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Stable Evaluation of Polynomials in Time log n

By Roland Kusterer and Manfred Reimer

Abstract. An algorithm is investigated which evaluates real polynomials of degree n
in time log n at asymptotically minimum costs. The algorithm is considerably stable
with respect to round-off.

1. Introduction. The usual algorithms which evaluate a real polynomial of degree
n on the interval [—1, 1] in time log n are based on the monomial representation; see
Borodin and Munro [1]. Therefore, due to big coefficients, they do not avoid large
intermediate results in absolute value so that their error norm, which is a measure for
the instability of the algorithm caused by round-off (for definition see Reimer [4]),
is increasing rapidly at an exponential rate (Reimer [3]). On the other hand, Clenshaw’s
algorithm based on the Chebyshev polynomials of the second kind is an example of an
algorithm with an O(n? log n) error norm (see Reimer [3]) which is highly favorable
if we think of round-off only. Unfortunately, it does not allow parallel processing, i.e.
it cannot be performed at a time rate increasing slower than n.

For this reason we are going to investigate a different algorithm which is com-
bining

(i) asymptotically minimum costs in total (~ n additions/multiplications),

(if) possibility of parallel processing (in time ~ 2 log 7, dual logarithm),

(iii) favorable error norm growing not faster than at an O(n%/?)rate.
We should emphasize that, though there are algorithms slightly superior to ours with
respect to each single issue above, we not know of any where the conditions (i), (ii)
and (iii) are valid simultaneously.

2. The Algorithm. Let T, denote the Chebyshev polynomial of the first kind
and with degree ». Assume P to be any real polynomial of degree n = 2¥ — 1 € N.
Then, starting with S{¥) := P, we get the decomposition

569 = R 5§60,

where 7,_, = 2T ;_y, and where S§E=1) and S§&~1 are polynomials of degree
2¥=1 _ 1. The decomposition is repeated with the polynomials S((,;‘ —1) instead of
S((,k) and with k£ — 1 instead of k, and so on. So we obtain polynomials S.(,'fj“i), where
i€{0,1,...,k} andj € {0, 1}, which satisfy the recurrence relations
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1020 ROLAND KUSTERER AND MANFRED REIMER

fori=0,1,...,k~1andj=0, 1, the degree of S~ not exceeding 2% — 1.
Finally, we come to an end with some constants

(2.2) 5

My ,...,mq? mO’ cn ’mk—l e{o, 1}, mk = 0:

defined by P only and from which, in turn, the S*~9 (i=k—-1,...,0) and Pit-
self can be computed by means of (2.1).

The effectiveness of this process depends on the method used for generating the
7;- We use the recurrence relation

(23) n=10,-2 (=1,2,...,k=-1),
where
24) To(*¥) = 2x.

3. Costs in Total. The 7, (=0,1, ...,k — 1) are computed with
k — 1 additions, k multiplications

in total. As to (2.1), there are 2% expressions S~ to be computed at step i with
each requiring one addition and one multiplication. Therefore, all steps together re-
quire
2% — 1 additions/multiplications;
and the algorithm computes P(x) with
n +log(n + 1) — 1 additions,
(ERY n +log(n + 1) multiplications

in total, log n denoting the dual logarithm, here and in what follows. Asymptotically,
we have n additions/multiplications which is minimum; see Borodin and Munro [1].

4. Parallel Processing. If (n + 1)/2 processors are available, acting on the same
storage, then all S&=1) can be computed simultaneously for fixed i € {1, ..., k}
provided Th—i 1 has been computed by one additional processor in advance. Hence,
the algorithm computes P(x) with (n + 3)/2 processors in 1 + 2 log(n + 1) time
units, one time unit counted for any arithmetical operation.

