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New Euler-Maclaurin Expansions and Their
Application to Quadrature Over the s-Dimensional Simplex

By Elise de Doncker*

Abstract. The u-panel offset trapezodial rule for noninteger values of u, is introduced
in a one-dimensional context. An asymptotic series describing the error functional is
derived. The values of u for which this is an even Euler-Maclaurin expansion are
determined, together with the conditions under which it terminates after a finite number
of terms. This leads to a new variant of one-dimensional Romberg integration. The
theory is then extended to quadrature over the s-dimensional simplex, the basic rules
being obtained by an iterated use of one-dimensional rules. The application to
Romberg integration is discussed, and it is shown how Romberg integration over the
simplex has properties analogous to those for standard one-dimensional Romberg
integration and Romberg integration over the hypercube.

Using extrapolation, quadrature rules for the s-simplex can be generated, and a
set of formulas can be obtained which are the optimum so far discovered in the
sense of requiring fewest function values to obtain a specific polynomial degree.

1. Introduction and Summary. The usual definition of the u-panel offset
trapezoidal rule, as given in Lyness and Puri [4], restricts u to being a positive integer.
We extend their definition to apply with arbitrary positive u. An asymptotic expan-
sion is derived, describing the error functional which corresponds to the rule sum.

In this way it is, for example, revealed that the u-panel mid-point and end-point offset
trapezoidal rules satisfy an even Euler-Maclaurin type expansion not only for integer
but also for half-integer values of u. This suggests that one may use also the latter
rules for one-dimensional Romberg integration. All of the one-dimensional results are
presented in Section 2. Section 3 deals with the extension of these results to the
s-dimensional unit simplex A,. This extension is carried out following the techniques
of Lyness and Puri [4]. The s-dimensional rule is defined as an iterated rule
operator, obtaining the rule sum by a repeated application of one-dimensional p-panel
rules. If the product is formed using only mid-point or end-point offset trapezoidal
rules, it is found to satisfy an even Euler-Maclaurin expansion for half-integer u and
for integer u, and can be used as a basic rule for Romberg extrapolation.

The extrapolation procedure for deriving rules of specified degree over A  enjoys
similar properties as standard Romberg integration and Romberg integration over the
hypercube (Baker and Hodgson [1]). For the line and the hypercube the integration
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1004 ELISE DE DONCKER

rules produced in this way are, however, far from optimum (in the sense of requiring
fewest function values to obtain a specified polynomial degree). But for the

simplex it will appear that rules can be generated which are the minimum point
formulas yet known (Section 4). For their construction we employ mesh ratios
which yield an even expansion of the error functional and which are as small as
possible. With use of the sequence of mesh ratios (k + %)k=0,1 ... if s is even, and
the sequence (k + 1),_, ;  if s is odd, simplex product mid-point rules are con-
structed which are invariant under the group of all affine transformations of Ag onto
itself. The family constituted by the diagonal Romberg elements has also been con-
structed by Grundmann and Mdéller [2], using combinatorial methods. And they
conjecture that, in the set of all integration rules of degree d = 2p + 1 for A, their
formula has the smallest possible number of nodes if s = d — 1. Special cases are the
formula of degree 1 (p = 0) which is the mid-point formula T;: 1 — 1 in Stroud [5],
and the rule of degree 3 (p = 1) which coincides with the formula of Hammer and
Stroud represented by T: 3 — 1 in Stroud [5].

2. One-Dimensional Asymptotic Expansions.
2.1. Basic Definitions and Terminology. Let ¢ be a real-valued function defined
and integrable on the interval [¢, b]. The integral of ¢ on [a, ] will be denoted by

@.1) Ila b9 = [ o) dx

or I [a, b]¢(x), if we want to indicate explicitly that the integration variable is x.

Definition (22). Let u>0,0<a<b<1and -1<a<1. The u-panel
offset trapezoidal rule operator R{* 1[4, b] (also denoted by R,lc“""] [a, B]) is .
defined by

oo

@2) R[4 p)g = ‘—i > 660)

j:—oo
with

=1+,
(2.3) XpE T
1+«

2.4 t, = 3
and
(2.5) 0; = H®b —x;) — H(a — xy),

where H represents Heaviside’s function.
For a < b, (2.5) has the meaning

6,=1, a<x;<p,
%, x;=a<bora<b=x,
2.6)
( 0, a=b,

0, otherwise.
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In the case in which u is an integer, u = m, Definition (2.2) coincides with the
definition given by Lyness and Puri [4, pp. 274—275].

