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Semidiscretization in Time for Parabolic Problems

By Marie-Noélle Le Roux

Abstract. We study the error to the discretization in time of a parabolic evolution
equation by a single-step method or by a multistep method when the initial condi-
tion is not regular.

Introduction. The problem we are considering is the parabolic evolution equa-
tion

*) () +Au()=0, 0<t<T,

u(0) = ug.

Here, A is a linear operator, unbounded on Hilbert space H, of domain D(4) dense
in H; the initial value u,, is assumed to be only in H.

In the first part, we study the error due to the discretization in time of the
problem (*) by a single-step method. The scheme is defined by the choice of a ra-
tional approximation 7(z) to the exponential e~? for complex variable z. For the case
of A selfadjoint, these methods are analyzed in [1] and [2]. Also in the special case
of one space dimension, similar results can be found in [9]. For the case of 4 non-
selfadjoint, the result for the special case r(z) = 1/(1 + z) was obtained by Blair 3]
and by Fujita and Mizutani [6] . Using the technique in [1], we generalize these re-
sults when the method is strongly 4(8)-stable (0 < 8 < n/2). Concerning examples,

a class of rational approximations {r,(z)} to e ¢ which are strongly 4(0)-stable with
p >3 is documented in [8] and [2]. It is shown in [8] that for p > 3, r, is in fact
strongly A(Bp)-stable for some 0 <6, < n/2. For small p, 0, is close to m/2 and in
the special cases p = 3, 4, rp is A-stable. Examples of rational approximations to e~
which are strongly 4(0)-stable with (=) = 0 are provided by the family r,(z) develop-
ed in [2].

In the second part, we investigate error estimates when the discretization in time
is carried out by means of a multistep method. Zlamal gives an error bound under the
assumption that the operator A4 is selfadjoint and the method strongly 4(0)-stable.
Here, error estimates are obtained if the operator 4 is maximal sectorial and the meth-
od strongly A(8)-stable (0 < 6 < 7/2).

I. Semidiscretization in Time by a Single-Step Method.
1. Introduction. Let A be a linear operator, unbounded on Hilbert space H,
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of domain D(A) dense in H. A is supposed to be maximal sectorial [7]; and we con-
sider the problem
) (@O +Au@® =0, 0<t<T,

u(0) = uy,,
where u,, belongs to H. The approximate values u,, of u at the time level t, = nlt,
(At denotes the time increment) are determined by

03} u,,, =r(Atdyu,, n=0,

where 7(z) is a rational function of the complex variable z defining the single-step
method. The error at the time 7, is given by

lu, —u@t,) g = (4 - " (AtA)ug | gy
hence, we deduce
3 luy —u(t,) gy < e = P AtA)l g4y 1yt or-

2. Assumptions on the Method. We assume that the single-step method is of
the order p (p = 1); then there are two constants g, >0 and C > 0 such that

e —rz)l < ClzIP*!, Yz €C, Izl <o,.

LEMMA 1.1. Let the single-step method be of the order p, then, for any 0 €
[0, n/2], there are constants o, § and ¢ > O depending only on r and 0 such that for
z€C, Izl <o0,-0 <Argz < +9,
“ [7'(z) — e 2| < Cnlz|Pt1ghnRez

Proof. We have the equality

n— . .
I7'(z) — e = Irnz) - e?| > Hz)e(rm1=nz |
j=0
Since the method is assumed of the order p, we have
Inz) — e ?I < ClzPH!
and,

IMz)l <eRez(1 + ClzIP*Y), VzeEC, IzI<o,.

Let z € C such that -0 < Argz < +6, § € [0, n/2], then, Re z > |z| cos 8; hence

|p+1

Ir(z)l < e—‘/z Rez(e—‘/zlzlcos 6+Clz )
and there is a constant 0 < g, such that
ClzIP*! < %lzlcos 0, Izl <o.

Therefore,

IMz)l < e ®ReZ for Iz1<0,-0 <Argz <+ 6
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and

n—-1 | .
I7'(z) — e ™I < ClzPTT Y oiRez[2~(n—1-))Rez
j=0

Hence,

I7*(z) — e "?| < Cnlz|PH1gRe2Z/2

This concludes the proof.

