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A Marching Technique for Nonseparable Equations*

By Louis W. Ehrlich

Abstract. A multiple-shooting marching technique is described which is applicable to
arbitrary block tridiagonal matrices derived from nonseparable difference equations
which are solved many times. Comparison with other methods on a particular prob-
lem shows the method to be competitive with respect to time and storage.

Introduction. Our interest here is in solving the difference equation which re-
sults from approximating a nonseparable partial differential equation. There are a
variety of techniques available; and if our problem is only to be solved a few times,
most any method will do. However, if the system is to be repeatedly solved many
times (such as the stream function equation in a time dependent Navier-Stokes prob-
lem), our interest then centers on fast, efficient methods consistent with our storage
availability. We present here a multiple shooting marching method which appears to
be competitive in time, consistent with limited storage, with other available methods.
The method is applied to a particular problem and compared with other techniques.

1. The Marching Technique. Consider the linear system

(1.1) Ax = b,
where
D, B - _ . - _ bl_
G : B 0 X2 b,
(12) 4= C¢; Dy B , x= , b= ,
0 By,
L Cu Dy | | XM | D

and where the D; are N x N tridiagonal matrices, the B; and C; are appropriate diag-

onal or tridiagonal matrices, and x and b are vectors partitioned accordingly. (For sim-
plicity we assume C; and B; are N x N.) Assume the matrix is nonsymmetric and the
corresponding difference equation is nonseparable. We propose a marching technique
to solve the above.

The marching technique can be described briefly as follows. Consider the nth
equation block;i.e.,

(1'3) Cnxn—l +ann +ann+l =bn'

Received April 17, 1978.

AMS (MOS) subject classifications (1970). Primary 65N20, 65F05, 15A06.

*This work was supported by the Department of the Navy, Naval Sea Systems Command,

under Contract No. N00024-78-C-5384. .
© 1979 American Mathematical Society
0025-5718/79/0000-0101/$03.50

881



882 LOUIS W. EHRLICH

Assuming we can solve for x,, , ,, we have

14 X, 41 =B, —Cx,_; —D,x,).

Thus, if we guess x, , then we can march along solving for the other x;. The final
equation

(1.5) CyXp—1 T Dyxpr = by

will in general not be satisfied. We, thus, must modify our guess for x, so that the
last equation will be satisfied on a second march through the region. This modifica-
tion is done by inverting an “influence matrix”, in the terminology of Roache [11],
[12]. Bank and Rose [2], [3] consider separable equations and look at the marching
procedure as an LU decomposition of the given matrix. Further, the separability al-
lows the influence matrix to be inverted via polynomial decomposition. Roache [11],
[12], on the other hand, actually produces the influence matrix and uses a direct in-
version scheme. Since we do not have separability, we use the latter. The influence
matrix is actually produced by marching over the region with x,; equal to all zeros
except for a single unknown which is equal to 1. This is repeated for each of the N
unknowns. The errors in x,,, determined from (1.5), for each unknown then become
the appropriate columns of the N x N influence matrix.

Because marching techniques are inherently unstable [2], [11], we propose a
multiple shooting method as used by Bank and Rose [2], [3], i.e., the marching is
limited to blocks of g lines. Thus, we first permute the matrix so that we have

— I —
G, I Y
I
G, 0 : w, U,
G, : w3 U
I
0 | Vk-1
_ I
(16) 4= Gk | wy
____________________ I
I
T T
rml sm1 0 : Dm1 0
I
T T
r s I D
my ma I my
I
0 rT sT ) D
L M1 Me—1 | mk—l_

where the blocks of q lines are to be separated at lines my, = 0, m,, m,, ..., my_,,
m, =M + 1 and where

Dm,-_1+l Bmi—l'H -‘

(1 7) G. - Cmi_1+2 Dmi—l+2 Bmi—l+2
. i 4




A MARCHING TECHNIQUE FOR NONSEPARABLE EQUATIONS 883

_ - —_ -
0 Cmi—l +1
0
. 0

(1.8) v, = o W=
. 0 )
0 :

Pmim1] L o

(19 . -

s},’i=(B,,,i 0---0), i=12,...,k

3N
|

_
o
o
(=
Q
>

Following Bank and Rose [2], we consider an LU decomposition of the above matrix,
ie., A = LU, where

(110) [, 0 | ]
I
I, I
| 0
|
|
Ik|
__________________________ |
L=
T - T - |
rmlGl1 smlel :Im1
I 0
T ~-1 T ~-1
rm2G2 ssz3 : Im2
I
T -1 -1
rmk—le Smk—le I I’”k—_l_
(1.11) G, v, o
G, W, Uy
0
0 Vg —1
Gk Wy
U= 0 Ay A, 0
By Dy, 4,3
Az, Azg Azy
0 ' Ap_2 k-1
L Bg—1,k-2 Ag—1,k—1]
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and where
- T -1, _ T g-1
A1 =Dy ~1y G0 =8 Gy Wy
= T -1
Ajp =8, Gy 0y
Ay =-1r Gylw,
(1.12) 2 "
- T a-1, _ T T
Bii =Dy, =1 Gi 0 = 8 ik 1 Wi
= T g- ok — P
Apprr = S Giiyvper 1% k-1 , i=2,3,..,k-1
= _,T g1
By i1 —_’m,.Gi Wi
Let
Alr o App 0
Ba1 By Ay
(1.13) A= A3 Ags
0 Ag-2,6-1
L Ag—1k—2 D162