5. Magnitude of the Intermediate Results. Recall that n = 2% — 1 = 2 u—1,

u=2%"1. Hence,
2u—1

P = Z AI) TP 4
v=0
where TM_H, = _ZT“ T, - T“_v forv<u,v,u€ N,. From this it follows that
A“ u—1 u—1
P= (2T,,,) 3—'-‘- Z Ay.+v T,t ¥ J40+ Zl “, _A2u—v)Tv
v=1 v=
or, by (2.1),

- A _
S =4 +”§_jl A4,-A,, )T S("‘l)=—“+“ZIA T
00 0 = v 2u—v/ p> 01 2 = u+viv
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On the right-hand sides, each of the 4, occurs only once. Hence,
n
Isfe-< 2 14, (GE{0,1D
v=0

if || - Il denotes the maximum norm with respect to the interval [—1, 1]. This estimate
seems to be poor, since, for instance, S(()’(‘,_ 1) interpolates P at the zeros of T” and
could be estimated by the corresponding Lebesgue constant, which is O(log n); see
Ehlich and Zeller [2]. But if we repeat our arguments to S(()‘;Y‘l) instead of S{¥), and
so on, we see that

. n
ISE-DI< Y 14,
v=0

is generally valid, ie. fori =0, 1, ..., k. Now, define

n . n

(.2) A = supgz 40| 3 4, T, I<1;.
v=0 v=0

Then

(5.3) I1SE=D <A™ py,

and by Cauchy-Schwarz’s inequality we obtain
(54) AM <\2(n + 1).

This estimate cannot be improved essentially, as can be seen as follows. According to
Shapiro, there exists a polynomial

n

Fizy= 3 A,2%, A,€{+1,-1},
v=0

for any fixed # € N such that

IF(z)| <5+/n for |z| = 1;
see Rivlin [5]. Now let

have

and the order of the bound in (5.4) cannot be improved. This,however, does not meai
that (5.3) is necessarily strict in the same sense.

6. Error Norm. Let |[|P]| < 1. We assume that any arithmetical operation is per
formed with a relative error (due to round-off) not exceeding € > 0 in absolute value
(compare Wilkinson [7]), and that the calculation is started with some NE2 approxi-
mating the constants S¢®) within the terms of
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(6.1) 189 - 591 < 15D e <aMe,
x € [-1, 1] being assumed to be exact.
The calculation generates some approximations 7; and 8= for 7; and S(k -0,

respectively. Note that all these quantities are polynomials with respect to all single
round-off errors so that, for e — 0,

f=1,+006), SFD=5%D+0%

fori=0,...,k, where the O-constants can be chosen to be equal for all the finite
quantities in question.
First, we are going to estimate |7, — 7;|. Since there are numbers €', €” such that

=l +e)-210+¢€"), €] 1€"I<e,
we obtain
Bon=tl Tt €tr + G, -2) + 0@

from which it follows that

(6.2) 17 —rl<alf_,-m_yl+b (@=1,...,k-1),
where
(6.3) a=a(€) =4 +0(), b=Db(e)=6e+0(?).

Note that ||7;]| = 2.
From (6.2) we obtain

-l <dlg — 1ol +5 =L G=1,.. k- D),

where |7, — 74| < 2e. Together this yields
6.4) 17, = 7;l <4t le + 0(e?)

fori=0,1,...,k-1.
Next we estimate |S® — @[ for 1 <i <k Since there are numbers €', ¢”
such that

SO = [7,_, 84701 + €) + 84510 + €M),
where |€', [€"| < e, we find that
§D = 7, 841 13G1) 4 p®
with
DD =Gy =1, UV + (¢ + €7, 84T + "SUSD + 0(ed).
Now, using (6.4) and (5.3), we obtain
ISD —SD| <2187V —SUTD| + 865D —SETD| + eM,_,
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with

M, =@ +54M™ +0(e) (1 <i<k).
So, if we define o; := max{|S® — S®|: . ..}, then we obtain 0; <eM;_, +30;_,
(1 <i<k), where, by (6.1), 0, < AMe. From this we get the estimate

0; <4T14AMe + 0(e?)