We also assume that the method is strongly 4(8)-stable, i.e. if 6 is not zero, Vz
€Sy, Ir(z)l <1 and Ir(=9)| < 1, where S, is the sector {z € C/z = *° or 0 or =6 <
Argz <0};if 6 =0,Vx >0, Ir(x)l <1 and Ir(>)| < 1.

3. Error Estimates in the Case of a Selfadjoint Positive Operator.

THEOREM 1.1. Let A be a selfadjoint positive operator and let the single-step

method be strongly A(0)-stable and of the order p. Then, there is a constant C de-
pending only on the method such that,

(5) AtP
lu, —u(t)y < C—t-; lugly forn>1.
n

Proof. Since the operator 4 is selfadjoint, we have

lewtnd — P1Atd)l gy gy = sup  leTn® = r"(Ar)l < sup |7 = r(x)l.
’ 2ES,(4) x>0

Let x €R, such that x < o (0 has the value defined in the Lemma 1.1); we get

C AP
le™* — P'(x)| < CnxPHlePnx < —=Cc—.
nP P
n
Let x € R, such that x > ¢; then

le™™* — (x)| < e + sup Ir(x)I".
x=20

Since the method is strongly A(0)-stable,
sup Ir(x)l =r<1;
x20

hence,
AP
e

n

C
e —P'"x)i<e ™+ <—
n

=C
p

Then we get

_ AP
lle thA —Iﬂ(AfA)"g(H'H) <C?,

n

and the result follows from (3).
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4. Error Estimates When A is Not a Selfadjoint Operator. In this case, we shall
need the following lemma:

LEMMA 12. Let A be a maximal positive operator for which there is some con-
stant 6, (0 < 0, < 7/2) such that

Yu € D(4), (Au, u) € Sp,.

Let ¢ be a continuous function on the sector Sg 0, <0< 7/2) which is holomorphic
in the interior of S, and satisfies for some constant R > 0 and two functions f, and
[, from R to R the following estimates:

) VzeS,, lzI <R, lo@) <f,(z),
@) VzES,, Izl ZR, lyz) = ¢(=)| < f,(lz]).
Further, assume that the functions Iy, 1y satisfy
R dr +oo dr
fo [T <+~ and fR L) T <+e.

Then there is a constant C such that

c (R B
Ny <= 3[0 GRS MY (R +1%)ko(w)|$

(®)
+ lo(eo)l.
Proof. We set
h(2) = o(z) - 1 iz ().
We have
wWA) = h(A) + o)A + AY! and AU + A)! "f(H,H) s L
Hence,

II«p(A)IIE(H,H) < IIh(A)Ilg(H,H) + lp(eo)l.
Besides, we have

- L —4y!
hA) = I fr h(z)(zI - A)' dz,
where T' is the continuous, positively oriented curve defined by Argz = +6. Let r,
={z €T, lzI<R}and I'y = {z €T, |z > R}. Forz €T, the following estimate
holds [5]

el =AY g gy by < 0 -6, 2]

Now, from (6), we get
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lh(2)| =

0 ' <f,(lz) + lzllges)l, Vz ETy;

hence

L frl h@)(zI — A) ' dz

2mi

<

=l 10D+ Rig));

from (7), we get

lh(z)! =

9@) ~ o) + T ¢()| f2(|2|)+—|90(°°)| Vzer,;

hence,

507 e, n@ =y dz<,,—c—o(f HOL+ L e,

The estimate (8) now follows immediately.

THEOREM 12. Let A be a maximal positive operator satisfying for some con-
stant 6, (0 < 6, < 7/2),

Yu € D(A), (Au, u) € Sp-

Further, assume that the single-step method is of the order p and strongly A(0)-stable
(0o <0 <m/2). Then there is a constant C depending only on the single-step method
0 and 6, such that

14
©) lu,, - u(t,)ly < C ATZ‘ lig |y

n

Proof. We apply Lemma 1.2 with ¢(z) = e "** — 7"(z). Then, from (4), we get

VzES,, Izl <o, ly@)l< Cnlz|Pt1gFnlzlcoso

and

o oo AP
f nrP e fnreosd g, < < f xPe*dx <C —.
0 nP 0 ®

n

Besides, we have

VzES,, Izl >0, lo@)— o) <e™'21080 + [7(z) = /()]
0

and
n—-1 . .
P(z) = (=) = (r(z) = (=) 3 (" ().
j=0

Since the method is strongly 4(6)-stable, we may set
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su Inz)l = e™®
p N=e
ZES, slzl>o

for some & > 0; and since 7 is a rational function, there is a constant C such that

