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Numerical Conformal Mapping

By Sukumar Chakravarthy and Dale Anderson

Abstract. A numerical procedure to determine the discrete conformal mapping of an
arbitrary simply connected region onto the open unit disk is described. The method
is fast and directly provides an estimate of the global error due to the discretization
of the mapping. The intimate relationship between the Riemann Mapping Theorem
and the numerical method of construction of the conformal mapping is brought out
in the presentation. The procedure is an interesting example of a method of con-
struction that is directly based on a theorem guaranteeing existence and uniqueness.

1. Introduction. Coordinate transformations are very commonly employed in
various fields to map complex geometries into simpler domains. Conformal transfor-
mations preserve the angle between the tangents to any two curves at their point of
intersection. Thus, an orthogonal coordinate system in one plane would correspond to
orthogonal lines in the image plane. This property is very desirable in applications
such as flow field computations using finite difference methods [8]. Boundary con-
ditions are easily and accurately applied and experience also indicates that more accu-
rate solutions are obtained with orthogonal coordinate systems.

As early as 1931, Theodorsen had developed a series method to conformally
map the exterior of airfoils of finite thickness into the exterior of the unit circle [1,
pp. 50—60]. Moretti [8] has described a technique to obtain conformal grids about
complex geometries such as airframes but part of the boundary evolves from the
transformation and cannot be fixed a priori in his method. Barfield [2] has succeeded
in developing a general numerical method to compute the conformal transformation
between any two-dimensional simply connected region and the unit circle. A new,
equally general method is described in this paper. In the concluding remarks, the
methods listed above are compared briefly and the advantages and disadvantages of the
new method are pointed out. A distinguishing feature of the method described is that
it logically evolves from the existence and uniqueness theorem for conformal mappings.
Such a formulation preserves the appeal and generality of the method regardless of
possible applications.

The Riemann Mapping Theorem [4, p. 156] asserts the existence and uniqueness
(up to a rotation) of a conformal mapping between any simply connected domain and
the unit disk, once the point that is to be mapped into the origin of the unit disk has
been chosen. Let us call the simply connected domain the physical domain and the
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unit disk the computational domain. In the discrete sense, the Riemann Mapping Theo-
rem implies that for a conformal map, there exists a unique one-one correspondence
between chosen points in the computational domain and their image points in the physi-
cal domain. In other words, for an arbitrary choice of discrete points in the physical
domain chosen to correspond to selected points in the computational domain, a con-
formal map does not exist. The aim of the numerical conformal mapping is to find
the set of points in the physical domain that is conformally mapped into the selected
set of points in the computational domain.

The physical and computational domains are depicted in Figure 1. A conformal
mapping is governed by the Cauchy-Riemann equations which can be written in polar
coordinates as

X 1
a5 3 reec 10 - ar
A discrete or numerical conformal mapping is governed by the difference analogues of
the Cauchy-Riemann equations (C-R equations) which we shall call the discrete C-R
equations. The discrete C-R equations are obtained by employing the finite difference
method on uniformly spaced mesh points in the computational domain.

PHYSICAL DOMAIN COMPUTATIONAL DOMAIN
Y n

ARBITRARY SIMPLY CONNECTED REGION UNIT DISK
CARTESIAN COORDINATE SYSTEM POLAR COGRDINATE SYSTEM

FIGURE 1
Physical and computational domains

The numerical conformal mapping proceeds iteratively. A trial boundary point
distribution is chosen in the physical plane. This is quantified by a set of (X, Y)
pairs. It is possible to use only the Y values and compute the corresponding set of
X" values at the boundary points that would satisfy the discrete C-R equations in the
computational domain. The difference between the X and X" values constitutes a resi-
due. The Riemann Mapping Theorem assures us that this residue would in general be
nonzero for the trial distribution of points. Parameter optimization techniques are
used to change the boundary point distribution in a such a manner as to drive the
residue to zero. The distribution of boundary points corresponding to a vanishing
residue is the correct, required set of boundary points. Using this boundary data, the
discrete C-R equations are solved to give the discrete conformal mapping.
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2. The Discrete C-R Equations and Boundary Conditions. Consider the equations

oV  aU _ v aU _
(2.1) ra—r- 8—6'—0, 50 rar = 0.
The C-R equations given by (1.1) are equivalent to the equations above if one of the

following associations are made:

V=Y, U=X, V=X, U=-Y.