Note that
(1,01 =1 j -1
Q.7) RU#-01a, ] = “,EwG< 2u>’
with
(2.8) G(x) = [H(b —x) — H(a —x)] ¢(x).

Note also that the cases & = 0 and « = 1 with u half-integer (u =k + %,k >0,k
integer) turn out to be reflections of one another on [0, 1]

(2.9) R[k+‘/z,0][O’I]¢ER[k+Vz,1][O’ 1]y
with
(2.10) Y = ¢(1 — x).

Figure (2.11) gives the abscissae in [0, 1] of the rules

@iy RETHOT0 6= k-ll-%l:z¢<27-l_-—l—> ¢(1)]

fork=0,1,2.

RUI201(0, 116 = 6(1) or |
wrmone- 2 ha] o 1,
1
oot o3 (3 o) ] oL L
1 3
5 5
FIGURE (2.11)

2.2. The Asymptotic Expansion for R1*%1 [a, b] . The following theorem
provides an asymptotic expansion for RU#2] [g )¢, which will be fundamental for
deriving the expansion applying to the s-dimensional simplex (Section 3).

THEOREM (2.12). If the function ¢: [a, b] C [0, 1] — R is continuously
differentiable of order D + 1 on |a, b]

¢ €CP*1[q, b], where D>0and p>0,

the error functional expansion of Rlma] [a, b] ¢ is given by
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b
RV (g b]¢ ~ [ g(x)dx

D+1 B ( ub) ([ — ua)

2.12 = L[_____ @-1)py— 92 "7 a-1) ]

(2.12) q; " . ¢ ®) - pr ¢ (@)
Bp 1, — )

“Dﬂf ¢(D+1)()———&;+ o 4

where the notation B q(x) is used for the periodic Bernoulli functions as defined in
Lyness [3].

Proof. The theorem has been proved for u integer in Lyness [3] and is quoted
in the above form but with u replaced by m in Lyness and Puri [4]. Thus, it holds
for u integer. Now, for the case where u is noninteger, let k be an integer, k > pu,
and define

(2.13) $(x) = (kx/u).
Then
(p,al _ Kk pikal [ pb]~
(2.14) R “ [ar b]¢ “R [k bl k]¢‘
Since k > u, we have
pa  pb
.15) [k, k] c o, 1].

Since in addition k is an integer, we may apply (2.12) to RU%*] [ua/k, ub/k] % and
hence derive the following expansion:

[kalﬂaub] mub]
R [ -1 %] @

D1 1 [By(ty —ub) ~ o (ub) Byt — ua) ~
(2.16) ; k—[_qT— &a— l)<k> _q_T (q 1)<k>]

u fba'(D+l)<ﬂt>BD+l(t )
TR k)" D+ D)

Multiplying both sides of (2.16) by k/u and substituting

q-1
F@-1) &L) =<’£> @-1) - D+
(2.17) ¢ <k “ ¢ ()’ q 19"'3 2’
yields the statement of Theorem (2.12) as written.

In order to establish some important properties of our summation formula
(2.12), we write it in the form
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D A
(2.18) Rl blg =1I[a, b]¢ + 3 ;,‘1 +Ep. 1,
a=1
where
By(t, — ub) B (t, — va)
Aq=Aq(Ol,lly o, a, b)=—-_._q_ pla- 1)() _7__¢(q 1)()
2.19
@19 g=1,...,D,
and

Epyr =Epi (@ i 6,0 b)

1 [§D+l(ta — ub) ¢(D)(b) _ —D+1( — pa) ¢(D @

T D+ ® + 1) O+ 1!
(2.20)

Bty — ub)
'ff")(DH)(t) ——————[EI;I+ i dt:|

1
~o(pm).
pP+1

Inspection of the expressions (2.19) and (2.20) for 4, and £, |, respectively,
reveals immediately that the asymptotic series for R[" @l a, b]¢ will terminate if ¢
is a polynomial.

