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Quadratic Fields With 3-Rank Equal to 4

By F. Diaz y Diaz, Daniel Shanks and H. C. Williams

Abstract. In [2] there is reference to 119 known imaginary quadratic fields that
have 3-rank r > 4. We examine these fields and determine the exact values of r.
Their associated real fields and the distribution of their 3-Sylow subgroups are also
studied. Some of the class groups are recorded since they are of special interest.
These include examples having an infinite class field tower and only one ramified
prime, and others having an infinite tower because of two different components of
their class groups.

1. The Uncertainty Resolved. Following Scholz [1] we designate the 3-rank of
a quadratic field as r if its discriminant d is negative and as s if its discriminant is pos-
itive. In [2] there are listed thirteen d from d = — 653329427 to d = — 9906365947,
inclusive, for which K = Q(\/c?) has r = 4. For the two smallest d here the class group
of K was also given. For 119 additional d it was indicated that K had r > 4 and that
“probably” r = 4 held in all 119 cases. These d lie between d = — 10647173399 and

= — 2908807157867. “Probably” meant that there was evidence that made r = 4
the most probable value, but this evidence was not conclusive.

No Q. (\/Zi.) is known for which r > 4. It is unknown if such a field exists, but
we conjecture that it does. It is, therefore, very desirable to eliminate the uncertainty
above and to determine whether any of these 119 K has r > 5. Let K’ be the asso-
ciated real field of K, that is, K' = Q(/D) where D = —3d if 34d and D = —-d/3 if
3|d. By Scholz’s theorem [1] the 3-ranks of K and K’ satisfy
(1) r=s or r=s+1.

The condition on the right we call the escalatory case. If any of the 119 K hasr > 5,
its K’ has s > 4.

Until very recently, no Q(\/B) with s > 3 was known to exist, but now it is
known [3] that infinitely many such D can be constructed. However, the smallest
known of these, which we discuss briefly in Section 3, has D > 10'93. This is far too
large if we wish to determine the class group, fundamental unit, etc. of Q(\/B) We
would like a smaller example, and if any of the 119 K above has r > 5, its K’ with
s 2 4 would also be very welcome.

To minimize the computation needed to resolve the uncertainty we decided to
proceed as follows:

I. With existing programs on an IBM-370-168, compute the class number /4 for
each K’ from

2 2hR/\/D = L(1)
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by computing its regulator R and estimating its Dirichlet function L(1) with sufficient
accuracy from its Euler product.

II. If
3 81+h,
we must have s = 3 and r = 4. That occurred in 99 of the 119 cases.

III. If 81|~ (20 cases), we compute the class group of K with existing pro-
grams on a pocket calculator HP-67. We found that r = 4 occurred in all 20 cases.

IV. For these 20 K we determine that we are in the escalatory case by using
known criteria of Scholz [1]. That was true, and so each K’ has s = 3.

V. Further, the original 13 fields in [2] also have K’ with s = 3.

So the uncertainty is resolved, and there still is no known example of r > 4. We
comment on that briefly below.

2. The Best Laid Schemes; Quadratic Fields of Interest. The best laid schemes
can be deflected [4] by unforeseen circumstances, and we did not strictly follow the
economical plan with phases I through V indicated above. Some of the D nearly
equal 10'3 and the available programs for computing R and the Euler product in
phase I had to be modified to handle D that are that large. On the other hand, com-
position of quadratic forms of discriminant d can be carried out [5] with numbers
that are usually < |d|'/2; and therefore, these K with 13 decimal d go nicely on a
little HP-67 even though it only computes to 10 decimals. So before phase I could
be completed most of the 119 class groups were computed, and phase III actually
comprised only those of the 20 cases that had not yet been done. Eventually, all
119 + 13 class groups were computed on an HP-67 using the method described in [6].
Although the 132 K have class numbers that range between 5670 and 773550, their
calculation is much accelerated [6, p. 417] by the knowledge that they all have r > 4.

Of the 132 K here, some are of sufficient mathematical significance that they
should be recorded.

(A) Thirteen of the d are prime. We list —d and the class group G of K in
Table 1, where, as usual, n x m x -+ means a product of cyclic groups: C(n) x
C(m) x -

TABLE 1
-d G

4724490703 3 x3x3x795

13116019171 3 x3x3x 1035

23095449499 3 x3x3x 1311
115372694551 3x3x3x7623
148484670259 3 x3x3x2715
226293460843 3 x3 x3 x 2085
235145409907 3x3x3 x 1665
282910884511 3 x3 x3x17037
474077832979 3 x 3 x 3 x 4629
597541961299 3 x3x3x9627
699234050083 3 x 3 x 3 x4275
936658298011 3 x3x3 x 5289
1571310110659 3 x3 x3x 7095
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These 13 K have an infinite class field tower, cf. [7], while having only one
ramified prime. Previously [7], one knew of Q(\/?;—)-) for the prime radicand p =
83309629817 but since p =1 (mod 4), this field has d = —4p and 2 also ramifies.