G=1,...,k),and with i = k, P := §{¥), we finally obtain the inequality
|P — Pl < g, <4*T14Me + O(e?).
Hence, if N, denotes the error norm of the algorithm (see Reimer [4]), we have
(6.5) N, <4(n + 1)24™ <42 (n + 152,
compare (5.4).

THEOREM 1. The algorithm defined in Section 2 is in possession of an O(n®/?)
error-norm.

We should mention, that the algorithm is normal in the sense of Reimer [4],
which implies, that the error-norm has a growth of the order n?, at least.

7. Calculation of the Constants From the Chebyshev-Fourier Coefficients. The
algorithm presented works if the constants (2.2) are known. In order to characterize
these constants, define

~ k=t ;

(7.1) T:=3 I1 7,1"
v=20
fori=2¥23i2%,i,{0,1} »=0,1,...,k—1). Obviously, T‘, is a polynomial of
degree exactly i, where To =%T,="%
Now, let
n n ~ A~
(72) P=Y 4,T,=3 AT,
=0 p=0

Then, by (7.1) we have

(k_1) 2k—1_1~ - -1 2k—1_1~
(7.3) s = > 47T, SsEVYV= > 4

v=0 v=0

~

T.
2k—1.,7v

This means that the coefficients of P = S(()") with respect to the Tu occur as the coef-
ficients of S{%~1) and S§~1, respectively, and so on, where

~

A k
0 __m : —
7.9 S,(nz’._"mo = if m= i;) m; 2"
Recall that m, = 0. By (7.4) we are able to calculate the constants S from the
coefficients A, if we can perform the basis transformation from the T, to the ’fﬂ‘.

This problem is dealt with in what follows. If n € N is arbitrary, then » has a unique
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representation

k(n)
(7.5) n= lNi, N, € {27]j€ N, 3,

-~
I

where 1 <N, <N, <--- <NK(,,), k(n) <log n. Note that

j—1
(7.6) gl N;<N; forj=1,2,...,k(n).
Now, define
k(n)
Ny = {mim= 3 N, EN,¢€E {+1,-1}} .
i=1
Obviously,
7.7 N C {1,2,...,n}.
THEOREM 2. For n € N we have
(7.8) T,= ¥ T,
me N(n)

Proof. The statement is true for all n < 2% if k = 1. The proof is to be per-
formed by induction with respect to k. The statement be true for all z € N, 77 <
2¥=1 where k € N, k > 1. Let n < 2¥ be arbitrary. Without loss of generality we
may assume, however, that 2¥~! <n < 2*. Then, we have N, =2%"1 for k = k(n)
andn=N, +7,0<n<2¥"!. Now,if 7= 0,thenn =251 and N(n) = {n},
Tn =T, and the statement is true.

In what follows, let 1 <7 <2*¥~!, Then, by assumption, the statement is
true for n. But

T, =QTy)T:=0Ty) X T,
K K me N(n)
Hence, for z € C, |z| = 1, we obtain

~ -1 _ m -m
Tn <_Z_+_2Z_>=(ZNK +z NK) Z .Z_%Z__
neN(n)

_ Z 3ZNK+m _;Z—NK -m + ZNp(—m _;zNK+m $
me N(n)

Due to (7.5) and (7.6), the exponents N, + m and N, — m in this sum, together, ex-

haust N(n) exactly once while m is running through N(#). This yields

~ (zt+z”! z+z7!
n(25)- £ or ()

me N (n)
and Theorem 2 is proved.

Note always that To = %T,. Now, if we restrict n to the numbers 0 <n <
2K _ 1, then (7.8) defines a basis transformation in the space of all real polynomials
of degree not exceeding 2¥ — 1 which can also be characterized by means of the
“incidence matrix”
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Ek = (en'm)n,m=1,...,2k—1
defined by
1 if m € N@m)
e m = mm=1,...,2k-1).
’ 0 ifmé&N®

o Vo ~
For, if T := (T, ..., Tzk_l) ,T=(T,,... ,T2k_1)', then

(7.9) T=ET

The matrices E, are in possess of an important recurrence structure which enables us

to describe even E; ! quite easily.