To solve Ay = ¢ we use the method described in [5], [7], i.e., we let

Ly I O 0
iy a-fpo| > ° b
0 0 O
| Hy_, Lk—l_ N Ik—l_J
where
Ly=4y,
0, = Li_lA12
(1.15) Hy=A4;;
Li=284-810 o 1=2,0k-1
Qi=Li_lAi’i+l,i=#k—1
Then —
Ay = LUy =,
(1.16) Lt=c,

Uy =t
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ty =L e,
(1.17)

ti=Li—l(c1_Ai,l—lti—l)’ i=2,...,k_1,
(1.18) Ye-1 Tty

Yi=t=0iy, i=k-2,k-3,...,1.

To solve (1.1) we write

(1.19) Ax =LUx =b
and solve
(1.20) Lz=b, Ux=z

Thus, from (1.10) and (1.11)

(1.21) 2, =b, —rL G lz;-sF G liz;p,, i=1,...,k-2,

ey = Oy —rzk—lG"— i
(122) Tma | _pmr| T2 |
L_xmk—l_ _ka—l_
(1.23) x; = Gi_l(z]. = Wim;_y T vjzmi), i=1,...,k

where z, = 0.

Assume our region is rectangular and N x M and assume further we march in
the M direction. The procedure is as follows. The preliminary computation involves
the calculation, LU decomposition and storage of the influence matrix of each of the
G, i=1,...,k This will require k¥ x N? storage spaces. Also, the matrix A must
be computed, decomposed and stored, as noted in (1.15). A is replaced by the LU
decomposition of L;. A; ;41 is replaced by Q;, and A; ;_, is left intact. All this re-
quires (3k — 5)N? spaces, or a total of (4k — 5)N? spaces.

Each solution of (1.1) requires the following computation. Equation (1.21) is
solved for the Zm, by a marching solution for Gi—lzi and G,;llzi 4+ Since r,f; ;
st , are matrices, each row of which contain at most 3 nonzero components, the inner

and

products require at most three multiplications. Next, Eq. (1.22) is solved by using
(1.17) and (1.18). Finally, (1.23) is solved by marching again.

Solving (1.21) requires roughly 12M + N operations to march, including solving
the tridiagonal system for each line, kN? operations to invert the influence matrices,
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and another 12M - N operations for the second march. Equation (1.17) requires

(3k — 5)N? operations for the inversions. Finally, Eq. (1.23) requires again as many
operations as the marching of (1.21). Thus, the total is roughly 48NM + (5k — 1)N?
operations per solution. The choice of which direction to march depends roughly on
the term SkN2. Generally, one marches along the direction M, where M > N, for both
time and storage considerations.

2. A Numerical Example. Recently, a fair amount of work has been done in-
vestigating the numerical transformation of arbitrary regions onto rectangular regions,
particularly in the study of fluid flow problems (see e.g., [14], [15]). The partial dif-
ferential equations are then solved numerically on a rectangular grid. Although this
tends to make the region simple, the equations are transformed into a mess, involving,
among other things, cross derivatives which in turn lead to 9 point difference equations.
Thus, the stream function equation in a Navier-Stokes problem leads to a difference
equation which is not separable, and a matrix which is not symmetric. In the litera-
ture [15], these matrices have been solved by Successive Overrelaxation (SPR). Both
a pointwise varying relaxation factor (w) and a constant « have been tried [15].

(The cross derivatives were assumed negligible in estimating w.) Experience indicates
an “optimum” constant « is more effective [15]. For this report, the constant opti-
mum w was determined empirically. Line or block SR was not tried since overall
computer time usually favors point SQR [10a].

The marching technique described in this memo was applied to such a problem.
We describe the results, and compare these with other methods for solving the same
problem.

The problem has been described in detail elsewhere [6]. An arbitrary region in
the (7, z) plane is numerically mapped into a rectangular region in the (u, v) plane by
the mapping

ar,, — ZBruv +9r, =0,

2.1)
wz,, —2pz,, +vz,, =0,
where
a=z2+7r2
B=1z,z,+r,r,
y=2z2+ rlf\,
2.2)

J= Z,Ty ~ Zyty,
ZU = (8,z)Jr,
ZV = (8,z)J/r,

where (§,,z) is the first central difference in the u direction, etc. (Equation (2.1) was
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actually solved by SQR since it only had to be solved once.) The partial differential
equation is transformed into an equation whose finite difference stencil has the form

B Y- ZU -8
2.3) a=-ZV -2a+7vy) a+ZV
-8 v+ ZU B

ij
where the coefficients are determined from the numerical solution of (2.1) and (2.2),
and vary from point to point. See [6] for details.

