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On Computing Artin L-Functions
in the Critical Strip

By J. C. Lagarias and A. M. Odlyzko

Abstract. This paper gives a method for computing values of certain nonabelian Artin
L-functions in the complex plane. These Artin L-functions are attached to irreducible
characters of degree 2 of Galois groups of certain normal extensions K of Q. These
fields K are the ones for which G = Gal(K/Q) has an abelian subgroup 4 of index 2,
whose fixed field Q(\/(—i_) is complex, and such that there is a ¢ € G — 4 for which
oac~l =4 1 forallac 4. The key property proved here is that these particular
Artin L-functions are Hecke (abelian) L-functions attached to ring class characters of
the imaginary quadratic field Q(\/(;) and, therefore, can be expressed as linear com-
binations of Epstein zeta functions of positive definite binary quadratic forms. Such
Epstein zeta functions have rapidly convergent expansions in terms of incomplete
gamma functions.

In the special case K = Q(v/—3, a1/3), where a > 0 is cube-free, the Artin
L-function attached to the unique irreducible character of degree 2 of Gal(K/Q) = S3
is the quotient of the Dedekind zeta function of the pure cubic field L = Q(a1/3) by
the Riemann zeta function. For functions of this latter form, representations as
linear combinations of Epstein zeta functions were worked out by Dedekind in 1879.
For a = 2, 3, 6 and 12, such representations are used to show that all of the zeroes
p = o + it of these L-functions with 0 < ¢ < 1 and |#| < 15 are simple and lie on
the critical line 0 = %. These methods currently cannot be used to compute values
of L-functions with Im(s) much larger than 15, but approaches to overcome these
deficiencies are discussed in the final section.

1. Introduction. The locations of the complex zeroes of the Riemann zeta func-
tion and its generalizations play a central role in analytic number theory. For this
reason extensive computations have been carried out locating zeroes of the Riemann
zeta function [18], [22], and less extensive computations for Dirichlet L-functions
[13], [28], [35], and certain Hecke L-functions with grossencharacters [12]. This
paper discusses the computation of zeroes for certain members of another class of L-
functions, the nonabelian Artin L-functions attached to normal extensions of the
rational numbers Q. The emphasis is on checking whether or not all the zeroes p =
o + it with 0 <o <1 and |#] < T (a chosen bound) lie on the critical line 0 = %
(i.e., are consistent with the generalized Riemann hypothesis (GRH)), and on evaluat-
ing the multiplicities of such zeroes. This study was undertaken to test the (unlikely)

possibility that any nonabelian Artin L-function attached to a nontrivial irreducible
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character of degree n has multiple zeroes in the critical strip with multiplicities
divisible by n. This possibility arose in an examination of A. I. Vinogradov’s [34]
suggested approach to proving Artin’s conjecture that all such Artin L-functions are
entire. For the Artin L-functions we computed, which are attached to irreducible
characters of degree 2, all the zeroes in the regions investigated were on the critical
line and were simple.

Artin L-functions and their properties are described in Section 2. The nonabelian
Artin L-functions to which our approach applies are exactly those Artin L-functions
which can be expressed as linear combinations of Epstein zeta functions of positive
definite binary quadratic forms. In Section 3 we exhibit a large class of Galois exten-
sions K over Q all of whose nonabelian Artin L-functions attached to irreducible char-
acters of degree 2 have this property. These fields K are characterized in two related
ways. First, they are exactly the fields over a complex quadratic field Q(+/d) which
are normal subfields of some ring class field of Q(+/d). Second, Proposition 3.5 char-
acterizes these fields as those normal extensions K of Q such that G = Gal(X/Q) has
an abelian subgroup A of index 2 whose fixed field Q(/d) is complex and for which
there exists an element ¢ € G — A4 such that oao~! =g~ ! for all € A. (In parti-
cular, this includes all totally complex fields K with Gal(K) = Z, & Z, or Gal(K) =
S3.) This partially answers a question raised by Shanks [23], [27], who asked for a
Galois-theoretic criterion for fields K whose Dedekind zeta function can be written as
a product of linear combinations of Epstein zeta functions. In fact, it is quite likely
that these fields K are the entire set of fields having this property. In Section 3 we
also show that each nonabelian Artin L-function associated to such a field K is a
Hecke (abelian) L-function associated to a ring-class character of some imaginary
quadratic field. In particular, Artin’s conjecture holds for these Artin L-functions, i.e.,
they are entire functions.