COROLLARY (2.21). If ¢ is a polynomial of degree d, then
Aq=0=Eq, ifg>d+1,
orifq > d, ua and ub integer,

or if q > d, ua half-integer or integer and ub half-
integer or integer, t, = 0 or %, and d even.

If we consider the special and familiar case of the unit interval (@ = 0 and
b = 1), (2.19) becomes
By, — W) B,(t,)
q\v a
(222) A ou )= ——q!—— ¢@=1)(1) - p ———4@-10), ¢g=1,...,D.
For use in one-dimensional Romberg integration, the most interesting cases will arise
if & and p are chosen so that R[#*1[0, 1]¢ has an expansion in even inverse powers
of u. From (2.22) we see that terms with ¢ odd in the expansion will drop out when
both {t, —u} and {¢,} are O or % (where {x} denotes the fractional part of x). This
occurs when

(223) {'u} =0 or %

and
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(2.24) t,=0 or %.
Hence,

COROLLARY (2.25). If u is integer or half-integer and t, = 0 or %4,
R%21[0, 1]¢ has an expansion (2.18) in even inverse powers of .

The coefficients 4 a of the remaining terms depend on u only through its
fractional part {u} (for ¢ and « fixed).

2.3. Application to One-Dimensional Romberg Integration. Since the coeffi-
cients 4, in the expansion for RU%21[0, 1]¢, depend on u only through its
fractional part {u}, Romberg extrapolation can be applied to any sequence
(R[" kel0, 1] ¢);, computed with a sequence of mesh ratios (uy), satisfying

(2.26) My — Mo = integer, k=0,1,....
The table is constructed in the usual way, setting

227) T = R“0*1 0, 179

and using the Neville algorithm to compute the other entries. Thus
(2.28) T =Tk oy (T -T5_), p>1,

where when (2.27) has an even expansion,

(229) Hrp = Me/ (s p — HE),
and where
(2.30) Mg, p = Mgl (Mgt p = B

if the expansion is not known to be even.
Concerning the polynomial degree of accuracy of the elements occurring in the
Romberg table, it follows from (2.21) that

COROLLARY (2.31). If the sequence (R[” el [0, 1] ), has an even expansion,
then Tzl; has polynomial degree of accuracy

d=2p +1, if (u,)y is a sequence of integers,

2p, if (g )y is a sequence of half-integers.

If (R[“ ko] [0, 1]6), has an expansion which is not even, then TI’,‘ has polynomial
degree of accuracy d = p — 1.

3. Asymptotic Expansions Applying to the s-Dimensional Simplex.

3.1. Product Trapezoidal Rules for the s-Dimensional Simplex. In this section
we define an s-dimensional analogue, for the s-simplex, of the one-dimensional
trapezoidal rule operator R (el [0, 1], and construct an Euler-Maclaurin-like
expansion for the error functional. We rely on the derivation of Lyness and Puri [4].



NEW EULER-MACLAURIN EXPANSIONS 1009

We extend their theory, which is restricted to positive integer mesh ratios u, by
allowing arbitrary positive values of u. Let us consider the s-dimensional unit simplex

S
3.1 Al =‘{(xl, coxdli=1,000,80x,20, '21 x; < 1}
i=

and a real-valued function ¢ defined and integrable over A.
The integral of ¢ over A, can be expressed in the form of an iterated integral

IA$ = fA;j)(xl, ceasxgdxy v dxg

_le[O: I]Ix2[09 l —x111x3[03 1 —xl _x2]

(3.2
s—1
Ixs[O, 1-3 ]q&(xl, ceX),
i=1
where the subscripts x;, i = 1, . . ., s, indicate the order of the integration variables.

Permutations of the integration variables will produce different integration orders,
and result in integration over some other simplex.

In a corresponding manner we define the s-dimensional simplex product
trapezoidal rule operator.

Definition (3.3). Letu>0and - 1< <1foralli=1,...,s. We define

RUTAg = R [0, 1RV [0, 1 - x)]

(3.3) ou) -
Ry 0, l—glxi B ys -, Xg),
where each R,[c': e ], i=1,...,s,represents a one-dimensional offset trapezoidal rule

defined as in the previous section and operating in the x;-direction.
Three-dimensional examples include

RIT1A g =0,

G4 RI112T1A, =0,

(32014 -3 (1
R A, 27[

(52017 = 85
R A3 = 135

=

111 1./311 1./(131
CHE 2(333) 54’(5’ #3)
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It will be interesting to note that some of these rules have the property of being
invariant under the group of all affine transformations of A_ onto itself. The following
can be established in a straightforward manner:

THEOREM (3.5). The rules RI#.0 ]As with u half-integer, if s is even, and u
integer, if s is odd, are affine invariant with respect to A.

