MATHEMATICS OF COMPUTATION, VOLUME 33, NUMBER 147
JULY 1979, PAGES 993-1002

On the Numerical Evaluation of a Particular Singular
Two-Dimensional Integral

By G. Monegato* and J. N. Lyness**

Abstract. We investigate the possibility of using two-dimensional Romberg integration
to approximate integrals, over the square 0 < x, y < 1, of integrand functions of the
form g(x, y)/(x — y) where g(x, y) is, for example, analytic in x and y.

We show that Romberg integration may be properly justified so long as it is
based on a diagonally symmetric rule and function values on the singular diagonal, if
required, are defined in a particular way. We also investigate the consequences of ig-
noring fhese function values (i.e. setting them to zero) in the context of such a calcu-
lation.

We also derive the asymptotic expansion on which extrapolation methods can
be based when g(x, ») has a point singularity of a specified nature at the origin.

1. The calculation of the aerodynamic load on a lifting body occasionally re-
quires the calculation of a two-dimensional Cauchy principal value integral of the type

fl 18(x, )
0

0 x -y

dx dy.

(See, for example, Bisplinghoff, Ashley and Halfman [1].) One approach to the evalua-
tion of such integrals has been described by Song [5]. In this paper we show. that,
with some minor provisos, a straightforward application of two-dimensional Romberg
integration may be used in this problem.

The two-dimensional integral

(1.1) If = fol fol flx, y)dxdy

may be approximated numerically using a two-dimensional quadrature rule Q defined
by

(1.2) of = Z wif(x;, ¥;), 2 w; = 1.
j=1

=1
This rule has polynomial degree d(Q) when

(1.3) Of =1If forallfE€m,,

where 7, is the set of polynomials of degree d or less.
Definition 1.4. A symmetric rule Q is one for which

(14) 0f = 0f forall f(1 —x, 1 —y) = f(x, »).
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994 G. MONEGATO AND J. N. LYNESS

The m?-copy of the rule Q is defined by

. x; + k, y;i+k,
(1.5) omr="% ¥ > —-f( ).
k;=0 k,=0j=1M m
This is a weighted sum of function values obtained by subdividing the unit square into
m? equal squares of side 1/m and applying a properly scaled version of Q to each.
0(™) has the same polynomial degree d(Q) and is symmetric when Q is symmetric.

THEOREM 1.6. Let Qf and QU™)f be defined as above. Let f(x, y) be a function,
all of whose derivatives f s)(x, y) whose total order satisfies r + s < p are integrable
over the unit square. Then

(1.6) QUM —If = Z (Q‘f)+0( ), 2<I<p,

where

1.7 B(Q; /) = i Cyy -5, fol f; FE1S=S1(x, y) dx dy
§1=0

are coefficients which are independent of m. When f(x, y) is a polynomial of degree
d(f) or less

(1.8) B(Q; ) =0 Vs>d(f).
Moreover, when Q is a symmetric rule

1.9) B(Q;f)=0 Vsodd

and when Q is a rule of polynomial degree d(Q)

(1.10) B(Q;/)=0, s=1,2,...,dQ).

The foregoing definitions and results are well known (see, e.g. Lyness [3]). How-
ever, Theorem 1.6, on which the theory of Romberg integration is based, requires that,
unlike the integrands we treat in this paper, the integrand f(x, y) and its partial deriva-
tives be integrable over the unit square.

In this paper, we are interested in modifying and extending these results so that
an extrapolation method may be used to approximate the two-dimensional principal
value integrals mentioned above. We treat an integrand function

(1.11a) 16 3y = & i) X+,

where g(x, y) and all its partial derivatives up to a total order p + 1 are integrable
over the unit square.

The function f(x, y) is not defined at points along the diagonal. In the subse-
quent analysis it is convenient to extend the definition as follows:

% 9
(1.110) f(xy)—- ﬁ—ﬁ] X =y
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In our approach, we restrict ourselves to quadrature rules which are symmetric
about the diagonal.
Definition 1.12. A diagonally symmetric rule Q is one for which

(1.12) 0f=0f forall fx, y) = f(y, x).

Based on this symmetry we split both f(x, ) and g(x, ) into symmetric and antisym-
metric parts. Thus, we define

(1.13) g, (x, y) = %lelx, ») + g0, 0)],  &_(x, ») = %[g(x, y) — g0, x)],

and

(1.14) fG, ») =10, y) + Fi(x, »),
where
g_,_(x, »)
(1.152) e y= , X#Y,
x-—y
(1.15b) =0, x=y,
(1.16a) oG, )= st y) X # Yy,
og o0g
(1.16b) = [g‘g;] e

The reason for definition (1.11b) is now apparent. While not altering the nature of
the problem, it makes the symmetric part of f(x, y) differentiable. Since f_(x, ) is
antisymmetric about the diagonal it follows that when Q is a diagonally symmetric
quadrature rule

(1.17) of =™y =1If =0
and so
(1.18) Qmf—If = QM ~If,.