The former association conforms to the roles of X and Y described in the outline of
the method given in the introduction. The latter association lets the roles be reversed.
For generality, let us proceed in terms of Egs. (2.1).

MESH POINT PLACEMENT INDEXING DETAILS

O MESH POINTS CARRYING V VALUES
O MESH POINTS CARRYING U VALUES

FIGURE 2
Finite difference mesh

Figure 2 portrays the mesh in the circular computational domain with the unit
circle shown as a full line. The U data are carried over the mesh points denoted by
the squares and the V' data carried over the mesh points denoted by the circles. The
i and j indices denote the 6 and r locations for the U and ¥ mesh points. The place-
ment of mesh points is shown on the left half of Figure 2 and the indexing is explained
on the right half. For this staggered grid the discrete C-R equations that we will con-
sider are given by the second order accurate finite difference formulas shown below.

Vi . -V.. U. . —=U, .

Jj+1 i,j i+1, Lj _

(2.2a) T A7 + A7 0,
V.=V, . U .-U .

(2-2b) L] i—1,j _ r" Uy i,j—1 — 0'

Af ij Ar
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Here r:.' i corresponds to the radius of the position denoted by the cross (+), where
(2.2a) is balanced and r;.:j corresponds to the radius of the position denoted by the dot
(-), where (2.2b) is balanced. The discretization described in this section and the
solution procedure described in the next to solve the discrete C-R equations in polar
coordinates follow from Lomax and Martin’s work on the C-R equations in Cartesian

coordinates [7].

TABLE 1
System of discrete C-R equations
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The notation V; is used to denote the vector Vi,2

The same notation is implied in U;, f; & g;,
fi,i=0andgi,i=0fori=1,...,n;j= 1,...,m
except

— _ ,
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Collecting all the difference equations obtained at mesh points denoted by the
Uand Vindicesi=1,...,n,andj=1,...,m,a system of 2 x m x n difference
equations is obtained for the unknown U and ¥V values. This is displayed as a matrix
system of equations in Table 1. From the right-hand side of the equations it is evident
that the m x n U values and m x n V values can be determined if the n-boundary
values of V on the unit circle and the value of U at the center of the unit disk are pre
scribed. These are the boundary conditions. Shaded circles and squares are em-
ployed in Figure 1 to signify points where boundary data are needed.

3. Solving the Discrete C-R Equations. The difference equations given in Table
1 couple the U and V values. Let the required boundary values of U and V be given,
and let it be required to solve the difference equations to obtain the U and V values at
the mesh points. The first step in the solution procedure is to decouple the U and V
values.

1. The second row in the bottom half of Table 1 is subtracted from the first
and B times the first row in the top half is added to the result to give the first de-
coupled equation for V.

2. The third row in the bottom half of Table 1 is subtracted from the second
and B times the second row in the top half is added to the result to give the second
decoupled equation for V.

3. This is repeated for all rows in the bottom half except the last. The first
row in the bottom half is subtracted from the last and B times the last row in the top
half is added to the result to give the last decoupled equation for V.

This procedure results in the following set of equations for the V values un-
coupled from the U values.

Ba+2a -1 1 |[v.] [e-e+8n

-1 BA + 21 -1 v, g, —&; + Bf,
G.1) I BA+A - Vo T g5 —ga + BS |
| -1 —1 Ba+2u||V,| | g &+ B

The coefficient matrix is of the periodic block tridiagonal form with all the diagonal
block matrices being the same matrix C = BA + 2I. The matrices A and B are upper
and lower bidiagonal, respectively. Hence the matrix C is tridiagonal. Thus, the sys-
tem of equations (3.1) can be solved very rapidly by direct cyclic reduction methods
such as that detailed by Sweet [10]. Once the V values are known, the U values can
be computed very easily. For example, the equations in the bottom half of Table 1
could be used for that purpose.

