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The Hankel Power Sum Matrix Inverse and the
Bernoulli Continued Fraction

By J. S. Frame

Abstract. The m X m Hankel power sum matrix W = VVT (where Vis them X n
Vandermonde matrix) has (i, j)-entry S; +i__2(n), where Sp(n) = Ez=lkp . In solv-

ing a statistical problem on curve fitting it was required to determine f(m) so that

for n > fim) all eigenvalues of W—1 would be less than 1. It is proved, after calcu-
lating W_1 by first factoring W into easily invertible factors, that fim) = (1 ‘:lm2 —-5)/8
suffices. As by-products of the proof, close approximations are given for the
Hilbert determinant, and a convergent continued fraction with mth partial denomi-
nator m™} + (m + 1)_'l is found for the divergent Bernoulli number series

2B, (20K,

1. Introduction. Defined as the product W = V¥V 7T of the m x n Vandermonde
matrix ¥V = (1) with its transpose V7, the m x m Hankel power sum matrix W =
W,, has (i, j)-entry S;,; ,(n), where

n p+1 » [p/2]1 B 14
1.1 _ _ p_ 1 n 22k
AD  s,=5m=3 #=Tg+ 5+ 3 3 <2k_1>,

k=1
and where B, are the Bernoulli numbers [3], [6]:

(12) B, =1/6, B, =-1/30, Bg=1/42, By =-1/30, B,y =5/66,... .

In solving a statistical problem involving the fitting of polynomial eurves of de-
gree m to n > m points, for increasing m and n, it was required [4] to find a function
f(m), such that, whenever n > f(m), the eigenvalues u, of M = W~ would all be less
than 1. We evaluate w,, = det W, in Section 2 as

m
(1.3) Wy = det Wy, =h,, ] (4i=9),
ij=1
where A, is the determinant of the Hilbert matrix H,,, and we obtain close estimates
for h,,. In Section 3 we factor W,, as a product of easily invertible matrices of which
only diagonal matrices involve n, and we also explicitly invert W,, and H,,. In Section
4 we estimate the trace of M = W™! and find that the function

14) f(m) = (13m? - 5)/8

suffices for powers of M to converge when n > f(m).
As a by-product of this investigation, we find in Section 5 that the divergent
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asymptotic series B(x) with Bernoulli number coefficients
(1.5) B(x)= 2. Byp(2x)*,
k=1

related to the Laplace transform of x coth x — 1, has the convergent continued fraction
expansion
2 2

2
_ x | X | x [
(1.6) B = T T 12+13+ 13+1/4+

In fact, B(1/12) = n? - 9.865 is given with error < 2 x 10712 by the sixth conver-
gent of this continued fraction.

2. The Determinants. Since Sy(n) = n and n(n + 1)/2 divides S,(n) for k >0,
it follows directly that w,, = det W,, has the algebraic factor n”(n + 1)1, For r
<m, (n—r)"" is also an algebraic factor of W, since the matrix W,,(n) has rank r

and nullity m —r, whenn =rforr=1,2,...,m—1. Since the polynomials Sp(n)
are generated by the function
@1 Glx, M) = (" =DI(1-e™) = T S,(mx/p!,

p=0

we see from the identity

Gx,n)+G(-x,-n—-1)+1=0
that
(22) Sp) + C1PS,(-n=1) +8, 5 = 0.

Hence, w,,, has the algebraic factor (n + 1 + )™~ 1~". We have found m? linear func-
tions of n as factors of the polynomial w,, () which is of degree m? in n. The re-
maining factor is the determinant of the leading coefficients 1/(i + j — 1), namely the
determinant #,, of the ill-conditioned Hilbert matrix H,, of order m [5], [7]. This
proves Eq. (1.3).

If we take m = n in (1.3), the Vandermonde matrix ¥ in W = VV7 is square.
Its determinant v, is

2.3) U, =detV,, =11 21 3t (m—-1D!'=@m- 1.
Hence by (1.3) and (2.3)

m
2.4 hy =det Vi [ TI (m+i=j=v?f,,.
i,j=1

The ratio of successive 4,,’s is
2
23) h 12m)!/(m)* 2m)
. mlm1 = Cm + DICm)Y(mN)* = 2m + 1) ]