Each of these 13 fields has —d =4 (mod 9). The meaning of this is not really
clear to us. The method used [2] tends to favor the residue class —d =4 (mod 9).
We do not ascribe any absolute significance to this striking uniformity and presume
that prime d in other residue classes and with r = 4 will be discovered in due course.

(B) Two of the K have a 2-rank = 5 since they have six ramified primes. Both
r =4 and a 2-rank > 5 imply an infinite tower, so these two K have an infinite class
field tower because of two different components of their class groups, cf. [7]. We
record them in Table 2.

TABLE 2
-d G
8:5+7+17 19 - 1034639 2x6x6x6x150
8+23+31-43-131 18131 2x6x6x12x 168

(C) Two pairs of K have isomorphic groups. They may perhaps be of use in
certain investigations so we record them in Table 3.

TABLE 3
-d G
8 - 863248159 3 x3x3x1320
7151 - 8498573 3 x3x3x1320

4 - 173 - 47976209 {3 x 3 x 6 x 564
8 - 14387 - 358297 3x3x6x564

(D) Here is how the 132 3-Sylow subgroups are distributed, cf. [8].

3x3x3x3 80cases, 3 x3x3x8l 5 cases,
3x3x3x9 29cases, 3 x 3 x 3 x 243 2 cases,
3x3x3x%x27 15cases, 3 x3x9x9 1 case.

Since the last subgroup is so rare we should record this field:

-d G
411827827279 3 x3x9 x 1854

Since this G has 3|k, while no generator of its 3-Sylow subgroup has order > 32, it
looked for an exciting 5 minutes as if it were the long-sought example of r = 5.

3. Commentary. With this last point we return to the original question. We were
not surprised that all 119 K had r = 4 since there already was evidence that that was
the case. Further, there is a heuristic argument [8] that the probability of r = 5
greatly decreases if

5 _ 6
3 5 1> -2—7-=5.296><10‘2,

IdI<L5=< T

and all 132 K here satisfy that inequality. There may well be examples of r = 5 be-
low L4 but they are hard to find since |d] is so large. Of the 132 examples of r = 4
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here, only seven satisfy

3 Tg = 6912 % 10°.
We should stress the fact that the 132 K here do not constitute all cases of r = 4
that occur up to |d| < 2.909 x 10'2. Two older examples [7] fall in that range as
do two recent examples by Solderitsch [9]. No doubt there are many more not yet
discovered. But if one seriously wished to search for an r = 5 one would be well ad-
vised to go beyond L.

A case of s = 4 probably occurs for a smaller D, but the method in [2] is particu-

4 _ 6
|d|<L4=<3 1) 27

larly ineffective for its discovery since this method is particularly inclined toward the
escalatory case. The statistics show that: 132 cases out of 132! If one seriously
wished to search for a Q(v/D) with s = 4 and a modest D (say, about 10! or 10'2),
there are probably better methods. The Complementary Series 3 and 6 of [10] always
have r = s, and this could be easily mechanized. Every K' not having 81 | & could be
discarded as in phase II above. In fact, during the computation of its regulator R, the
computation can be terminated as soon as it is apparent that its # < 81. That will
occur frequently.

The new development [3] referred to in Section 1 is also based upon a series of
d that have r =s. Craig [11] has recently shown how to construct infinitely many
QO(\/d) with r > 4. The smallest known of these, which has d ~ —428-10!°°  actually
was the first Q(\/(_I)— with r > 4 ever discovered; see [12], [7]. It is shown in [3] that
this K has r = s, so its K' has s > 4. Here is its D:

D = 1284 0625510361 2492395282 3484951333
3657649481 0472771825 7285040631 6022716187
3462515321 3764715019 5799772957.

We have D = 3-83-239-50503:262151-586057-2824139-6607829x, where the 70
digit number x has not been factored. We know that x is composite and that every
prime factor of x must exceed 2 x 10, but we do not know if x is square-free. If
D = B%§ with 8 square-free, then K' = Q(\/ﬁ_) has s > 4. Note the vagueness; for all
we know it could have s = 6. It remains desirable to have a Q(\/E) with s = 4 and a
much smaller D.
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