Moreover, when g(x, y) is a polynomial of degree d(g), it follows that f_ (x, y) is a
polynomial of degree d(g) — 1.

We may now obtain an analogue of Theorem 1.6, relating to function (1.11) by
using (1.18) and applying Theorem 1.6 to the function f, (x, y). This gives

THEOREM 1.19. Let Q be a diagonally symmetric rule (Definition 1.12). Let
flx, ¥) = g(x, »)/(x —»), where g(x, y) and all its derivatives of total order p + 1 or
less are integrable over the unit square; and let f(x, x) be defined according to (1.11b).
Then

(1.19) oM — If = Z 549 f* +o0m™), 2<I<p,



996 G. MONEGATO AND J. N. LYNESS

where the coefficients B(Q; . ) are defined in (1.7) and satisfy properties (1.8), (1.9)
and (1.10).

In terms of g(x, y) the first condition for the vanishing of terms in this expan-
sion is simply that, when g(x, y) is a polynomial of degree d(g),

(1.20) B(O;f,)=0 Vs>d(g) - 1.

In practice then, one may apply Romberg integration in any of its many forms
to this problem using any set of mesh ratios my <m;, <m, - - - so long as it is based
on a diagonally symmetric rule Q. Most standard rules Q are diagonally symmetric.
For example, the midpoint or the vertex rules

a2 of = (%, %),

(1.22) Of = '(f(0, 0) + (1, 0) +f(0, 1) + £(1, 1))

can be used. These happen also to be symmetric in the sense of Definition 1.4 and
so the error functional has an even expansion. Thus, Romberg integration takes pre-
cisely the same form as in the conventional case, though it is necessary to replace the
indeterminate function values on the diagonal by f(x, x) = (dg/dx — dg/dy)/2.

In some applications, the values of dg/dx and dg/dy on the diagonal may not be
available, or may be inconvenient to obtain. In Section 2 we discuss briefly the effect
on the theory if these are simply ignored (or set to zero). This is not recommended,
but it is permissible at the expense of replacing an even expansion by a full expansion.
In the rest of this section we pursue, in a practical context, the obvious alternative of
avoiding the problem by using a rule which does not require such evaluations. This is
also accomplished only at additional expense.

Thus, we require a rule Q satisfying the following properties:

(a) Q is diagonally symmetric (so the theory is applicable).

(b) None of the m?-copy rules Q™) require function values on the diagonal
(so as to avoid evaluations of dg/dx and dg/dy).

(c) Q is symmetric (so the error functional expansion (1.19) is even in character).

Even with these restrictions there is an almost limitless choice of rule Q. And,
as in Romberg integration, it is an open question as to which choice of Q, together
with which mesh ratio sequence m, <m; <m, <- - - is most appropriate. We shall
confine ourselves to drawing attention to some of the simplest rules. Of interest are
particularly the degree of d(Q) and the number of function values V(Q(m )) required
by the m?-copy.

Undoubtedly, the simplest such rules satisfying these conditions are those of the
form

(1.23a) Of =%(fla, 1 —)+f(1 —a, ), 0<a<¥H.
For these rules

(1.23b) aQ)=1; v»Q™)=2m?.
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The choice a = 1/4 gives an aesthetically pleasing pattern of points. Slightly more
sophisticated rules have been suggested by Squire [6]. These are of the form

For these, in general

(1.24b) dQ)=1; v»Q™)=4am? g+o0.

Two special cases are of interest. When 8 = % — \/l_/-6-, this rule is of degree d(Q) =
3. When 8 = 0, this rule reduces to a symmetrized version of the cartesian product
of the midpoint and the endpoint trapezoidal rules, namely

(1.253) of = "%4(f(0, %) + (1, %) + f(%, 0) + f(%, 1))
and
(1.25b) dQ)=1; vwQ)=2mm+1), B=0,

as points lie on the edge of the square and are shared between neighboring squares.
When the rule is of degree 1, the application of Romberg integration is standard.

One chooses a mesh sequence 0 <m, <m; <m, <:--. One defines the initial
column of the Romberg table by

K _
(1.26) Tg = QUmi)f

and calculates elements of the Romberg table in the usual way

20k _ 2 k+1
mTy_y My pTp ]

2 _ 2
My —Miip

k _
(127 T =

The elements T}’f of the pth column are exact whenever g(x, y) is a polynomial of de-
gree 2p or less.