The usefulness of expressing Artin L-functions as linear combinations of Epstein
zeta functions lies in the existence of a number of relatively rapidly convergent expan-
sions for Epstein zeta functions. These are discussed in Section 4. The particular one
we used in our computations is an expansion in terms of incomplete gamma functions.
It would be useful to find rapidly convergent expansions of a similar nature for a
wider class of Hecke or Artin L-functions. Calculations of the values of Epstein zeta
functions on the real axis using this or other expansions are described in [21], [23],
[26], [27], [32].

The computations are described in Section 5. The fields K considered were
K =Q(+/3,a'®) witha = 2,3, 6, and 12. Here Gal(K/Q) = S5 and the Artin L-
functions computed were those attached to the unique irreducible character of degree
2 for §5. These particular Artin L-functions can be written in the form § (s)/$(s),
where {; (s) is the Dedekind zeta function of the pure cubic field L = Q@'/3). 1Itis
known [36] that such functions have infinitely many zeroes of odd multiplicity on
the critical line. For each of these Artin L-functions we located all zeroes in the
region 0 < Re(s) < 1, [Im(s)| < 15. These zeroes were all on the critical line and
were simple.
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There are several limitations on the computational methods we used, which
restricted us to examining the region [Im(s)| < 15. They are the difficulty of comput-
ing incomplete gamma functions, a certain cancellation effect inherent in the particular
Epstein zeta function expansion used, and the use of the argument principle to count
zeroes. Section 6 discusses how these limitations could be circumvented so as to carry
out more extensive computations.

Since this approach involves Epstein zeta functions, we mention some related
results concerning individual Esptein zeta functions. In general, such functions have
infinitely many zeroes p with Re(o) > 1 [11]. On the other hand they have infinitely
many zeroes on the critical line, and most of their zeroes p have Re(p) close to % [20]
There are some special factors which keep zeroes sufficiently close to the real axis (but
not on it) on the critical line [29]. We have carried out some preliminary computation
for the five Epstein zeta functions involved in the Artin L-function corresponding to
Q(6'/3), which seem to indicate that zeroes occur off the critical line about as soon
as they can be consistent with [29], and that there are a substantial number of zeroes
off the critical line. In order to make reasonable guesses concerning the distribution
of such zeroes, computations would have to be carried out to much greater heights in
the critical strip.

2. Artin L-Functions. Let K/k be a normal extension of number fields with
Galois group G = Gal(K/k). If W is any character on G, the associated Artin L-func-
tion L(s, ¥, K/k) is defined for Re(s) > 1 by ([3], [4], [17], [19)):

@1 log LG, ¥, K/K) = 3 3 m~1W(p™) Ny 0 )™,
P m=1

where p runs over all prime ideals of £ and
Y(p™) = U1 2 W0,
o€l
where I is the inertia group of p, which is trivial for unramified primes, and 7 is any
one of the Frobenius automorphisms corresponding to j, i.e., any automorphism for
which
o =a"%/Q"" (mod P)

for all algebraic integers a in K, with P is a fixed prime ideal of K lying over p-

The Dirichlet series representation (2.1) converges only for Re(s) > 1, but it is
known that L(s, ¥, K/k) can be analytically continued to a function meromorphic in
the entire plane [17]. The group representation theory for G is compatible with Artin
L-functions as follows [17, p. 221]:

ProposITION 2.1. (i) If ¥, denotes the identity character of Gal(K/k), then
L(s, ¥, K/k) = §,.(s), the Dedekind zeta function of k.

(i) L(s, ¥, + ¥, K/k) = L(s, ¥, K/k)L(s, ¥, K/K).

(iii) If k C N C K and N/k is Galois, then a character ¥ of Gal(K/k) can be
viewed as a character of Gal(N/k) and L(s, ¥, K/k) = L(s, ¥, N/k).

(iv) If k CF CK, V¥ is a character of Gal(K/F), and ¥* the induced character
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on Gal(K/k), then L(s, ¥, K/F) = L(s, ¥*, K/k).

This proposition can be used to exhibit relations between L-functions, as in the
following example.