It is of interest to note that the decoupling procedure is the discrete equivalent
of differentiating the second of Egs. (2.1) with respect to 6, differentiating the
first with respect to r and adding the resulting two equations to yield a Laplace equa-
tion for ¥ in polar coordinates. In addition, the decoupling procedure implicitly
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imposes the boundary conditions. Thus, it happens that the decoupled system of equa-
tions corresponds to a finite difference approximation to the Laplace equation for V
with a Dirichlet boundary condition on the outer boundary (i.e. the unit circle), a
Neumann boundary condition near the center of the disk, and a periodic boundary
condition in the circumferential direction. This becomes apparent when the matrix
BA is written out in full detail.

4. Formulation of the Numerical Conformal Mapping. In the previous two sec-
tions a procedure was presented to determine the unknown U and V values at the
discrete mesh points from the prescribed ¥ values on the unit circle and the prescribed
U values at the center of the disk. The U and V values are carried over different sets
of mesh points. However, if the bounding curve of the physical domain is smooth, one
could use interpolation formulas to determine from the solution, the U values at the
boundary mesh points where V values are prescribed. Thus, when the discrete C-R
equations are satisfied in the interior, it is possible to use the ¥ values prescribed at
mesh points on the unit disk to compute the U values at the same points. The V
value at the center of the unit disk where the U value is prescribed could also be com-
puted by interpolation.

It is appropriate to note that the requirement of smoothness of the curve bound-
ing the physical domain is not a restriction. Any sharp corners in the bounding curve
could be removed by employing scaled Karman-Trefftz transformations. This has been
used by Moretti [8]. On successive applications of the scaled Karman-Trefftz trans-
formations, the physical domain with corners in its bounding curve is transformed
into an intermediary domain with a smooth bounding curve to which the numerical
conformal mapping procedure can be applied. Needless to say, the result of all the
successive mappings is a mapping, conformal everywhere except at the corners of the
bounding curve of the physical domain.

Before proceeding any further let us observe some consequences of solving the
linear algebraic system of discretized C-R equations. It is clear upon close inspection
of the system that if the prescribed V values are all zero and the prescribed U value
is Uy, then the solution is given by

Ui,j=U0 and Vi,i=0 fori=1,...,mj=1,...,m.

Therefore, the computed boundary U values would all be U,- Let us construct an in-
fluence matrix 4 as follows: The ith column of A4 consists of the computed boundary
U values when the prescribed U, value is zero and all the prescribed V values are zero
except for the ith which is set to unity. Each of these solutions is known as a funda-
mental solution. Let 8" be the vector made up of the computed boundary U values,
when the vector of prescribed ¥ values is denoted by v and the prescribed U value is
U,. Clearly,

@.1) g' = Ay + U,.

Here and in the subsequent equations, when the scalar U, is shown being added to a
vector, it is intended for U, to be added to all elements of that vector.
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This sets the stage for formulating the numerical conformal mapping. Let the
boundary of the physical domain be described parametrically in terms of the running
parameter « (for example the length along the arc of the bounding curve) by

“.2) U = (o), V= v(®).

Let us pick discrete o;,i =1, . .., n, to identify the points that are to be mapped
conformally into the uniformly spaced boundary mesh points. To each «; there corre-
sponds a 3; and a ;. Let us also pick U,. The equation (4.1) gives the boundary U
values corresponding to the y and U,, values, which are compatible with the discrete
C-R equations being satisfied in the interior. The values 8" should be equal to the
values 8 but will not be for wrong choices of the values a. Let us then compute the
residue

4.3) R=p"-8=Ay+ U, -p.

The object of the numerical conformal mapping is to choose the o;,i=1,...,n,
in such a way as to force the residue to zero.