In solving the above problem by the multiple shooting marching method, one
must determine how many steps to march to keep the error within a reasonable bound.
The number of steps to march is actually a function of the matrix problem, the pre-
cision of the arithmetic (i.e., the computer being used) and the accuracy desired.
Roache [11], [12] discusses this point, noting that the number of steps can vary from
6 to 60. Tables I and II note the errors encountered in our problem on the IBM 360
in double precision. We actually used 9 marching steps, making the error consistent
with the SQR convergence criteria we used.

TABLE I

Error vs. Number of Marching Steps

N=15M=175

Steps/March 8 9 10

k 10 9 8

Residual 8 x 1078 14 x 107 16 x 1075
TaBLE 11

Error vs. Number of Marching Steps

N=15M=15
Steps/March 4 6 8 9 10 12
k 4 3 2 2 2 2
Residual 5%x10712 5x1078 1x107® 5x107°5 8x1073 7

3. Other Methods. Besides SQR, several other methods were tried and com-
pared to the marching procedure. The methods chosen were ones which appeared to
have a chance for success with nonsymmetric matrices of the type considered here.
There may well be other methods which are competitive.

(i) Conjugate Gradient (CG). Basically the CG method is designed for symmet-
ric positive definite matrices. However, it does work for some nonsymmetric matrices
if one considers a “splitting” [4], “preconditioning” [1] or “acceleration” [16] of
the given matrix. A promising approach for most nonsymmetric matrices appears to
be the incomplete LU decomposition of 4 [8], an extension of the results of [10].
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TaBLE III

Comparison of Methods

N=15,M =90
Method Storage Time

SOR 0 43 iteration, 1 sec
CG—Direction 1 12+N+M=16,200 37 iter, 2.3 sec
CG—Direction 2 12-N-M 16 iter, 1.1 sec
MM-—Direction 1 12:NM 19 iter, 1.39 sec
MM-—Direction 2 12-NM 18 iter, 1.32 sec
Marching (4k — 5)N? 2 sec

+ NM = 11025 (k = 12)
Equation (1.15) (2M — 1)N? = 39825* A1 sec*
Band (2N + 3)NM = 44055*1 27 sec*
Sparse 112,400 locations + .18 sec*

16,760 integers™
(including fill in)

* data here for 15 X 89 grid
T see text, Section 3(iii)

One considers L and U such that the nonzero elements of A equal the corresponding
elements of LU. Then LU is an approximate inverse of 4. Thus, we solve the system

G.1) U 'L7'4X = U~'L1p,

where U7'L 714 is an approximation to the identity. The ordering of the equations
also plays a role. Thus, if N = 15, M = 90, then ordering first in the N direction
(Direction 1) leads to a matrix with semibandwidth of 15. Ordering first in the M
direction (Direction 2) leads to a semibandwidth of 90. Table III contains some re-
sults of the CG method applied to (3.1).

(ii) Manteuffel’s Method (MM). Manteuffel [9] suggested a Chebeshev scheme
for matrices, whose eigenvalues have real parts which are positive. It is not clear that
A satisfies this property, but U"!L !4 from Eq. (3.1) appears to. The appropriate
constants needed to determine the iteration factors were computed using the pro-
grams listed in [9]. With these optimum values, the method was applied. Table I
contains some results.

(iii) Direct Methods. There were three direct methods which we considered.
The first was the method of Eq. (1.15) applied directly to (1.1) [5], [7]. Assuming
the coefficients of the given matrix are available, the amount of storage space needed
is about 4 times that needed for the marching method. Although faster than SQR, it
is about twice as slow as the marching method. However, as with all direct methods
considered here, accuracy is within computational round-off.
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The second direct method considered was band elimination. The routine
LEQT1B was used from the IMSL library. Although this routine uses partial pivoting,
indications were that no pivoting was actually performed. Thus, one could recode the
routine to avoid pivoting and save some storage. The storage entry in Table III re-
flects this fact although the actual amount of storage used was 65415.

The third direct method, was the use of the Yale sparse matrix package described
in [13]. The amount of storage needed was about 10 times that of the marching pro-
cedure (see Table III). Not counting set-up time, it was slightly less than 10% faster,
which is marginal considering the enormous amount of space required. For a more
stable problem requiring a smaller k, even this timing might be matched. Other ver-
sions of the sparse matrix package reduce storage but increase timing.

4. Conclusions. It is clear from Table III that SQR is preferred to any other
iterative method tried, because its simplicity requires less space and less time. On the
other hand, the direct methods are faster and more accurate, but require more storage
to implement. In between we have the multiple shooting marching method. For all
of the problems tried (varying M), this method was about 4 to 5 times faster than
SOR, with comparable accuracy. However, it should be added that one can reduce
the final error by allowing more SQR iterations, but one must restart the marching
problem to attain higher accuracy.

To check relative times for SPR and marching on a 5 point difference equation,
the above problem was run with B; =0. For N =15, M = 90 the SPR method took
43 iterations (w, = 1.70) for a total time of .666 seconds while the marching method,
with k£ = 12, took .177 seconds. This particular difference equation was slightly more

stable than the test problem which could lead to a smaller kK with possible further re-
duction in time.
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