3.2. The Asympto_{)ic Expansion forR[ ol ] Agp. We shall now establish an asymp-
totic expansion for RI*® ]Asqs having the same form as its one-dimensional analogue
(2.18). In Lyness and Puri [4] it is proved that, for integer mesh ratios u = m, an ex-
pansion in inverse powers of m is obtained, where the coefficients are independent of m.
For noninteger y, Rl A ¢ will be shown to have an expansion in inverse powers of y,
where in general the coefficients depend on u. As we want to establish the s-
dimensional analogues of corollaries (2.21), (2.25) and (2.31), we need to determine
the nature of this dependence. However, the derivation of the asymptotic expansion
will not be given in full, since it can be constructed following the general lines of the
three-dimensional proof given in Lyness and Puri [4].

THEOREM (3.6). Let the function ¢: A, — R be continuously differentiable
of order D + 1 on A
¢ €CPYIA, where D >0

(requiring that ¢ and all its partial derivatives of total order D + 1 or less, be continu-
ous in all variables, within and on the boundary of A). Then Rlwe ]Asq& satisfies an
Euler-Maclaurin-like expansion

(3.6) Tl g = o Aq
Rlme ]As¢ _IAS¢ * qgl ?’ * ED+1’
with
—> —>
Aq=Aq(a)IJ,¢)’ q=1a"')D: ED+1=ED+1(a?l‘l?¢)'

The dependence of A q On K (¢ and Z fixed) is only through the fractional part of u.
Furthermore,

1
(37) |ED+1(&>,H) ¢)|~O<“D+l >

The proof of this theorem is long, and is of a similar structure to that of the
proof of Theorem 4.29 given by Lyness and Puri [4, pp. 279—282]. Here we merely
state the construction of the coefficients 4,. Using this the reader will have no
difficulty in adapting the proof in Lyness and Puri [4] to establish the theorem.

3.3. Construction and Properties of the Coefficients A a Set

(3.8) a(xy, . .., x) =0y, ..., X

and define recursively the following functions, for k =0,1,...,s— 1:
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aqs—k’""qs(xl’ e X g )
—_ s—k
) qu—k<_ u+ 1;1 t“i) aTs—k—1
= A
(39 . aqs—k+1’-~~’qs(xl’ tee ’xs—k) e
xg_;=1-2; x;

=1 i

_ qu—k(t"‘s—k) o¥s—k—1

qs—k! ds_k—1
xSy
. aqs—k+1»--~»qs(xl’ cee s Xg k) v Gy =1
X5 k=0
If g;,_, = 0, this is interpreted as an integral
aO,qs_kﬂ,...,qs(xl’ e Xg gq)
3.10 —k—
(310 f1—22?=1k Lx
=J, aqs_kﬂqus(xl, ce s X )dXg g

With k = s — 1, the constants 8q,,ay 3T€ defined. The coefficients 4 q 1€ oW
obtained as

(3.11 A, =2 @, 4.
) TR s
From (3.9) we see that each aq,,..,q, 18 a sum of terms involving the product of a
¢-depending factor multiplied by H§=1§q i()\i)’ where the Bernoulli functions are
evaluated either at A, = ty, O A; of the form
i
(3.12) N=—ut ) tay
=1
It follows immediately that the dependence of 4 q On i (¢ and @ fixed) is only
through its fractional part {u}.
From the expression for 4 ¢ in (3.11) we see that ¢ odd corresponds to the
occurrence of at least one odd subscript in each g,y So if each of the quantities

to, and —u + E§=lta P fori=1,...,s,is integer or half-integer, this will imply
that 4 q With g oddvanishes. This occurs when

(3.13) =0 or %
and

(3.14) t“i=0 or %, i=1,...,s.
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Hence, we have

COROLLARY (3 15). If u is integer or half-integer and t, % =0or¥%fori=
1,...,s then R[“’“ N < has an asymptotic expansion (3.6) in even inverse powers
of M. The coefficients A of the remaining terms depend on u only through its
fractional part {u} (for ¢ and o flxed)

We shall now prove that the asymptotic series (3.6) terminates if ¢ is a poly-
nomial, which will establish its possible application to the construction of s-dimensional
quadrature rules.