The Riemann Mapping Theorem shows us that we have to fix the point that is
to be mapped into the origin of the unit disk and the angular orientation to guarantee
a unique conformal mapping. It has been shown in this section that U, is specified
naturally as boundary data. The angular orientation is also easily fixed, for example
by stipulating that o, be fixed at a chosen value (fixing the point that is mapped into
the origin and the point on the physical domain boundary that is mapped into a chosen
point on the unit circle fixes the angular orientation too). It will be shown in the
next section how to fix ¥, the V value of the point that is mapped into the origin.
As a prerequisite, we compute for each fundamental solution, the interpolated V value
at the center of the unit disk. Let us store these values in the vector §. Therefore,
one way of fixing V is by choosing the o;,i =1, ...,n — 1, to satisfy

4.4 5Ty - Ve=0
in addition to forcing the residue to zero.

5. Minimizing the Residue. The basic numerical conformal mapping problem
has been formulated in the last section in terms of solving a system of nonlinear alge-
braic equations given by

G.1) R=A4v() + U, - B(a) = 0.
In this section it is shown how to employ parameter optimization methods to minimize
the residue in an attempt to force the residue to zero. It is also shown how the
penalty function method can be used to fix V,. The parameter optimization tech-
niques are only one choice of methods to solve (5.1). Other methods for solving (5.1)
are equally acceptable if they possess equal speed of computation.

In order to apply minimization techniques we first construct the preliminary loss
function f' given by

(5.2) f'=RTR= %4y + Uy - )"y + U, - B).
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The absolute minimum that f’ can achieve is zero and at that point, each element of
the residue vector R is also zero. It is also required to enforce our choice of Vy. To
do this within the framework of parameter optimization methods, we employ the
penalty function technique [5, pp. 53—59]. A penalty function measuring the degree
of dissatisfaction of (4.4) is appended to the preliminary loss function f' to yield
another loss function f.

(5.3) = +%BK,6Ty -V,

The problem of minimizing f subject to the constraint that §7y be equal to V, is re-
placed by a sequence of unconstrained subproblems of minimizing f. The subscript v
denotes the vth subproblem. The penalty constant K is increased between every sub-
problem; and in practice, after a few subproblems, the required minimum satisfying
the constraint is obtained. The convergence of this method has been proved in the
reference cited.

Two methods to minimize f for each subproblem are detailed below. They are
the Conjugate Gradient method (CG1) explained in [6] and a modified Newton
method. The basic Newton method can be found in [9]. The loss function f depends
upon the values of the parameters «;. Parameter optimization methods find the opti-
mum values for the parameters o; that minimize f. Both methods detailed have the
common scheme

o® = arbitrary,
of tt=of +¢fpf, i=1,...,n-Lk=0,1,...,

¢ = positive.

G4

The superscript & is the iteration number. The vector p defines the direction of
search. The scalar ¢ is the optimum step size in that direction of search and is deter-
mined by a one-dimensional or linear search procedure such as that described in [6].

The directions of search are chosen differently for the two minimization tech-
niques. For the CG1 method

p® = —g°, (steepest descent direction),

(5.5) pF=—-gFk +ukp¥=1, k=1,2,..., (conjugate directions),
k= 11g 1%/ gk R

Here g is thg gradient vector. The ith element of the gradient vector is

(5.6 g =0f/0q.

For the modified Newton method, the direction of search is given by
(6N)) ’ p¥ =-B~1g¥ forall k.
Here B is a matrix. The element b; ; of B is given by

¢-8) by ; = 92f/9e; e,
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under the condition that the second partial derivatives of 8 and y with respect to «;
and o; are assumed to be zero in deriving (5.8). If the second partials of 8 and v are
not set to zero, the method is the usual Newton method. The result of setting the
second partials equal to zero in obtaining B is that the B matrix is always positive
definite. This implies that the choice of direction of search given by (5.7) guarantees
a descent direction because the directional derivative is negative.

5.9 (g)Tp* = - (g°)7B~1g* <0.

In the above, the minimization is carried out only with respect to the first n — 1 ele-
ments of the a vector because «,, is kept constant to fix the angular orientation.
Therefore, the vectors p and g'are of dimension n — 1 and the B matrix is of dimen-
sion (n—1) x (n—1).