The following theorem gives a close approximation for h,.
THEOREM 2.1. The determinant h,,, of the Hilbert matrix H,, of order m is
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given to 10 significant figures for m > 4 by
(2.6) h,, =4 M= D@yn 1y ~H4exp R,

where the remainder function R,, is defined by
Q.7 Ry = [, (€7 = ™2™ tanh? (t/2)(40) ™" dr

and is approximated to 9 decimals for m = S by
R,, =0.013081539 - 27672 4 28y, 4 . )—8.5,,—6
+27 88 =277y 10,

(2.8)

Proof. The ratio h,,/h,, ., in (2.5) is related to the Wallis approximation m,,
for 7 by

2m 2m

Lt 2
1 2m—-12m+1

2
m 2L
29 ) 3

wls

4
5 = 2 hpy g 1By

If we express In n in the form

210)  nn=" gs—s=j0°° L" e““dsdt=f: (™' —e ") gy,

then In(w,,/2) and its limit In(n/2) are expressible as

In(m,,/2) = J‘:(e_t — 272t 4 273 = eTME 4 m(2mA N1 gy
@.11)

= J‘: (e —e MmN —e Y1+ et ay,

2.12) In(n/2) = j: e~ tanh (¢/2)t ™! dt,

(2.13) In(n/m,) = j: e ~*+ DT anh (1/2)e 7! dt,

(2.14) (n/2ym ! "ﬁl (m/m) = 22™"=Dp_p
k=1

Summing in (2.13) from & = 1 to m — 1 yields

m—1,—2m(m—1) — (7 (=2t _ —2mty, t/2 —t/2y—2,—1
(2.15)111[(11/2) 2 In,,] jo (€72 = e 2 (t2 4 ¢7t2) 2 =1 g;

=(1/4)In(2m/2) - R,
by (2.10), where R,, is defined by (2.7). Equation (2.6) follows from (2.15). To ob-
tain (2.8) we evaluate R, = .012119610988 from (2.6) setting #, = 1/6048000 in
(2.6). Then we compute R, — R,,, from (2.7) by replacing tanh(#/2) by the first five
terms of its series, and set m = 4 to get R, in (2.8). We check the tenth decimal by
working from kg instead. This gives exp R,, and h,, accurate to 10 significant figures.
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For m = 20 we find R,, = .0130425009 and
(2.16) hyo = 4.206178954 x 107226,

The matrices H,, and W,,(n) are ill conditioned. In fact, W;(3) has the eigenvalues
A; = 1134132, \, = 1.564253, A, = 02254695 and the conditioning ratio A/ =
5030. So the usual computer methods for inverting W, (n) are unreliable [5], [7].

3. Inversion by Factoring. To invert the ill-conditioned m x m matrix W =
W, (n) with (i, j)entry S, ; ,(n), we first factor it into easily invertible factors, re-
stricting the variable n to diagonal matrix factors EP = (diag ¢;p;) and Q = (diag 4;)s
where

G.D) e, = (-1)"1, pi=<n+i—l>’ qi=<n_,-)'
n—m n—m

We denote by T = (¢;;) the lower Pascal triangle matrix with

(B2) t

(im0 (im0 _
j_<i-1>—<i-i> b ]<i-i>'

We note that ETE has entries (i:’;.), )

(3.3) (TETE),; = kzi:i <z:}1€) <k:l]> _ <z:]—: 1> =35,

and T~ = ETE. Next, we define an m x m lower triangular row stochastic matrix
A= ("ii) that converts the integral powers in ¥ into binomial coefficients by the for-
mula

J k+i-2
(3.4) (AV)lk = Z airkr—l = < i=1 >, k= 1, 25 SRR
r=1 -

The a;, are related to Stirling numbers of the first kind, and

1 0 0 0 0 .
1 0 0 0
12! 1/2! 0 0

0
(3.5) A=1|o0
0 2/31 33t 13t o
0

= (aij)~

6/4! 1141 641 1/41 - -

From (3.5) and (3.4) we obtain

_ iR\ L fim\(k-1\ K k-1
(36) (AV)ik_< i-1 > _ié:l <l—]><]—l>_]§:l tij<j—l>.