C

IHz) — r(>0)| < ol for Iz > o.

z

Hence, for Izl > ¢
—nlzlcos@ c _ 8
lp(z) — p(>°)| < e +I—'I-e"
z

and

+ 00 —nrcosé —né 1
J <e +c* )dr<c(—+e—"5><c' 2
r

r 2 D
nP t,

Besides, lg(>0)| = |7*(e0)| and |7* ()| < C/nP, since ()| < 1; then using (8), (9)
follows.

II. Semidiscretization in Time by a Multistep Method.
1. Introduction. We again consider the equation (1). Let p and ¢ be two real
polynomials of degree less than or equal to g,
q

pO=F aff amd o©) =3 BF (>0
i=0

=0

The approximate values u,, of u at the time level z,, =nAt are determined by

(10) 3 (o + AtBAN, ,; = O,
i=0

assuming the starting values ug, u,, . . ., Ug_, to be given (by another method).
2. Assumptions on the Method. (a) We assume that the multistep method is

of order p; then we have

q

q
(n Z oy =1 > it1g, 1=0,1,...,p.
=0 =0

(b) We also assume that the (p, ¢) method is strongly A(0)-stable. We set
w(§;2) = p@§) + z0(5),

Sy ={z€Clz=oo0rz=00r-9 <Argz<+0}.

The method is strongly 4(6)-stable (0 < 8 < n/2) if and only if the modulus of all
roots of the polynomials &( -, z) are less than one for any z in the interior of S,. If
= 0, the method is strongly A(0)-stable if and only if for any x > 0 the modulus of
all roots of the polynomials (-, x) and o are less than one; the roots of the polyno-
mial p with modulus equal to one, {;, are simple and the growth parameters ), satisfy

Re A; > 0; these growth parameters ); are given by

N = oI5 G)-
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We now define

o; + Bz .
50)=——— (0<i<q),
a, + qu

1(z)=0 forl<0,
70(2) = 1’

q
> New@P, 4 (2)=0 forl>0,l€Z,
k=0

q .
E(z) = Z S z)e” Dz 1>0.
Then, we have
q
Z 8 (AtA)u(t, ;) —u, ;) = E,(AtA)u,.
i=0

Hence [5]

—1 s
u(t, +q) T Uy, +q T qzo kz 7n—k(AtA)8s—k(AtA)[us —u(ty)]
= =0

>

n
+ 3 v, (AtA)E(AtA)u,,.
=0

LEMMA 2.1.  Let the method (p, o) be of the order p and A(0)-stable; then for
any z € C with Re z = 0, we have

\Y%
o

(12) |E)(2)| < Clz|Pt1gIRez
Proof. We set

u(t) = e 1%, t=>0,Rez>0.
We have

i=0 i=0

q q
Efz) = (o, + qu)_'g S apd +i) - U0+ i)%.
Since the method is of the order p, we get

Ef(z) = (o + b,2)" 3 3 )

I+i(l+i—t¢
*+ u v®+ (1) gt

1+i (I +l—t)‘D !
-1

and, since the method is strongly A(6)-stable, we have

"Zj

(p+l)(t)dt$.

Now, v®P+1)(5) = (—z)P+ 1712
0,8, > 0. Hence,
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q lal q 18;1
lE(2)| < L S 3 B et )t iRes,
le, I\i=1 p! =0 @ - 1)
LEMMA 22. Let the method (p, o) be strongly A(0)-stable (0 <0 < n/2). Let
2€Csuchthat -0, <Argz<0, (0<0,<0)if0>0andzE€R 2>0,if =
0. Then, there are constants R, u, C, such that

13) g Iy < Ce™ for Izl =R,

I () <ce 'zl for 1zI <R

Proof. The first inequality follows from the following result [5]. If the method
(p, 0) is strongly A(@)-stable, there are constants ¢ € ]0, 1[, R > 0 and ¢, > 0 such
that

VzES,, lzI>R, Iy@)l<c.c.