An explanation of the elements of the gradient vector and the B matrix would
complete this section. Because we do not want to minimize with respect to o, , we
consider its influence as a constant influence on f and separate it fom the influence of
the other elements of the a-vector. Thus, let A' be the matrix 4 without its last
column (hence, 4’ is of dimension (n — 1) x (n — 1)). Let a be the vector equal to the
last column of 4. Let 8’ be a vector of dimension n — 1 consisting of the first n — 1
elements of 8. Let 7' be a vector of dimension n — 1 consisting of the first n — 1
elements of y. Then

f=%A" + 7,8+ Uy =) AY + 7,8 +U;—p)

(5.10)
+ BK,6'TY + 74,8, — V).
Therefore,
of ' B oy’
5.11) —= + _\T (g L% )4 T, _ 1797

! ’ ’
5.12) O _ (o 88\ [ 9B\, g g7 ordr
O aoz]- da;  Oq aa,. aa,. v ¢ aa,.

Programming the gradient vector g and the matrix B is greatly simplified because

o 38;
l=0 and —@-=0 fori#j.
aai aa]

Thus, for example, the derivative of v’ with respect to o; is a vector with the jth ele-
ment being the only nonzero element. This implies that

' a'yf
A' gg— = 57“—] (jth column of the 4" matrix).
7 /)

When these details are taken into account in the programming, the execution time of
the computer code is greatly reduced.
Another time saving feature can be used in computing the B matrix. Let us
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write

'\T ’ a ’ ’
Term = A'g“’— Ao (20 g T
Q; 00; day 00
If we compute and store the transpose product of the A’ matrix along with the funda-
mental solutions, the time saving is obvious. Term is simply evaluated as
’ !

Yi 97
Term = — a——’ (element i, j of stored A'7A" matrix).
da; 00y

6. Examples. Examples are presented in this section to illustrate various features
of the numerical conformal mapping procedure. Before constructing the specific map-
pings that serve as examples, the fundamental solutions and the transpose product of
A" were computed and stored for three different meshes (different number of mesh
points). All the examples made use of these stored quantities. For every example con-
sidered, the boundary of the physical domain was described in terms of the cubic
splines that define § and -y as functions of a, the length along the curve. The (X, Y)
pairs needed to evaluate the spline coefficients were input at discrete points on the
boundary, and the arc length was approximated by the chord. The next step was to
minimize the residue. Then, the discrete C-R equations were solved with the y values
associated with the optimum « values and the prescribed U, to determine the discrete
conformal mapping. To display the map the U values at the ¥ mesh points were de-

termined by interpolation. The grid lines in the physical domain corresponding to the
constant coordinate lines passing through the ¥ mesh points in the computational do-
main were plotted for each of the examples. The constant coordinate lines in the com-
putational domain are shown in Figure 3 for a 32 x 16 mesh (n = 32, m = 16).
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FIGURE 3
Constant coordinate lines in computational domain
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To start the minimization procedure for all the examples, o values were chosen
at equal increments along the bounding curve unless otherwise stated. The value of
a, was left unchanged throughout the minimization. Several termination criteria were
employed. Each subproblem was terminated when the norm of the gradient vector
became as small as required. The overall procedure was terminated when the residue
became as small as required or when the constraint on V, was satisfied to the required
degree.

Before discussing the specific examples, some general timing information is
jpertinent. The times reported are for the Itel AS/S computer or the IBM 370/158
computer. All operations were performed in double precision arithmetic, and the pro-
grams were written in FORTRAN and compiled in H level with OPT = 2. The com-
puting times for the fundamental solutions, the times to compute the direction of
search using (5.7) and approximate estimates of the times to perform linear searches
are all given in Table 2 for the three meshes.

