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A Note on the Rosenbrock Procedure*

By T. D. Bui

Abstract. To be useful for extremely stiff systems of ordinary differential
equations, A-stability and a maximally damped condition as Ak = — * (i.e.,
L-stability) are desirable. This paper investigates the condition of L-stability
for a class of Runge-Kutta methods known as the Rosenbrock procedure.
This procedure requires only one computation of a Jacobian matrix per step
of integration. L-stable Rosenbrock methods up to order four are derived.

1. Introduction. In previous papers [5], [6], some A-stable and L-stable methods
for the numerical integration of stiff systems of ordinary differential equations were
developed based on the Rosenbrock procedure [14]. The conditions of A-stability and
L-stability require that the proposed methods must be implicit in nature. Butcher,
Ehle and Bickart have investigated the problem of implementing fully implicit Runge-
Kutta methods. Ehle [9] has shown that R-stage fully implicit Runge-Kutta methods
of order 2R developed in [3] are all A-stable. However, there is an impediment to
using fully implicit Runge-Kutta methods. It is that when an R-stage method is applied
to a system of n stiff differential equations, then a system of #R nonlinear algebraic
equations will have to be solved at each time-step by some scheme of iteration. If the
Newton method, or one of its variations, is used to solve these nonlinear systems,
then it is necessary to solve nR linear algebraic equations at each iteration-step within
each time-step. Butcher [4] and Bickart [2] have developed separately different pro-
cedures to cut down the number of multiplications involved in the solution of the
system of nonlinear algebraic equations resulting from an R-stage fully implicit Runge-
Kutta method. However, fully implicit Runge-Kutta methods still suffer from many
practical disadvantages and in practice they are not comparable with semi-implicit
Runge-Kutta or Rosenbrock procedures.

Semi-implicit Runge-Kutta processes have been studied by Nérsett [12], Nrsett
and Wolfbrandt [13] and Alexander [1] for the stability conditions and attainable
ordets. Many A -stable and L-stable methods based on semi-implicit formulas were pro-
posed in [12] and strongly stable methods based on diagonally implicit formulas were
developed in [1]. However, when these methods are applied to a set of n stiff differen-
tial equations, it is required to solve an n-dimensional system of nonlinear algebraic
equations. The Rosenbrock procedure, which does not require the solution of nonlinear
equations, has been investigated in [5], [6], [7], [10]. The implementation of this
procedure requires only the solution of linear systems of algebraic equations, a much
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simpler task compared to the first two approaches. In the following section, we will
investigate some properties of the Rosenbrock procedure with respect to stability and
attainable orders.

2. Conditions for L-Stability in Rosenbrock Procedure. We are concerned with
the numerical solutions of the system of differential equations

68 dyfdx =f(y), x>x4, Y(Xg) =Yg

where x ER, y(x) €ER",y, € R" and f: R" — R" is assumed to be analytic in the
neighborhood of y,. The system of differential equations (1) is called stiff in an inter-
val I, if ¥x € I the eigenvalues \;(x) of the Jacobian §f/8y satisfy the following con-
ditions:

(i Real \;(x)<0,i=1,2,...,n,

(i) max, |Real A;(x)| > min, [Real ;(x)|.
The Rosenbrock procedure for solving Eq. (1) is defined by

S
(22) ym+1=ym+hzlw,-k,-,
=
i—1 5f i—1 \
(2b) ki=f{Vm +h 7_‘,1 a;k; tdih s (Im + hi—zl bijki) k;.
= -

Definition 1. _A method is called A-stable in the sense of Dahlquist [8] if and
only if |y,, ,1/¥,| = ¢ <1 when the method is applied with any positive step-size h
to the test equation

3 dyjdx = \y,

where A is a complex constant with negative real part.
Definition 2 [11]. A method is called L-stable if it is A-stable and ¢ — 0 as

\h —> — oo,

THEOREM 1. When an s-stage Rosenbrock procedure is applied to the test equa-
tion (3), the procedure reduces to a rational function in q = \h

Im+1 _ 2i=o O‘iqi
Ym ';?:1(1 _diq)

@) =R, (q) wherer <sand a, = 1.

Proof. By direct substitution of Eq. (3)into (2), it is straightforward (but tedious)
to prove Theorem 1 by noting that (a,-j) is a matrix with all the elements in the
diagonal and upper triangular part equal to zero. O

THEOREM 2. The order of an L-stable, s-stage Rosenbrock procedure is at most s.

Proof. N¢rsett [12] has proved that the maximum order of an N-approximation
@-e., R, ,(q) with only real poles) to exp(g) is m + 1. It is easy to prove that
R, (q) given by (4) is an N-approximation to exp(q). Therefore, the maximum order
of an L-stable, s-stage Rosenbrock procedure is 7 + 1 <s. O
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THEOREM 3. When d; = d (for all i) is the inverse of one of the roots of the
Laguerre polynomial of degree s (i.e., Ly(x) = 0), then the corresponding Rosenbrock
procedure (Egs. (2)) has a rational approximation R, ; with r = s — 1 and whose order
is s.