CoROLLARY 2.2. Let Gal(K/Q) = S5 be the symmetric group on three letters,
and let L be any cubic subfield of K. Let WV denote the unique irreducible character
of degree 2 on Gal(K/Q). Then

L(s, ¥, K/Q) = £ (5)/5(5)-

Proof. The structure of the Artin L-functions for the S5 case is worked out
in [17, pp. 225—227]. There is a single irreducible character of degree 2. If L is a
cubic subfield of K, it is fixed by a subgroup S generated by a 2-cycle. If x, denotes
the identity character on S, then the induced character x§ = ¥, + ¥, where ¥, is
the identity character on G. Applying Proposition 2.1, we obtain

§1.8) = L(s, xo. K/L) by (i)
=L(s, ¥, + V¥, K/Q) by (iv)

= (LG, ¥, K/Q) by (i), (id), -
where {(s) is the ordinary Riemann zeta function. O
The Artin Reciprocity Law is the basis of the relation between Artin L-functions

and Hecke (abelian) L-functions. It can be expressed in the following analytic form
[17, p. 221].

ProvrosiTiON 2.3. If Y is a one-dimensional (multiplicative) character on
Gal(K/k), then there is a conductor modulus f, and a Hecke ray class character X
(mod fx) such that

L(s, X, K/k) = L(s, x, k),
where L(s, X, k) is the Hecke L-function associated to X.

Using this result together with group representation theory, it can be shown that
every Artin L-function can be expressed as a product of Hecke L-functions raised to
(positive or negative) integer powers [17, Theorem 7ff.], [19, p. 13].

3. Ring Class Fields and Ring Class L-Functions. In this section we will show
that certain Artin L-functions attached to irreducible characters of degree greater
than one are linear combinations of Epstein zeta functions of positive definite binary
quadratic forms, which will be referred to as EZF’s. This result is proved in three
steps. The first step is to show that some of these Artin L-functions are Hecke L-
functions; this involves only group representation theory. The second step shows that
certain Hecke L-functions, the ring class L-functions of a quadratic field, are linear
combinations of EZF’s. The third step is to determine extra conditions necessary for
Artin L-functions to be ring class Hecke L-functions. Together these results yield the
main result of this section, Theorem 3.7.
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We consider Galois groups G which have an abelian subgroup 4 of index 2.
(Since [G:A4] = 2, 4 is normal in G.) The representation theory for such a group is
known [10, p. 341].

ProPOSITION 3.1. Let G be a group with an abelian subgroup of index 2. Then
all irreducible characters of G are of degree 1 or 2, and each degree 2 irreducible char-
acter is induced from some degree 1 character of A.

We can now prove:

LEMMA 3.2. Let Gal(K/Q) have an abelian subgroup A of index 2, and let
Q(\/d) be the quadratic field fixed by A. If ¥V is an irreducible character of degree 2
on Gal(K/Q), then there is a Hecke ray class character X for some conductor modulus

f,, on QW) such that
L(s, ¥, K/Q) = L(s, x, Q(vA)).

Proof. By Proposition 3.1 there is a 1-dimensional character x on 4 =
Gal(K/Q(~/d)) such that x* = ¥. By Proposition 2.1(iv)

L(s, ¥, K/Q) = L(s, x, K/Q(/d)).

Since x is 1-dimensional, by Proposition 2.3

L(s, x, K/Q(v)) = L(s, X, Q(V))

for some Hecke ray-class character x (mod fx). O
We now turn to Epstein zeta functions. The Epstein zeta function Z(s, Q)
associated to a positive definite binary quadratic form Q is defined by

Z6,0= 2 0x»7

(x,»)%#(0,0)
where (x, y) runs over all pairs of integers other than (0, 0).

The particular Hecke L-functions, which we will show are linear combinations
of Epstein zeta functions, are special kinds of L-functions attached to complex qua-
dratic fields called ring class L-functions.

Definition. Let x be a Hecke character attached to a complex quadratic field
Q(/d). X is called a ring class character (mod f ) if there exists an integer f such that
x((a)) = 1 for all principal ideals (&) in Q(+/d) for which a = A (mod f) for some
rational integer 4 with (e, ) = 1. The corresponding Hecke L-function L(s, x, Q(v/d))
is called a ring class L-function (mod f).

LemmA 3.3. Let x be a ring class character (mod f) attached to a complex qua-
dratic field Q(\/c-l). Then there exists a finite set of binary quadratic forms Q,, ..., Q, of
discriminant df* and coefficients c(x, Q;) such that

LG, % QVA) = 3 c(6 Q) (s, 0.

j=1

Proof. Let I denote the fractional ideals of Q(+/d) prime to f and let
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Pr = {(a): @ = h (mod f) for some h € Z with (h, f) = 1}

denote the principal ring class (mod f). Since x is constant on P, by hypothesis, x is
constant on ring classes and so

L, x, QW) = X x4 2 wB)"

[41€L;/P; Be[A]

But it is known [30, Lemma 27] that for each ring class [A4]

1
NB)™* =
BEZ[f:I] % w(dr?)

for some binary quadratic form Q of discriminants df 2, where

26, 0)

6, df?=-3,
wWdr?) = {4, dr*=-4,
2, otherwise.

