16) with (5.4) for order m, we have

(5.17)
$$|B_{i+j}|_m = (-1)^m (m+1) |B_{i+j-2}|_{m+1}.$$

Department of Mathematics Michigan State University East Lansing, Michigan 48824 826 J. S. FRAME

- 1. W. A. AL-SALAM & L. CARLITZ, "Some determinants of Bernoulli, Euler, and related numbers," *Portugal. Math.*, v. 18, 1959, pp. 91-99.
- 2. J. S. FRAME, "The solution of equations by continued fractions," Amer. Math. Monthly, v. 60, 1953, pp. 293-305.
- 3. J. S. FRAME, "Bernoulli numbers modulo 27000," Amer. Math. Monthly, v. 68, 1961, pp. 87-95.
- 4. D. C. GILLILAND & JAMES HANNAN, Detection of Singularities in the Countable General Linear Model, Department of Statistics, Michigan State University, RM-217, DCG-8, JH-10, Aug. 1971.
- 5. E. ISAACSON & H. B. KELLER, Analysis of Numerical Methods, Wiley, New York, 1966, pp. 196, 217-218.
 - 6. N. E. NÖRLUND, Vorlesung über Differenzenrechnung, Springer, Berlin, 1924, p. 18.
- 7. G. M. PHILLIPS & P. J. TAYLOR, Theory and Application of Numerical Analysis, Academic Press, New York, 1973, pp. 91, 246.
- 8. T. J. STIELTJES, "Sur quelques intégrales définies et leur dévéloppement en fractions continues," *Oeuvres Complètes*, vol. 2, P. Noordhoff, Groningen, 1918, pp. 378-391.
- 9. H. S. WALL, Analytic Theory of Continued Fractions, D. Van Nostrand, Princeton, N. J., 1948, pp. 369-376.