A word of caution about the choice of mesh sequence is in order. In the classi-
cal version of one-dimensional Romberg integration, the geometric sequence

(128) m]=2], ]=0, 1,2,,

is suggested, partly because of the possibility of reusing function values. In higher
dimensions the relative gain arising from the reuse of function values diminishes while
the cost of using high mesh ratios may become prohibitive. For example, if one uses
the rule (1.25) or (1.23) with a = % the situation is that the set of points required by
0 includes those required by 0Mf n<m, only if m/n is an odd integer. Thus,
at best, only approximately one ninth of the function values required by Q™) are
likely to have been calculated previously. Incidentally, by using the sequence (1.28)
one ensures that there is no reuse of function values. The argument in favor of se-
quence (1.28) simply has no validity in this context.

A sequence which in general seems to balance the requirements of numerical
stability and economy is the familiar
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(1.29) m;=1,2,3,4,6,8,12,16, ...

but, as in the classical Romberg integration case, a convincing theory in this area is
lacking.

2. In this section, we examine the effect of using a rule which involves function
values on the diagonal, but ignoring the singular values of f(x, y), i.e. setting f(x, x)
=0.

We write the quadrature rule in a form which displays the points on the diagonal,
thus

v, v,
2.1 of = Z ij(xj» yj) + Z ij(tj, tj), Xj ;&yi'
j:l j=l

We define the first summation on the right as @[ 1] f. In general, 6["’ ] fis a rule
which coincides with Q(™)f except that the function values on x = y are omitted.
Specifically,

Definition 2.2.

-1%2 W, ft.+k t;,+k
2.2) Slmlr_ Him) _m 1‘2‘ __ff_]___ I .
omlr=0mr- = T
We define
(23) q(x) = f(x, x)
and the one-dimensional operator R by
)
in which case it follows that
~ 1
@5) Qi - Qlmly = ~R(Mq.

Should X W; =1, R is a quadrature rule operator. Otherwise, R has many properties
in common with quadrature rule operators. If Wi # 0, it is simply a scaled version
of a quadrature rule. When X W; = 0, it is a null rule defined in Lyness [2]. In all
cases, a one-dimensional version of Theorem 1.6 provides an expansion for R(™)q,
namely

(2.6) R™q =p +-b—‘+---+?ﬂ+o h, 1<i<
. q=bo +— s (m™), <I<p,
where

1 1.
2.7 by = co(R) f o 4(x)dx; b; = ci(R) Io dD(x) ax.

The coefficients ¢, (R) are simply the numbers obtained by applying the operator
R to B, (x)/k!, where B, (x) is the Bernoulli polynomial of degree k. This may be
written in the form
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(2.8) cx(R) = R, (B (x)/k!).

When R is symmetric b; = 0 for odd j and when R is of polynomial degree d(R), b,
=by =+ =byr)=0. When g is a polynomial of degree d(g) — 1,5; = 0 Vj >
d(g) — 1. Using these results together with those of Theorem 1.19, it follows that

THEOREM 29.

- =1 C,

29) olmlp-Ir=3% =+o00m™),
s=1Mm

where

(2.10) C,=By(0;f) ~bsy-

Thus, one may ignore the singularity and still employ an extrapolation method.
However, the structure of these coefficients shows that there is no obvious way to
choose a rule Q so that an even expansion is obtained. When Q is symmetric R is also
symmetric. In this case we have By = b, = 0 for odd s, but this does not imply that
any of the coefficients C are zero.

Thus, one is forced to use a version of Romberg integration based on a full ex-
pansion. An examination of the number of function values required to obtain a result
of specified polynomial degree in g(x, ¥) shows that it would be usually advantageous
to use a rule like (1.25) above (which does not require singular points and which has
an even error functional expansion) than to use say (1.21) above and ignore the singu-
larity.

The conditions required to make some of the coefficients vanish are noted here,
but these are of mainly academic interest. If g(x, y) is a polynomial of degree d(g),
then

(2.11) C, =0, s5s>d.

If Q is symmetric and of degree d(Q), then

(2.12) C,=0, s5=2,4,...,dQ)-1.

If Q is of degree d(Q) and R is a rule, or a scaled rule of degree d(R), then
(2.13) C,=0, s=2,3,...,min(d(Q), d(R)).

If, in addition, R is a null rule of degree d(R), C; = 0. (A null rule of degree d is one
which integrates (incorrectly) all polynomials of degree d or less to zero. See Lyness
[21)

For practical purposes, construction of a rule Q having properties such as these
is not worthwhile. However, it is interesting to note that if Q is the product of two
identical one-dimensional rules of degree d(Q) which assign equal weights to each
abscissa, i.e.