LEmMA (3.16). If ¢ is a polynomial of degree d, then

s
%ymay = O I i integer and ,Z:l q;>d+s-1,

S
or w arbitrary and 3 q;>d +s.
i=1

Proof. If the functionag sa O -y Xg_ ) defined in (3.8), (3.9) and
(3.10) is a polynomial of degree d,_ it follows that Uqy gty Geps o v o Xg_gq)is
a polynomial of degree

(3.17) dy g1 Sdg j —qg_p + 1.

Applying (3.17) s — 1 times shows that aqz’.._’qs(xl) is of degree

s
(3.18) dl<d—zzqi+s—l.
l=

If u is integer, then for k = s — 1 (3.9) and (3.10) reduce to

B ,.) (1 301
3.19 -9~ 9
( ) aql»”'aqs ql! fo aqu aqz,...,qs(xl)dxl‘
1

So, if in this case

S
d—Zqi+s—1<ql,
i=2

ie.

(3.20) d+s—1<i=ilq,-,
then the integrand in (3.19) is identically zero, and
(3.21) %, ma, = 05

which proves the lemma for integer u.
If i is not integer, we apply (3.17) s times, yielding that gty has degree

s
(322) dy<d-Y q;+s.
i=1
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So, if
s
d- Y q;+s<0,
i=1
ie.
S

(3.23) d+s< Zl a;

l=

then a, e becomes a polynomial of negative degree, which assumes the meaning
that g, ,...aq is identically zero. This completes the proof.

From (3.11) we see that A, is a sum of coefficients aq,,....q With 24 =4
This leads to the following theorem:

THEOREM (3.24). If ¢ is a polynomial of degree d, then

Aq=0, ifq>d+s,
orifq>d+s—1 and u integer,

orifq>d+s—1anduhalﬁinteger,tai=00r1/zfori=1,...,s,
and d + s — 1 even.

3.4. Application to s-Dimensional Romberg Integration. The conditions under
which certain coefficients 4, vanish are given in (3.15) and (3.24). They are funda-
mental for the determination of the polynomial degree of accuracy of the elements
in the Romberg table. We consider a sequence of rules (RI#%® ]Asqs)k, where the
mesh ratios (u ), satisfy (2.26).

THEOREM (3.25). If (R!F%® ]As¢)k has an even expansion, then T has
polynomial degree of accuracy

d=2p +2-s, if (), is a sequence of integers,
2p +1 -5, if (W), is a sequence of half-integers.

If (R[“k"" ]As¢)k has an expansion which is not even, then Tlf has polynomial
degree of accuracy d =p - s.

4. Particular Sets of Integration Rules for A , Generated by Means of Romberg
Extrapolation. The element T,’,‘ of the Romberg table is a specified linear combination
of the elements T}, j =k, k + 1, ...,k + p. Each element T} is a weighted sum of
function values. Thus, each element T;‘ may be expressed directly as a weighted sum
of function values—or as a quadrature rule. This rule depends on the values of the
mfembers of the sequence uy, My o, - - - 5 Mgy, and on the formula used to define
T),j=kk+1,...,k+p.

Carrying out this unscrambling process in the case of the line or the hypercube
has not usually led to any interesting insight into the nature of the quadrature rules.
In the case of the simplex, some of the results of doing this are of interest.
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Definition (4.1). The quadrature rule J »(Ho> 4A,) is the rule obtained by setting

(41) T(]){ _ R[ﬂk,o ]As¢
using mesh ratios
(4.2) ”k=“0+kr k=0>la--‘a

and calculating the element 7.

We shall be interested in the polynomial degree of this rule and the number of
function values required by it, in the cases when u, = 1 or % (in which cases T 3‘ has
an even expansion).

The polynomial degree dp(/.to, A,) of Ip(tgs A,) follows immediately from
Theorem (3.25).

THEOREM (4.3).

