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Operational Evaluation of Certain Infinite
Bessel Function Integrals
By Stanley E. Babb, Jr. and James W. Cafky

Abstract. Some infinite integrals, primarily over trigonometric functions, are operation-
ally evaluated by two extensions of the Weber-Schafheitlin approach.

Introduction. In a recent investigation [1] it was necessary to numerically evalu-
ate the integral

o G(u) cos ut du
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sin u/u — cos u
® G = Suh o
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for a large number of values of #. To reduce the long range behavior and improve con-
vergence markedly one can subtract A" times the first several integrals

3) L(H)= f 0°° G™(u) cos ut du,

but this technique requires the analytic evaluation of the integrals (3) for several low
values of n. While the case n = 1 is a standard Weber-Schafheitlin form, higher values
of n seem not to have been worked out, although it is known [2] that [, (£) =0,t>n.
Two methods have been devised for evaluating this and similar integrals, each with its
own range of applicability.

Method. For the I, the method consists of expanding the G” and using multiple
angle trigonometric identities to reduce the powers of the functions to unity. These re-
sulting functions are converted to spherical Bessel functions, which replaces the original
integrand with a series of products of two such functions. Each individual pair is treat-
ed as if the integral over it were convergent alone, and the standard Weber-Schatheitlin
formulas [3] are used to convert the integrals to hypergeometric functions, which for
this case all truncate to finite series. Terms are then gathered for the final answer.

To illustrate the technique the evaluation of I, and I; will be presented in skele-
tal form. Thus, after expansion and recombination
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where a J(au) has been inserted in the first two terms to get the proper form, and
after integrating, then a is set to 0. This procedure is not essential to the method but
does avoid the introduction of subsidiary procedures. Similarly for 75,
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and now each individual term is handled by using the Weber-Schafheitlin formulas.

No completely general proof of the method, applicable to all cases herein con-
sidered, has yet been derived, although the general case for a linear combination of two
Bessel functions multiplied by a single Bessel function has been worked out.

The proofs must, therefore, be performed for each individual case or assumed. The
methods involve the standard proof of the Weber-Schafheitlin formulas [4], where the
various terms in the expansions therein encountered which diverge at the origin cancel
each other. After integration of the series, the first several terms of the hypergeometric
functions also cancel and correspond exactly to the cancelling terms of the original ex-
pansions. Thus, the equivalence can be established in each case, although the details
can be quite tedious.

In practice, the method is applied operationally. Generally speaking, if any of
the functions indicated by this symbolic procedure do not exist, then one of the as-
sumed cancellations does not take place; and the procedure breaks down. Either a re-
formulation of the terms into Bessel functions is indicated, or the integral must be done
by other techniques (see below). As a check on the algebra, I, (¢) for ¢ > n will be
found to be identically zero, also 7, (?) is continuous.

The algebra rapidly becomes quite tedious, but the results which have been gen-
erated to date are presented here in hope of their utility:

m
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Since G(u) = —j,(u)/u, these results are the Fourier transforms of these functions
to the powers 1 through 5.

Though developed for use with the G(x) functions, this technique is by no means
limited to them. Thus, for example,

2y, sin32u

fw sin
0 5
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cos ut dt =n<544—48t+—3L>, 0<t<2,
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284

=0, t=8.

It is not necessary that the hypergeometric functions truncate, e.g. the known

integral
o 2
f (sin ax sin bx)@ = In <a ha b>/1-
0 x a—>b

is easily done being a standard Weber-Schafheitlin form. When, however, the answers

do not lend themselves readily to hypergeometric series, the method fails, e.g. no ob-
vious way exists to contort the integrand of

. . dx
f ” (sin®ax sin®bx) <
0 3

b+a
b-a
(for b > a) into a form which permits the last two log terms. The attempts to use the
Weber-Schafheitlin formulation results in terms which do not exist, indicating that an
assumed cancellation does not occur. If the power of x in the denominator were either
2 or 4, the method yields known results.

For integrals of this last type it has proved possible to develop operational pro-
cedures for evaluation under somewhat more limited conditions. Providing the integral
can be written in the form [E,J,,i(biu)] J ”(ut), where ¢ > all b; a procedure exists.
Thus, the integrand mentioned in the previous paragraph could be written in the form
sin?ax sin bx sin cx, where ¢ > a, b, and is then evaluated by the procedure outlined
below. After reduction to an answer involving only elementary functions, ¢ can be set
equal to b without problems. The procedure is derived from that used for the standard
Weber-Schafheitlin proof in Watson [4], and is essentially obvious from that proof.

= (@ +b¥)In(b?* —a*) +ab ln( > - b2 b - (@® Ina)/2
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If one defines the function

_T© Tk +2 =Dk + ) 2
Fen,b,¢,2)= oy kz,fﬂ Tk + o) n!

(which can be written as a generalized hypergeometric function, but this gains nothing
for the present purposes), then the individual terms can be evaluated by
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where it must be strongly emphasized that this type of evaluation is only correct with-
in the current context. The first few terms of the standard expression cancel each oth-
er, which is signalled by & — \/2 = —n; and it is the remainder which are given by the
expressions above. The procedure is now to apply this expression to each term of the
integrand and then evaluate the summations. The four gamma functions in front of
the summations reduce to +1/r, and the summations themselves can be broken by par-
tial fractions into sums of the form x*/k or x*/(2k + 1) and, thus, are easily done.

If ¢ <any term in the integrand sum, then the same type of procedure based
upon the usual formulas for # < ¢ may not work. The terms which can enter are not
necessarily easily expressible as either ,F| or Fc functions, and may arise from several
terms acting in concert. No satisfactory operational technique for this case has yet
been devised. Fortunately, the integrals herein considered can be written in forms
which are continuous in 4 and b (excepting singularities).

Attention has been focused upon the integrals

J, = f: uG™(u) cos ut du,

where, as in the case of the 7, , the first case is a standard form and the others have
been worked out by the above procedure. The answers derived so far are
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Though derived for use with trigonometric functions, both of the above methods
can be applied to other integrands. Thus, for example,

fo[o(ax) sv( >J()] 0
=1760”73—9“[2F1(-‘/2’:§—1’4’§) N G R I

b* ( a2 v =7 a?
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by the first technique, and if the divisor of J; be changed from x5 to x4, then the re-

sult is

_ 5ba* a\2 , 11 [a\4

96 [/""<b> + 168.<b> ] b>a,
by the second technique.

Unfortunately, this last integral requires a different expression for b < ¢, and no
operational procedure for deriving the answer

LB k) A B2 - 2()]
241240 4 \2a 2a 3\2a 7 \2a 35\2a

has been devised. The above expression was derived by following the standard Weber-
Schatheitlin proof with the obvious modifications needed for this particular expression.
This involves considerably more involved manipulations than the operational procedures
outlined earlier. For more complex integrands this type of procedure becomes extreme-
ly involved.

The defects of the methods outlined herein are obvious. Lacking a general proof
of applicability, either the methods must be viewed as simply operational, or the labo-
rious proofs must be exercised for each particular case. When viewed as an operational
technique, however, these methods have been very useful in evaluating some difficult
integrals, and it is presented in the hope of utility to others.

As a final comment, one should note that some of these integrals are very similar
to the W integrals considered by Katsura et al. [5] using classical residue analysis. They
consider products of three and four Bessel functions for particular powers of the multi-
plicative . Their methods are more general than those herein, albeit they require more
skill in analysis to apply; and it would be quite difficult to extend their methods to
more products. It appears probable that all of their integrals can be done by the tech-
niques used here, but each must be calculated on an individual basis.
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