To see that, define for any matrix 4 = (aij)i,j=o,...,q , the following associated
matrices:

14 = @q_Dij=0,..a> A= @qiPij=0,..q

Note, that in case of the unit matrix / we have

I=1
THEOREM 3. We have
E,_, 0 0
(7.10) E =0 1 0

Ey_y 0 Ep_,
for k=2,3,...,where E is a lower triangular matrix:

Proof. Obviously m &€ N(n) if m > n, i.e. E; is a lower triangular matrix. To
prove the symmetry in the lower half of the matrix, let

k-1 <<k, me Nn), m=>2k"1

Then, because of N, = 2¥~! (k = k(n)), we have
K—1
m=N,+x, x=3 N, €{+l,-1},
i=1
and because of (7.6), x <N, is valid. Hence,m = N, — x € N(n); and the symmetry
holds as stated. Note that if m = N, then x = 0, and in view of (7.6), we have
=1,n=N, =2%1 and Theorem 3 is proved.
We note that n € N(n) so that the diagonal of £ is all ones. In particular, we
have E, = (1) and by Theorem 3 we obtain
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where zero-elements are omitted. We are now able to prove

THEOREM 4. We have

E;l, 00
(7.11) El=l 0 1 0
~Ecly 0 Bl
fork=2,3,...,where E; L is a lower triangular matrix.

Proof. 1t is clear that E; ! is a lower triangular matrix, and because of (7.10) it
suffices to prove that

_E_I:E:'Ek—l +E;—11 “|Eg_, =0.
However, it can easily be seen that, for arbitrary ¢ x g matrices 4 and B, we have
AB=A-B, A-|B=|A-B).
Hence, for A - B = I we have
—A-B+A-|1B=-I+1I=0

and this completes the proof.
We note that £, ! = (1) so that we obtain by (7.10)

1
1
1 1 1
-1 _ 1 , E7l= 1 s
S R ? 1 1
-1 1
-1 -1 1

Obviously, nonzero elements occur in £ 1 and in IE;( exactly at the same places, in
E;l with alternating signs in each column. Hence, the inverse transformation of (7.9),
ie.

(7.12) T=E'T

can be performed quite easily. The same is true, of course, for the corresponding trans-
formation of the coefficients 4, to the coefficients A o see (7.2).

Finally, we note that the number of ones occurring in a row of E, attains its
maximum G, = 2k—1 only in the last row, whereas, for £k = 3, the number of ones
occurring in a column attains its maximum F, exactly in the i, th and the j; th column,
where i, and j, satisfy the recurrence relation

- _~Ak—1 _ . . _ k-1 .
e =2 k1> Te=2 iy
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(k=3,4,...) withi, =i, = 1. From this we obtain

(7.13) i =2Q"-(-DF) *k=1,2,...).

W =

F itself proves to be the kth Fibonacci-number, Fo=F, =1,F,=F,_, +F,_,
for k = 2,3, ...). The first values of i, j, and F, are listed below:

k o 1 2 3 4 5 6

5 11 21
5 11 21 43
F,b 1.1 2 3 5 8 13

-~
x
—
—
w

We should remark that, because of the symmetry between £ and E~ 1 with respect to
nonzero elements, the maximum number of nonzero elements in a row or in a column
of E;-! is G, or F, respectively. Recall that

T e
(B N

hence, both £, and E,” 1 are occupied relatively dense.