To factor W we now write
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UTT1A)TY, = i <k+i—2> <k— 1)

G.7) ‘

i+j-2\ & ([k+i-2
(T E(T),
i—-1 k= \j+i—-2
Summing over k yields

i +j-2\ [n+i-1
UMT )T, = <l iil ) <;1+;_ 1>

_ fi+j=2 m+i—1>/
P\ o j+i-1 )Y

THEOREM®3.1. The inverse matrix M = W™ has the factorization

(3.8)

39) M=w"'=ATEBEA, B=TTQrTTTP!,

where E, P, Q, T, A are defined in (3.1), (3.2) and (3.5).
Proof. Entries of TTT and TTTT are

& (i1 (k=1\  [i+k=2
(3.10) (Tr )tk'";l <l._r> <r_1> —< i-1 >

mofitk=2\ (k=1\ [i+j=2\ m [k+i-2
(3.11) (TTTT)ii=k>=:I. ( k-1 ><i—1> —< i1 ) Z <i+i-2>'

Summing over k yields

iy -
(.12) TTTT), = (’J:i 1 > (';':i'_ ll>.

Combining (3.8) and (3.12), we have
(3.13) AwAT = pTTTTQ ' TT.

Since the diagonal sign matrix £ commutes with P and Q but transforms 7" and TT in-
to their inverses,

(3.14) AwWAT) ™Y = ETTQTTTTP™'E = EBE

and (3.9) is proved.
Equation (3.12) provides a simple method for inverting the Hilbert matrix H.
THEOREM 32. The inverse of the m x m Hilbert matrix H = (hy;) with @, j)-
entry hy; = 1/G +j—1) is given by

(3.152) H™YY,; = didihydd;,

-m-1 m=—1
(3.15b) d;= , di=m| >
i—-1 j—1
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Proof. Factoring (3.12) yields
. m+i—1 -1
T _ i1 (T _m_ —

3.16)  (ETTTT), = (1) < i >1+]—l<]_1> d}hyd;.
Since ETTT T is involutory, D'HD = (D'HD)™!. Also,

m
(3.17) o = et Hy, =21/ T] did;

i=

Although the matrix B in (3.9) is symmetric, its symmetry is not obvious from
formula (3.9).

THEOREM 3.3. The symmetric matrix B = (b ) in (3.9) has entries expressible
in terms of descending factorials (x), = x(x — 1) - - - (x —r + 1) as follows:

(3.18) b= 3 (m+i‘1)r(m+j—1),< r—1 >

Y siei- (n=m+rn)r! i-1,j-1

where ( ) is the trinomial coefficient

r—1 i+j-2
i+ji-2 i-1 /)

Proof. To transform B in (3.9) we evaluate

. N _ r=N\/n-=r\/r+ts=2
aorn=£ (5)()(750)
i+ts=2\m [r+s=2\/n-r
<i—1 >,§, <i+s—2>< —m)
i+s-— n+s—1
() (as)
m i+s— n+s—1\/s—-1
eny=£ (T20)(0)05)
=i j—1
itji=2\ m [i+s-2 s—j n+j-1
<i—1 )g( s=j >,>,-§"}_1 <r-i—j+1><m+]’—1—r>
m fi+s—=2 r—1 n+j-1
,>,-+Z,-_1 S;,- < r—1 ><i—l,j—l><n—m+r>.

Summing over s and dividing by p;, we have

(3.21) by = Z m+i~l><. r-‘l ><m+j—l>/<1—m+r>'
rei+j-1 r i-1,j~1 ’ .

Writing (x), = r!(7), Eq. (3.21) becomes (3.18).

111

(3.19)

I

(3.20)

I
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To conserve space in displaying the symmetric matrices M,,(n) = W,,'(n) we
show the upper half of M, and the lower half of M,.

(322
M, My
r
16n° + 24n® + S6n + 24 n® +n) +6 -18(2n + 1) 30 -|
(0N (s (OB (n)3
—120(n% + n) — 100 1200(n* + 4.5n + 7n% + 5n + 11/6) (24n +12)8n +1)  —180(n + 1)
(n), (n+ 3)7 (n +2)g (n+ 2)5
12020 + 1) =300(n + 1)(3n_+ 2)(3n +5) 360(2n + D)(9n + 13) 180
(n)y (n +3), (n +2)5 (n+2)s
-140 280(6n> + 151 +11) -4200(1 + 1) 2800
(1), (n+3); (n +3), (n+3),

4. Estimation of tr M. Since W and M are positive definite for n > m, all eigen-
values ;. of M will satisfy u, <1iftrM<1,m > 1. For 4 in (3.5) and ¢; = DY,
the first and last diagonal entries of M = M, are b,, and b,,,,/((m — N2, Numeri-
cal computation shows that the maximum » for which det(W,,(n) — I) = O are given
form=1,2,3,4by