Proof. R, ((q) is said to be rational approximation of order r to exp(q) if

R, (q) = exp(q) +O(¢"*"), Igl— Oandr>0.

Using Eq. (4) and expanding exp(q) in powers of g, we have
r i
im0 %4 1
ST Dl 0@ @ ==L,
i=o0 Pid i=0
where II_ (1 —d;q) = Z}_, Biqi.
Equating terms of the same power of ¢ from both sides, we have

o = Z(1~]')’ fori=0,1,...,r.

j=0
The condition of L-stability requires that
I
©) S 6!

Since 2i_, B; q = =1I-; (1 —d;q) = (1 — dq)*, then the binomial theorem gives §; =
(- 1)’(‘1?)d’ and Eq. (5) becomes
1Ny gt 1S\ At
§ o vgd & GO
=0 (s —10)! =0 il
From the definition of Laguerre polynomial of degree s, we have Ly(1/d) = 0. O
For the Rosenbrock procedure, whose rational approximation is given by Eq. (4),
the condition of L-stability (Definition 2) is equivalent to the following two conditions:
() Wpm41/Vm| <1onReal(Ah) = 0.
(i) ,,41/V, has lower numerator degree than denominator degree in g = AA.
Condition (ii) is achieved when Theorem 3 is satisfied. Thus, Rosenbrock pro-
cedures satisfying Theorem 3 and condition (i) simultaneously are L-stable methods
with highest possible orders. The derivation of a specific Rosenbrock method requires
the solution of a set of the order equations. These equations are obtained by matching
terms of the same order in the Taylor series expansions of the Rosenbrock procedure.

3. Some L-Stable Rosenbrock Methods.

Two-Stage Method of Order Two. In this case, L,(x) = 0 has two roots. The
inverses of these roots are 1 + 1/4/2 and 1 — 1/a/2. Theorem 3 states that the param-
eter d must have one of these two values. Furthermore, we can prove that
IR, ,(q@)I <1 on real (q) = 0 for both values of d. Thus, they satisfy the condition
of L-stability. Cash [7] and Rosenbrock [14] choose d = 1 + 1/4/2 andd =1-1/A/2
respectively, for the development of their L-stable methods.
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Three-Stage Method of Order Three. For L,(x) = 0, we have three roots: 0.415
774 556 8, 2.294 280 3606 and 6.289 945 0829. However, only the second root
satisfies the condition that |R2,3(q)| <1 on real (¢) = 0. Thus, the condition of
L-stability is achieved only for d = 0.435 866 5216. We have proved that the follow-
ing scheme is L-stable:

w, = w; =%,

a,,; =—0.509 643 6824,

ay, = 0.327 025 8661,

a;, = 0.310 884 7731.

by = 0 fori= 2(1)3,7=1(1)i - 1.
Alexander [1] has investigated this case for diagonally implicit Runge-Kutta methods.
The diagonally implicit Runge-Kutta method is defined by Eqs. (2) with Eq. (2b) re-
placed by

s
(6) ki=f<ym+hz ai]-k]-> fori=1,2,...,s,
=1
where
a 0 0° 0
a,, a 0 0
@)= |a3; a3, a 01,
asl as2 as3 a

ie., u; =aand a; = 0 forallj>i.

Comparing Egs. (2b) and (6), we see that the Rosenbrock procedure can be con-
sidered as a linearization of the diagonally implicit procedure.

Four-Stage Method of Order Four. Since L,(x) = 0 has four roots: 0.322 547
6896, 1.745 761 1012, 4.536 620 2969, 9.395 070 9123, the necessary condition
for L-stability requires that the parameter d should have one of the following values:
d, =3.100 316 735, d, =0.572 816 062 5, d; = 0.220 428 410 3, d, = 0.106
438 792 1. However, it is easy to prove that only d, satisfies the sufficient condition
for L-stability (i.e., [R5 4(¢)| <1). Using this value for the parameter d, a fourth
order L-stable method was developed in [S] which also minimizes the error constant.
This method is defined by the following set of parameters:

w, = 0.945 156 478 6,
w, = 0.341 323 172,

wy = 0.565 513 957 5,
w, = —0.851 993 608 1,
a,, =~ 0.5,

a;, = —0.101 223 611 5,
a;, = 0976 223 611 5,
a,, =—0.392 209 676 3,
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a,, =0.715 114 025 1,
a,; =0.143 037 162 5,
b;=0 fori=2(1)4,7=1(1)i- 1.

4. Conclusions. New L-stable Rosenbrock processes of higher order can be de-
rived by using theorems presented in Section 2. The only drawback for implementing
Rosenbrock processes is the problem of evaluating the Jacobian matrix at every time-
step. We are investigating procedures in which the Jacobian matrix is evaluated only
once at the beginning of an interval of x, then the same value is used again for the
whole interval.
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