8. Example. We are going to compare our algorithm with Horner’s and with
Clenshaw’s method. In order to obtain reliable results, we investigate primarily the
magnitude of the intermediate results occurring, and this because they are responsible
for the actual relative error e(x) in the final numerical result

B(x) = P(x) (1 + e(x)),

which, on its part, is random.
Similarly as in [3], we choose the polynomial

11 -1 i+ 1
P(x)= §+ > 1)

i=1

—

— T,;(x

w g
of degree 22 to be the test polynomial. Since this polynomial is chosen because of its
virtue that it is approximating the function m|x|/4 on [-1, 1], we can expect it not to
be biased too much with respect to any of our algorithms. Now, due to round-off,
we obtain only

11 11 11

~ o~ ,

Py~ 3 Ay Ty~ 3 A, Ty = ) By x*,
i=0 i=0 =0

the coefficients being given in Table 1. The three polynomials are evaluated at x =
0.99580764 with eight-digit floating-point arithmetic, each by the corresponding algo-
rithm. The intermediate results s; are listed in Table 3 and Table 4.



1028

ROLAND KUSTERER AND MANFRED REIMER

TABLE 1

21 A4 2i % ~21 BZ i
0 0.5 05 0.021739131
2 0.33333333 0.15538015 5.7391303
4 —0.066666667 —0.031089963 —82.898547
6 0.028571429 0.010270406 835.61734
8 —0.015873016 —0.0079365080 —5116.0243

10 0.010101010 0.0029991935 19807.225

12 —0.0069930070 —0.0022433707 —50090.998

14 0.0051282051 0.0010161150 83837.848

16 —0.0039215686 —0.0019607843 -92035.326

18 0.0030959752 0.00051279060 63692.266

20 —0.0025062657 —0.0012531329 —25194.614

22 0.0020703934 0.0010351970 4341.9288

For definition of the s; compare [3]. The final relative error is given in the following

table:
TABLE 2
Horner Clenshaw New Algorithm
leCx)l 2-107% 4,5-10°8 1,7 -10"8

We see again that Horner’s algorithm generates very big intermediate results which
lead to a big relative error e(x), while, in contrary, both of the other algorithms yield
only small intermediate results and a very favorable final result. Obviously, our new
algorithm seems slightly superior even to Clenshaw’s algorithm, as could be expected
from the rate of growth of their error-norms.

9. Final Remarks. The order of the error-norm of Clenshaw’s algorithm based
on the Chebyshev polynomials of the first (second) kind is between n3 and n3log n
(n? and n?log n); see Reimer [3]. The corresponding order of our algorithm is be-
tween n2 and n°/2 and the algorithm is, therefore, numerically more stable than the
first, possibly as stable as the second algorithm of Clenshaw. This fact is confirmed
by the example above. By the possibility of parallel processing, our algorithm is
preferable if high speed is required. All our reasoning is concerned with the case where
the degree is n = 2% — 1. If the degree is between 2¥~1 and 2¥ — 1, the polynomial
can be treated to be a polynomial of degree 2¥ — 1, but then costs and evaluation time
seem to be higher, with respect to n, than in (i) and (ii). This, however, is not really
true, since certain S{¥~?) vanish and need not be computed, as is shown in our example.
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Horner

Clenshaw

1029

s

1 1
22 4341.9288 0.0020703934
21 4323.7259 0.0041234272
20 -20889.015 0.0036356216
19 -20801.441 0.0031173324
18 42978.032 0.0056688805
17 42797.853 0.0081728967
16 -49416.897 0,0066868170
15 -49209.724 0.0051446704
14 34834.429 0.0086875924
13 34688.391 0.012157672
12 -15548.033 0.0085328062
11 -15482.850 0.0048363954
10 4389.2847 0.011200443
9 4370.8832 0.017470578
8 - 763.46542 0.0077212114
7 - 760.26470 -0.0020928952
6 78.539943 0.016681976
5 78.210675 0.035316974
4 - 5.0157593 - 0.013010817
3 - 4.9947314 - 0.061229516
2 0.76533861 0.22439851
1 0.76213004 0.50814502
o 0.78067405 1.2876309 *
P=s -xs =0.78161621; 0.99580764

(] 1
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