(2.14) oF==% 3 Ity %),

1
VUi=1j=1
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then

1 v
(2.15) 4== Z q(x;)

is a scaled version of a rule of degree d(Q) and in view of (2.13) the expansion con-

tains terms m~!, m™971 ;9472 . ..

3. In the two previous sections we treated an integrand function g(x, y)/(x — y),
where g(x, ) together with its derivatives of order up to p + 1 are integrable over the
unit square. This restriction on g(x, y) allowed us to apply Theorem 1.6 to the func-
tion £, (x, y), a fundamental step in constructing the theory.

In this section we extend the previous theory to cover cases in which g(x, y) has
an integrable point singularity of a type specified below at the origin. This extension
is based on Theorem 3.1 below which is a generalization of Theorem 1.6.

In the sequel, (r, 8) is the polar coordinate representation of (x, y). The func-
tions h(r), ¢(9) and G(x, y) are analytic in 0 <r <+/2;0<0 <nm/2and 0<x, y
< 1, respectively.

THEOREM 3.1 (LYNESS [3, THEOREM 5.14]). Let

(3.1) F(x, y) = r*¢(0W(r)G(x, y).
Then B0
A ; (0;
(32a) QMF-IF~Y Aar2s dOF) > ——Fz, a # integer,
=0 ma+2+t =1 ms
OME— [~ 3 AJQ; F) + B(Q; F)
(3.2b) s=1 m
: F)l
+ 3 -—-——————CS(Q,F) nm’ o = integer.
s=1 m®

We now treat the same problem as treated in Sections 1 and 2 but with an inte-
grand function given by

g, y) _r*o@M(NG(x, y)

x - x-y '

The functions f_(x, ) and f, (x, y) are defined precisely as in Eqs. (1.13)—(1.16)
above and satisfy (1.17) and (1.18). The function f, (x, y) is of the same form as
F(x, y) in (3.1), and so we may apply Theorem 3.1 to f, (x, ) to obtain the following
result,

(33) fx, y) =

THEOREM 34. Let f(x, y) be given by (3.3) and Q be diagonally symmetric.
Then the error functional QU™)f — If has an asymptotic expansion of form (3.2), the
arguments (Q; f) in the coefficients on the right being replaced by (Q; [ ).

Note that a function evaluation at the origin, if required by Q, may be ignored
at the expense of introducing at most one additional term into the expansion (see [3,
Theorem 5.17]).
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An expansion of the type described in Theorem 3.4 may be used as the basis of
an extrapolation procedure to estimate an integral whose integrand is of form (3.3).
An example (of a form treated in [6]) is

(3.5) [ f‘ o, y)

Expressing the integrand in the form

1 G(x, y)
cos@ +sinf x—y ’

(3.6) [, y) = 1

we may apply Theorem 3.4 directly to obtain
Dy ( ;

mS mS

(3.7 omf — if ~ Z

so long as Q is diagonally symmetric. If in addition Q is symmetric, the terms C, with
s odd are zero and may be omitted. (See Lyness [3, Equation (4.19)].)

Nearly all the expansions given in [3] may be generalized in this way to produce
corresponding expansions for the case in which the additional (x — y)~! is present and
the rule Q is diagonally symmetric.

For example, when g(x, y) has the form r*(In7)?¢(0)a(r)G(x, y) where q is any
nonnegative integer, the appropriate expansion for the error functional may be derived
in an equally straightforward manner from one of those described in Sections 6 and 7
of [3]. Moreover, when g(x, y) has singularities of the type x*y*(In x)? where a, §
> —1 and q is any nonnegative integer, a suitable expansion exists, being based trivially
on one-dimensional expansions given in [4].

A prospective user of these expansions should be aware that in many cases a
significant proportion of the coefficients displayed in expansion (3.2) may be zero.
Including nonexistent terms in an extrapolation process is not harmful but results in an
unnecessarily expensive calculation. Some of the cases in which some coefficients are
zero are given in [3].

4. We have shown, in Section 1, that when g(x, y) is analytic, one may employ
any of the many variants of two-dimensional Romberg integration to evaluate integrals
of the form

(@.1) f f‘ 8, J)’}) 1y,

X

and most of the standard properties associated with Romberg integration are valid.
There are, however, two provisos. These are that a diagonally symmetric rule Q should
be used and that the function values on the diagonal if required should be calculated
using (1.11b). As is usually the case, when the rule Q is symmetric, the expansion on
which Romberg integration is based is an even expansion in inverse powers of m.

We have also shown that if one uses a rule which requires function values on the
diagonal but ignores these function values, then one may still use Romberg integration
in the same way, but the expansion required is a full expansion in inverse powers of m.
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In Section 3 we have generalized the theory of Section 1 to cover cases in which
&(x, y) has a point singularity of a specified nature at the origin.
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