4.1 (m, n) = (1, 1), (2, 5.82090), (3, 13.3776), (4, 24.24453).
The parabola through the first three points is
(4.2) n = g(m) = 1.5679m* — .0828m — 4851,

and we find g(4) = 24.270 > 24.24453. A slightly higher value than (4.2) will be re-
quired for tr M < 1. We first estimate the dominant diagonal entry b,, of M.

n m m\ 2/n n—-—m-+r m m n
<m>b11=r§1 <r> <m>/< r >=r§1 <’><’"">
_ n+m _ n>
=)
n+m n m  2n+1+Q2k-1)
(44) 1+b11=< m >/<m>=kr=11 m+1-@2k-1)’
mo 1+ Q=D+ = o(m, r)

45 = =
(452) (1 +b,,) k; n 7 —Qk-D/Cn+1) =y @r-DEn+ 1)

4.3)

where

m

@sb)  6m =3 2A2%k-1)"1< f 2My2r-l gy = (2m)*’[2r.
k=1 0

We now assume the inequalities n > f(m) in (1 4).
THEOREM 4.1. The matrix M = W, ' (n) has trace <1 if

(4.6) n>1.625m* - 625 and m>5.
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Proof. 1f (4.6) is satisfied for m = 5, then n > 40, and
(4.72) by <(45)./(40)5 — 1 = 62639/73112 = .856754.
If (4.6) is satisfied for m > 6, then (2n + 1)/2m? > 1.6215 and

In(1 +b,,) < 2’ i /r(2r 1)
n -
1) m+1 S \2n+1

4.8)
< 1 i S | 2r-2
— 2r—1) < .62777,
1.6215 /= (9.729 =D
(4.7b) by, <.8734 form=>6,n> (13m? - 5)/8.

The rest of tr M is given by

(4.9) trtM=b,, = Z Z a5 (~1)by(=1)a,

i,j=k

We replace i, j, rby i + 1,j + 1, r + 2 and write

(m+1i),, ,(m+)) r+ 1
4.10) p,, .., = (L0 r+2 r+2 = ("
i+1,j+1 Z yz] 11 (n_m +r+2)r+2(7+2)! yli

Then
— +
@4.11) uM-b,, =y 3 Q) n= b3 Dy
‘ 11 yll Z ‘pmnr’ ‘pmnr) 22 l]yl yll’
r=1 i+j=

where the entries of the (m — 1) x (m — 1) matrix C = (c;;) are

(4.12a) = (-1 )l+’ Z AGy1,k%+1,6 = Cji
[ 720 ~360 240 -180 144 ]
-360 360 -300 255 -222
240 -300 280 -255 233
4.12b)C = —
0 1-180 255 -255 2425 -2285
144 -222 233 2285 220.1
L . . . . . .. J

The dominant term y(l) satisfies

+1
@13) < A D DB 663 200 ey

(13m*/8 —m + 19/8), (38); 2109

since the rational function decreases for 5 < m. The function y,,,(1) is 1, but for r
> 1, then g, (7) in (4.11) are bounded by rational functions which increase for
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m > 5, and which we replace by their limits as m —> oo.
Omn(@) = O = y)y{Y = 3(m — 2)(m — 6)/(13m* ~ 8m + 27)

(4.14a)
< 3/13 = 23077,

omn(3) = 08P =¥ + 2313 + P12y
(4.14b) < 17(m? = 6m + 32)(m — 2)(m — 2.4)/(120)(13m?/8 — m + 35/8),

< (17/120)(8/13)% = .05365.

Similar calculations yield

(4.14¢) Cmn(@) < (1/32)(8/13)3 = .00728.

Since the coefficients of (8/13)""! in ¢,,,(r) decrease as r increases, the remaining
sum of ¢, () is < 2.6y, ,(4). Hence, (4.11) implies

tr M < 8734 + .095(1.23077 + 05365 + 3.6(.00728))
(4.15)

< .8734 + .095(1.3107) < 998 < 1.

This proves Theorem 4.1. We check directly for m = 2, 3, 4 that

tr M, (6) = 97/105, tr M,(14) = 95 + 1/7280,

(4.16) 2( ) / 3( )
tr M,(25) = .87755 + .09359 + .0073 + .0000005 < .9719.

This proves the parabolic bound n > f(m) = (13m? — 5)/8 to be sufficient for tr M
< 1. Although some bound between this and n > g(m) in (4.2) might also suffice for
all n, the tight inequality (4.15) indicates that it would be difficult to prove.