This completes the proof. O

The ring class field (mod f) is that class field over Q(v/d) for which the prime
ideals that split completely over Q(+/d) are exactly those in the principal ring class
(mod f). This field is guaranteed to exist by the fundamental theorem of class field
theory, and we denote it by K ar?

PrOPOSITION 3.4. Let K be normal over Q and suppose Q(\/d) CK C K ar?
for some ring class field. Then

(3.1) §k(s) = H L(S, Xs Q(ﬁ));
X

where the product runs over a certain set of primitive Hecke characters x which are
ring class characters (mod f).

Proof. This follows from [17, Theorem 6]. O

In particular by Lemma 3.3 this gives a decomposition of the Dedekind zeta
function of such fields into products of linear combinations of EZF’s.

Briickner [6, Theorem 8] gave a Galois-theoretic characterization of ring class
fields over both real and complex quadratic fields. From this we can easily derive
a criterion for the complex quadratic case.

ProrosiTiON 3.5. The following are equivalent:
(1) K is normal over Q and Gal(K/Q) has an abelian subgroup of index 2 whose

fixed field is a complex quadratic field Q(\/d). Furthermore there is a 0 € G—A such
that

(3.2 oac" ! =a~ ! foralla€ A.

(ii) K is normal over Q and there is a ving class field K ar? with Q\/d) CK C
K ar? where Q(\/d) is complex.

Proof. To apply Briickner’s result [6, Theorem 8], we need only check that
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02 = e. If 7 denotes complex conjugation, then 7 € G—4; hence 7 = oa for some
a€A,and e =7% = (0a)? = oaa o =0%. 0O
Applying Lemma 3.3 and Proposition 3.4 yields the following.

COROLLARY 3.6. If K is normal over Q, Gal(K/Q) has an abelian subgroup A
of index 2 whose fixed field Q(\/d) is complex, and there exists an element 0 € G—A
with

oac ' =a7! foralla € A,

then {(s) factors into a product of linear combinations of Epstein zeta functions.

For example, this includes all totally complex K with Gal(K/Q) = Z, ® Z, or
the symmetric group S, since the totally complex hypothesis guarantees that the
appropriate quadratic subfield is complex.

THEOREM 3.7. Suppose that K is normal over Q, Gal(K/Q) has an abelian sub-
group of index 2 whose fixed field Q(\/E ) is complex, and that there is a 0 € G—A
with

oac™! =a~ ! foralla € A.

If  is an irreducible character of degree 2 on Gal(K/Q), then there are quadratic
forms Qq, ..., Q, of discriminant df 2 and coefficients c(¥, Q]-) such that the Artin
L-function L(s, Y, K/Q) is given by

n

Lis, ¥, K/Q) = 3 (¥, Q)ZGs, Q).

j=1
Proof. By Lemma 3.2

L(s, ¥, K/Q) = L(s, x, K/Q(\/@))

for a certain Hecke L-function of modulus fx on Q(+/d). Take f = fo a rational
integer. By Proposition 3.5, Q(+/d) CK C Kd 2 Hence, all principal prime ideals
() in the principal ring class (mod f) split completely in K, so that the Artin symbol

[K/Q(\/Ev] _,
(@) '

Hence,

x(@) = x<[ﬂ%§)@]> -1,

since x is multiplicative. Since x is constant on ray classes (mod f), and there is a
prime ideal (o) in each ray class in the principal ring class (mod f), x = 1 on the
principal ring class (mod f) and so is a ring class character. By Lemma 3.3 we are
done. O

Although this theorem guarantees the existence of representations of these Artin
L-functions as linear combinations of EZF’s, it does not provide a method for finding
these representations. However, if we are willing to forego knowing to which field K
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these Artin L-functions are attached, we can proceed by finding instead the repre-
sentations for all ring class L-functions over complex quadratic fields. To list all ring
class L-functions (mod f) over Q(+/d) we first find a set 0, ..., 0, of inequivalent
forms of discriminant df? (for example, reduced forms) and next determine the multi-
plication table of the group of equivalence classes of forms under (Gaussian) composi-
tion. Such computations may be done quite efficiently (cf. [25], [26]). As x runs
over all characters on this group,

3 )Z(s, O;
W(df) g X(@DZ(s, Q)

runs over all the ring class L-functions (mod f) over Q(\/d).