TABLE 2
General timing information

Total time for n Average time for 1
n m fundamental solutions| fundamental solution

(seconds) (seconds)
156 16 3.15 0.197
32 32 23.12 0.722
64 32 103.94 1.624
n Time to solve (5.7) Time for linear search

(seconds) (seconds)

16 0.01 0.05
32 0.07 0.17
64 0.48 0.45

Both the CG1 and the modified Newton methods use linear searches. In addition,
the latter method has to solve the system of equations in (5.7). This makes the New-
ton method slower per iteration than the CG1 method. But in many cases the Newton
method takes fewer steps to converge, and the overall time is smaller. To solve (5.7) a
linear equation solver that exploits the symmetry of the B matrix has been used and is
recommended. The modified Newton method is especially effective near the absolute
minimum. If the B matrix is singular or possesses a very small determinant, the New-
ton method cannot be used. The CG1 method does not have any such restrictions.



364 SUKUMAR CHAKRAVARTHY AND DALE ANDERSON

The CG1 method has to be restarted with the steepest descent step after n iterations
at most. The Newton method needs no restarting.

The first example illustrates that changing the point that is mapped into the
center of the unit disk changes the conformal mapping for the same physical domain.
In addition to showing the constant coordinate lines in the computational domain, Fig-
ure 3 also portrays the constant coordinate lines in physical space for a unit disk map-
ped onto the unit disk with the center of the physical domain mapped into the center
of the unit disk. Figure 4 shows the constant coordinate lines in the physical do-
main when U, was chosen to be 0.2 rather than zero. V, was left unconstrained for
this example. Thus there was only one subproblem to solve, and the penalty constant
was set to zero. For this example, V, turned out to be 0.335 at the end of minimi-
zation. Six iterations and 2 seconds sufficed with the Newton method for n = 32.
The residue was O(10~%) at termination.

FIGURE 4
Conformal mapping of unit disk with Uy = 0.2, V, = 0.335

The second example illustrates the use of the penalty function technique to con-
strain V,. Again, the unit disk was mapped onto the unit disk. But now the point
given by U, = 0.0 and ¥, = 0.2 was chosen to map into the center. The penalty
constant was defined to be 4.0 for the first subproblem and was increased in multiples
of 4.0 between subproblems. Three subproblems sufficed for convergence with the
total number of iterations being 18 for the Newton method and the time for computa-
tion being 5 seconds (n = 32). The residue was O(10~ %) and the constraint on ¥,
was satisfied to the same order. Figure 5 displays this example.

The third example is the conformal mapping of an ellipse with a semimajor axis
of 1.25 and a semiminor axis of 0.75. The regions of high curvature at the extremes
of the X axis required a mesh with n = 64 for accuracy. Both U, and V|, were set to
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FIGURE 5
Conformal mapping of unit disk with U,=00,V,=02

FIGURE 6
Conformal mapping of ellipse

zero for this case. A mesh with n = 32 was tried, and the method converged in 6
seconds after 3 subproblems and 21 iterations to R = O(10~3). The solution for a
mesh with n = 64 converged to R = O(10~5) in 18 seconds after 3 subproblems and
15 iterations when the iterations were started with the usual starting a values. But
when the iterations for n = 64 were started from « values obtained by interpolation
from the n = 32 solution, the method converged in 7 iterations and 8 seconds. This



966 SUKUMAR CHAKRAVARTHY AND DALE ANDERSON

example illustrates the time saving that occurs when lower order solutions are used to
start the iterations for a mesh with more points (for this example the time saved is 4
seconds). The modified Newton method was used for this example, and the constant
coordinate lines are shown in the physical domain in Figure 6.

The fourth example is the conformal mapping of a rock (an arbitrarily drawn
simply connected domain without corners) onto the unit circle. This illustrates the
generality of the method. For this example V|, was left unconstrained. Convergence
to a value of the residue of O(10~7) was reached in only 6 iterations and 2 seconds
with the modified Newton method (r = 32). Figure 7 displays this example.

FIGURE 7
Conformal mapping of rock

The last two examples illustrate the use of the modified Karman-Trefftz transfor-
mation to tréat boundaries with corners. The Karman-Trefftz transformation is given by

r=1_ <_—_h>6 .
T+1 z + h*

‘The complex z plane is the orgiinal physical plane where the bounding curve has a
corner at 2. The complex 7 plane is the intermediate physical domain, where the
corner has been smoothed out by the proper choice of §. The example chosen is the
region bounded by the lemniscate of Bernoulli shown as the bounding curve in Figure
8. The included angle at the corner is a right angle, and § was set to 2 to remove the
corner.