The second inequality follows from the following result [5]. If the method (p, 0) is
strongly A (6)-stable (0 < < n/2), for any a > 0, there are two constants u’ and C >
0 such that, for any x €ER,,x <a and forany A€y, [y ={z € Clz=oor Argz
=£0), lyx + V) < Ce#'*,

Case (i); 6 > 0. Let z € Csuch that |zI <R, Argz = o, 0 < a < 6,; then we

have
sin(f — « sin a
z = lzl ( )+Iz| — &9,
sin 6 sin 6
and
sin(f — «)
lz| ————<R.
sin 6
Hence,
I7I(z)| < Ce—-n'llz I'sin(0—a)/sin @
that is,

Iy @) < Ce 2! with p =y sm(@_@l)
sin 0
Case (ii); 6 = 0. Let x < R; then there are two constants u' and C such that
ly,(x)| < Ce™™ and (13) follows.
3. Error Estimates in the Case of a Selfadjoint Positive Operator.

THEOREM 2.1. Let A be a selfadjoint positive operator and let the (p, o) method
be strongly A(0)-stable and of the order p. Further, assume that the starting values are
obtained by a single-step weakly A(O)-stable method of the order p — 1; then there is
a constant C depending only on the (p, 0) method and on the single-step method such
that

(14) ArP
lu, —u(t,)ly < C? lug |y
n
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Proof. Since the operator 4 is selfadjoint and positive, we have

l 1=0

Let x € R, such that x < R (R is defined in Lemma 2.2).
From Lemmas 2.1 and 2.2, we get

_(AtA)E(AtA)

,Q(H,H) x>0 | 1=0

Iy tO0) S CeDx 0<I<n,
and
|El(x)| <Cxp+le—lx, l>0‘

Set v = inf(u, 1); then

< Cne V"XxPt1 g —

3 v B
1=0

Now, let x > R and we have the estimates
Yl < Ce ™D 0<i<n

|E()l SCxPHle™™ 1<i<n,
lE,(x)l <C.

Hence,

3 7 ()
I=0

n
< Cze—;m + Z e—y(n—l)e—lxxp+l
=1

Set v = inf(y, R); then

S c
> YnaOE() ! S (e +ne e TP < —
=0 n

Hence,

n C
v, _(AtA)E,(AtA) < —
Il;o n ! £(H,H)

nP

Since we have assumed that the starting values are obtained by a weakly 4(0)-stable
single-step method of order p — 1,

u, =r’(Atdu,, 0<s<gqg-1,

where r is a rational function satisfying Vx > 0, |n(x)| < 1 and for which there are
constants ¢ > 0 and ¢ > 0 such that

[(rx) —e™*I<ClxIP Vx<o
Since the operator A is selfadjoint and positive, we have

Iy, _ i (AtAYS . (AtA)(ug — u(t DI < sup 1y, ()8 o I (x) — e ) lug 1y
x=20
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Let x € R, x <inf(o, R); then

Iy, ()| < Cemh(=R)x L cegmhnxehax |5, (x)I <C,
and
s—1 )
1P(x) — e ¥ < Inx) — eI Zr’(x)e"(s_l"’)" < CxP.
=0
Hence,
c' , AP
17 068 o () () — 7)) | < Ce™#M¥xP < — = C -
n n
Let x > inf(o, R); then
ly,_x ()| < Ce#(=8) < Cekdern,
so that
lod , AP
17, ()85 GNP (x) — e7) | < Ce™ 7" < - = C -
n 4
Hence,

AP
<Ct7 |uO|H.

n

qil i Y- (DA k(AtA)(u o u(t,))
5=0 k=0

4. Error Estimates When A is Not a Selfadjoint Operator.

THEOREM 2.2. Let A be a maximal positive operator for which there is some
constant 0, (0 < 0, < 7/2) such that

Yu € D(4), (Au, u) € Sy,

Let the (p, 0) method be strongly A(0)-stable (6, < 6 < n/2) and of the order p.
Further, assume that the starting values are obtained by a weakly A(0)-stable, single-
step method of order p — 1; then there is a constant C depending only on the (p, 0)
method, on the single-step method, on 0 and 0, such that

AP
1s) Iun—u(tn)|H<CtT lug | g

n

Proof. We apply Lemma 1.2 to estimate

From Lemmas 2.1 and 2.2, for any z € Sp, and lzI <R (6, €]6,, 0[), we have

£(H,H)"