Jp(%, &) is of polynomial degree d, (%, Ag) = 2p +1 =5,

Jp(l, A,) has polynomial degree dp(l, A)=2p +2-s.
It must be noted that the rules Jp(uo, A,) for which
(4-4) dp(“O’ As) <0

coincide with zero diagonal elements Tg,
Let us consider, for each s, the formulas

4.5) Jp(l/z, 4)), if s is even, Jp(l, 4), ifsis odd.

These rules are constructed as linear combinations of basic rules R[#-0 ]As which are
affine invariant following Theorem (3.5). Hence,

THEOREM (4.6). The rules J, (%, A) for s even and Jp(1, Ay) for s odd are
invariant under the group of all affine transformations of A onto itself.

A bound on the number of integration points v, (u,, A;) used by oy, By)
can be_) computed by summing the numbers of points needed by its basic rules

RIFre ]As, k=0,1,...,p. This bound is equal to the total number of such
points if the basic rules have no common points. We have

THEOREM (4.7). The number of integration points of I, (ko> D) satisfies

p' o ’
+j s+p +1
< E )
4.7) vp(ko» Ay) EO( s o)
where p' is given by the following table

P s odd s even
1 s—1 s
(438) Ho =3 L) P73

s—1 s

o =1 p-— p-5+1
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Note that the number of points is related to the polynomial degree of the formula
by
(4'9) p, = l%dp(uo, As)] >

(where the notation [x] is used to indicate the largest integer not exceeding x).

Table (4.10) gives the polynomial degree (d,) and the number of points ®p)
of the rules Ip(tgs Ay for uy =% and for uy =1,p=0,1,2,3,4ands =1, 2, 3,
4. The affine invariant rules are indicated by A. Some of these rules are well known.
The rules of degree 1 coincide with the mid-point formulas 7: 1 — 1, and the rules
of degree 3 correspond to the formulas T': 3 -1 in Stroud [5]. These are known to
be minimum point formulas (the former for s = 1 and the latter for s > 2), in the
sense of requiring fewest function values to attain a specified polynomial degree. The
entire set of rules which are indicated to be affine invariant has recently been found
by Grundmann and Moller [2]. They conjecture that, considering all the rules of
degree d = 2p' + 1 for A, the rule belonging to their family has the smallest
possible number of nodes if s >d — 1.

We have demonstrated that the rules Ip(%, A;) and Jp(l, A;) can be generated
by means of Romberg extrapolation in a straightforward way. Yet it may be interest-
ing to see some examples of these rules. We have listed rules of polynomial degree
< 5,fors =1,2,3,4 in Table (4.11). In this table we make use of the notation
Z¢(x,, . . -, X;)g to indicate that the summation runs over the set of points which
includes (xil, e x,-s) if @, ...,y is a permutation of (1, .. .,s).

TABLE (4.10a)
Degree (d,) and number of integration points (v,) of rules J, (o, A;)
eventually affine invariant (A)

p=20 p =1 p=2 p=23 p =4
i
b=t
072
1 v
d Vp 9 Vp 4 Vp d Y b
s =1 0 1 2 2 44 6 7 8 10
s=2 -1 0 A 1 1 A 3 4 A 5 10 A 7 19 A
s=3 -2 0 0 1 2 5 4 15 SR
s=4 -3 0 A -1 0 A 1 A 3 6 A 5 21 A
TABLE (4.10b)
p=20 p=1 p=2 p=23 p =4
‘0=‘ v d v, d d
4 % p p P “p b Yp P b
s =1 11 A 3 3 A 5 5 A 7 9 A 9 13 A
s=2 0 1 2 4 4 9 6 19 8 33
s=3 -1 0 A 1 1 A 3 S A 5 15 A 7 35 A
s=4 -2 0 0 1 26 4 21 6 56




Lo16

TABLE (4.11a)
Some integration rules Jp (%, Ap)

3 1 1
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11 1 113
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5. Conclusion. This paper gives a generalization of one-dimensional Romberg
integration, as it introduces the use of noninteger mesh ratios. In the same sense it
extends the work by Lyness and Puri [4], where a basis for Romberg integration over
the s-dimensional simplex is established. Moreover, we have demonstrated that, for the
simplex, the procedure of generating quadrature formulas by unscrambling Romberg
table elements can be used to produce sets of rules which contain minimum point
formulas and formulas which are the optimum so far discovered, in the sense of requiring
fewest function values to obtain a specific polynomial degree.
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