The forward Karman-Trefftz transformation removed the corner and mapped the
lemniscate onto a near circle shown as the bounding curve in Figure 9. The conformal
mapping from the near circle onto the unit disk was performed numerically, and the
constant ¢oordinate lines are displayed in Figure 9. Four iterations with CG1 method
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FIGURE 8
Conformal mapping of lemniscate of Bernoulli using Karman-Trefftz transformation

FIGURE 9
Conformal mapping of near circular intermediate domain

sufficed when V, was unconstrained, and the time required was just one second for a
mesh with n = 32. The modified Newton method failed for this example because the
determinant of the B matrix was very small. The points of intersection were mapped
back onto the original z plane, and Figure 8 shows the constant coordinate lines for
the conformal mapping of the lemniscate of Bernoulli.
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FIGURE 10
Another conformal mapping using Karman-Trefftz transformation

Another example using the Karman-Trefftz transformation was obtained by
performing another forward transformation from the mapping shown in Figure 9 and
the resulting constant coordinate lines are shown in Figure 10. We could have started
from the bounding curve of Figure 10, done a Karman-Trefftz transformation to obtain
a near circle, performed the numerical conformal mapping of the near circle and map-
ped back to Figure 10. For these last two examples, the constant coordinate lines in
the physical domain have been plotted with straight line segments to preserve the
accuracy of the physical domain at the corner, but this might be misleading in the in-
terior.

7. Concluding Remarks. A new, general method has been presented to com-
pute the discrete conformal mapping of any simply connected region onto the unit
disk. The direct relationship between the Riemann Mapping Theorem and the method
has been brought out in the presentation. The speed of the method has been demon-
strated by the examples. The residue R is an estimate of the global error of the num-
erical method and is obtained as part of the computation. Theodorsen’s and Barfield’s
methods do not possess such a convenient error estimate. Moretti’s technique is en-
tirely analytic and so does not possess any discretization error. It is very well suited
for generating computational grids for complex geometries, but does not address the
general problem of finding the conformal mapping of a given domain onto the unit
disk. Theodorsen’s method is mainly suited for airfoil-like geometries, and Barfield’s
method is slow.

Barfield’s direct method requires the solution of a linear system of equations.
Every different physical domain gives rise to a new system of equations. Thus, Bar-
field’s method would not be suitable for problems where the shape of the physical do-
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main changes in time. On the other hand, the fundamental solutions of the present
iterative method have to be constructed only once. The iterations for the solution

at a new time could use the previous time level solution as a starting point, thus
making the present method an efficient one for time varying physical domains. In
its present form, the new method maps the interior of the region onto the interior of
the unit disk. It is an easy extension with the help of preliminary analytic conformal
transformation formulas to map the exterior of a domain onto the interior of the
disk. Extension of the method to multiply connected regions needs more study.

A possible disadvantage of the new method is that the minimization techniques
cannot guarantee that the absolute minimum R = 0 will be attained. However, they
do guarantee that a relative minimum corresponding to a small value of the residue
will be reached. This has proved to be adequate for the varied examples considered.
The matrix multiplications needed to compute the residue are another disadvantage
for meshes with a very large number of mesh points due to possible error accumula-
tion. It was necessary to compute the U values at the boundary points when the V
values were prescribed. This was done in terms of a matrix multiplication where the
coefficient matrix comprised the fundamental solutions. This could also be done very
rapidly by using matrix decomposition Poisson solvers [3] to solve for the U and V
values at the few points near the boundary used in the interpolation formulas. Matrix
decomposition Poisson solvers are especially sutiable when it is necessary to compute
the solution to the discrete Poisson equations at only selected grid rows or columns.
If this approach is feasible, it would altogether eliminate matrix multiplications from
the numerical conformal mapping procedure.
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