IZ Yn_i(ALA)E(ALA)
=0

" n
> 1d@E@) S C S ekrDizi pr1tizicosoy
=0 =0
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Set v = inf(u, cos 6, ); then

< Cne—-vnlzl|z|p+l

n
Z 7n—I(Z)EI(Z)
=0
and
—vnr - —vp D < —,
fo ne VP dr — <f0 e ’Pp dp) "
Besides, for / > 1, Ej(~) = 0 and from (13) and (14), forz €Sy, lz| = R

n
<C Z e—-u(n—-l)|z|p+le—-IIchosol.
=1

I—il Yn—1(Z)E(2)

Now, set v = inf(u, R cos 6,); then -
e—-u(n—-l)e—-vlz lcosf < e—vne—l(lzlcosel—-v)

and

< Cne—vnev—lzlcosol |Z|p+l

1;1 Tn-1(2)E\(2)
and

o C
f ne vnev—-rcosel’pdr<_'
0 np

For I = 0, E,(°°) may be not equal to zero,

Bo
lim Ey(z)=—.
lzl>w3zESg q

We bave

0

8
Tn(DE((2) = 7, (=) P < 1,@) = 1,(NEG@)| + |Ey(2) = Eg(>)I17,,(=)].

q
Now, for |z| > R, we have [5]
e Hn

In -—noo|<C B
Tn(2) = 7,(>) I+ Log(1 + I2)y?

and |E)(z)l < C Also,
0oB, ~ B

q .
8:(2)e™%;
aq + qu ig:l e

hence, for z € Sg | and Iz| > R,

¢ —~lzl
|Ey(2) = Eg(>0)| < o + Ce'zlcos 0y,
z
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Then, since |7, (>°)l < Ce™ ", we get

B 1
7n(Z)Eo(z) = 7,() =2 < Ce kn ; + _1_ + e—lzlcosol%
B, 1 + (Log(1 + Iz1))? Izl
and
oo 1 1 g recoso
fR e_'m< sttt dr < Ce M,
r(1 + Log(1 +r)® r?

Then, from Lemma 1.2, we get

n 1
I_ZO 7n_,(AtA)E,(AtA)” © L H) < c;—n; +ohn 4 |'yn(oo)E0(°°)|f;

hence,

x .
S(HH) P

f Y i(AtA)E(At4)
=0

Now, we assume that the starting values are obtained by a weakly A(6)-stable single-
step method, of the order p — 1; then

u, =r’(Atdu,, 0<s<gq-1,

where 7 is a rational function satisfying Vz € S,, |Hz)| <1 and for which there are
some constants ¢ and C such that

IHz) - e ?I<ClzIP Vz€ES,, lzI<o.
We again apply Lemma 1.2 to estimate
1,k (ALA)S _f (ALA)P(ALA) — €4 g gy gy, 0<Kk <5 0<s<q-1.
Set 0, = inf(o, R). Then forz €Sy , lzI <o, andn >k,
17,12 @) (2) — e75%)| < Ce™#n lzljz|p

and

T _unrp—1 ¢
f e HnrP—l gp L —,
0 nP

Besides, we have
D5 @) =€) = 7 (B () °()]
< 17,4 = V1 (N8 D@ + 1y, ()18, (2) — 8,4 (=)Ir(2)]
+ 17, (8, () IF5(z) = r(=9)1.

Now, for Iz| > o, we have
e hn

ly, . (2)=7. () <C :
Y k(Z) Tn k( ) 1 + (Log(l + |Z|))2
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and since r and § _, are rational functions,

c c
18;_4(2) =85 ()] < o Ir(z) = r(>0)l < o for Iz1 > o,.
V4 zZ
Also,
ly, () <Ce™" and 16, (z)I <C forlzl >o0,.
Hence,

|7n—k(z)63—k(z)(rs(z) - e_sz) - 7n—k(°°)63—k(°°)rs(°°)|
1 1

+ R

1+ (Log(1 + IzI)? Izl

< Ce M1

and from Lemma 1.2, it follows that

" 7n—-k(AtAﬁs_k(AtA)(rs(A[A) — e—sA tA )"

1
<C 3—; + I7n—k(°°)6s—k(°°)rs(°°)l < -
n n
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