5. The Bernoulli Continued Fraction. The entries S;, ; ,(n)/n of the matrix
W, (n)/n have as constant terms the Bernoulli numbers B; ;_, given in (1.2). The
limit as n ~—> O of the leading principal minor of W, (n)/n is the determinant b}, _,
of order m — 1 expressible as

G.D) b,y = det(Byy)) = r1'1_1310 (nb, N(n""w,,(n)).

Recalling b, , from (4.3), w,,(n) from (1.3), v, from (2.3) and 4, from (2.4), we
have

-1
o () e

(53) lim n™""w,, (n) = hmvfn(_l)m(m—l)/z’

n=0
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G4 bh_y = (DD

(5.5 bE b _ = (=1)""1(m - DI(m)*(m + 1)1/2m)'(2m + 1)!.

Since B;,; = 0 for odd i + j, we can rearrange rows and columns of the matrix
(B;. ;) so the odd numbered ones precede the even numbered ones, and thus factor
i+
b}, _, as the product d,,, _,d,,_, of two determinants, where

B, B, T By
B,  Bg T Bik+2
dyk-1 = ’
By Bakyor By
5.6) + 4Kk—2
B, Bg “t Baga
Bg Bg “tt Bygga
dyy = s
Byk+a Brksa s B4y
6.7 dpldyy—y = b} [bY_;,

~dpy_3dpldy_ 1y = (m = Dm*(m + 1)/(2m — ))2m)*(2m + 1)
(5.8)
= (1/4)((m - D)m/@2m = D)(m(m + 1)/2m + 1)).

THEOREM 5.1. The divergent asymptotic alternating series

.9 B(x) = 2. B,p(2x)** = 4x?/6 — 16x*/30 + 64x°/42 - - -
k=1

has the convergent continued fraction expansion (1.6).

Proof. By the general theory of continued fractions [2], [9], if a formal power
series (5.9) with arbitrary coefficients B, is expanded into continued fractions of the
form
0,2’ ,20)%  xegl x| x|

(5.10) =
| 1+ | 1+ le; + e, + ey +

and if the d;’s are defined by (5.6), then
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(5.11) ay, = 1/4c,, _ic,, = —d,_3d,/d,_rdp_y, m>1.
For the Bemoulli series Egs. (5.5) and (5.11) imply

(5.12) Cp=mm+D/Cm+1)T=1/m+1/(m+1), m>1,

while the condition 1/coc, = 4B, = 2/3 implies ¢, = 1. Since Zc,, is divergent, the
continued fraction (1.6) converges, and Theorem 5.1 is proved.

We can apply this continued fraction to approximate 72. It would require about
a billion terms of the series 7 (1 /k?*) to approximate 72/6 to nine decimals. But the
Euler-Maclaurin summation formula gives the remainder after 5 terms by the expres-
sion

(5.13) [Txac v 1262+ T B, (/6%
k=1

This alternating series diverges, with minimum remainder of about 10713 after the
19th term. Using the convergent continued fraction instead, we have

7 =6(1 +1/4+1/9 +1/16 + 1/25 + 1/6 + 1/72) + B(1/12)

G.14) oges 4 1272 | 1272 | 1272 |
=2 T+12F A2+1B+ QB +1/4+
72 =9.865
(5.15) 112 | 11 1 11| 11

M2+6+ 6+4+ [d+3+ B+24+ Ra+2+ R+r°

where the sixth convergent with » = 12/7 has an error about 107'2, and the tenth
convergent (which changes this 7 to 1.9976) has an error less than 10715 giving 7% =
9.869604401089359.

The function s “*B(s 1) is the Laplace transform of x coth x ~ 1.

Continued fractions for the Laplace transforms of tanh x, sech x and x csch x can
also be obtained by similar methods, but have already been derived by Stieltjes [8] and
others, and are listed by Wall [9, p. 369]. The author has not found the continued frac-
tion (1.6) in the literature, nor the determinantal formula (5.4) which evaluates the first
principal m x m minor by, = |B;;|,i,7 =1, ..., (omitting B, and B;) of the determi-
nant |B;;_,|of order m + 1 called A,,(B) by Al-Salam and Carlitz [1, p. 93, (3.1)] which
in the notation of (2.3) becomes

(5.16) A, (B) = (1) m*+DI2(m1é/(2m + 1)1
Comparing (5.16) with (5.4) for order m, we have
(5.17) Bitjlm =CD"(m+ DBy olpt -
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