In the special case K = Q(v/=3, a'/3), where  is not a perfect cube, Gal(K/Q) =
S3 and the Artin L-function attached to the unique irreducible character ¥ of degree
2 is given by

920
L(s,¥,K/Q) = )
where L = Q(a'/3) by Corollary 2.2. The EZF decomposition for ¢, (s)/¢(s) can be
worked out using the decomposition law in cubic fields, and this was done by Dedekind
[14] in 1879. (Alternate methods available in this case are considered in [7], [9].)

If we set

13 fa@iH®

(33) L,(s)=L(s, ¥, Q(/-3,2'?)/Q) = W’

then Dedekind showed [14, p. 107] that

(34a)  L,y(s)=%Z(s, x> +27y%) — BZ(s, 4x? + 2xy + Ty?),

(3.4b)  Ly(s)=%Z(s, x> +xy + 61y%) — BZ(s, Tx? + 3xy + 9y?),

Lg(s) ="2Z(s, x* + 243y2) + Z(s, 7x* + 6xy + 36y?)

(3.4¢) - B Z(s, 9%? + 6xy + 28y2) — B Z(s, 4x? + 2xy + 61y?)

- BZ(s, 13x2 + 4xy + 19y?),
L, ,(8)=%2Z(s,x + 243y2) — % Z(s, Tx* + 6xy + 36y%)

(3.4d) —Z(s, 9x? + 6xy + 28y2) — B Z(s, 4x? + 2xy + 61y?)
+ Z(s, 13x2 + 4xy + 19y?).

These are the particular Artin L-functions whose zeroes we computed.

4. Epstein Zeta Functions. This section briefly describes two rapidly convergent
expansions that are available for Epstein zeta functions associated to positive definite
binary quadratic forms. In fact, expansions exist for Epstein zeta functions attached
to positive definite quadratic forms in several variables, cf. [31], [32].

The first is a Fourier expansion in terms of incomplete K-Bessel functions of the
second kind, based on the fact that Z(s, Q) is a nonanalytic Eisenstein series for
GL(2, R). (See [5], [8], [31].)
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PrRoPOSITION 4.1. If Q(x, ¥) = Ax? + Bxy + Cy? with C > 0, then

Zs, Q) = C~5¢(2s) + w212 TE—A) t@2s—1)

I'(s)
1/20-1/2%—s 1
+ (4m) '°C ) H(s),
where
=-(40)"'(B* -440) >0,
Hs)= 3 Y T2l =121 25
m=1 n=-—oo
n#0
* COS <% mn> K%_s(zﬂT1/2C_1/2mlnl)
and

et [~ _Z I\ s
Ks(z)—2 fo exp{ 2<u +u>}u du
defined for |Arg z| < /2 is the modified Bessel function of the second kind.

The second expansion is in terms of incomplete gamma functions, and is based
on the fact that Z(s, Q) is a Mellin transform of a theta function [32, Theorem 2].

PROPOSITION 4.2. Let Q(x, y) = Ax? + Bxy + Cy?, with determinant D =
AC — B*/4 > 0, and let § € C have Re(§) > 0. Set

AGs, Q) = (m8) T T(s) Z(s, @) = nST()Z(s, 80).

Then
_ 1 _@¢*p;yi
A Q=5 =55
(4.1)
X {6 mQe, ) +(67D) 26—, 1T DT 0, )},
(x.9)#(0.0)
where
4.2) G ) =a~T(s )= [ F-leear,
1

valid for Re(a) > 0.

Here I'(s, @) is the incomplete gamma function, which is usually defined by the
integral

(43) re o= | Tl ta,

where the contour of integration is required to stay inside the region |arg #| < m/2.
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The usefulness of these two expansions depends on the availability of algorithms
to compute the modified Bessel function of the second kind and the incomplete
gamma function, respectively. No completely satisfactory algorithms are known to us,
but the incomplete gamma function currently seems easier to deal with. This dictated
our choice of the expansion (4.1) for computational purposes. We set the parameter
8 =D '/2 50 that det(5Q) = 1, which simplifies (4.1) somewhat. We emphasize that
(4.1) is valid for all 5 with Re(§) > 0. Although we did not make use of this extra
generality in our computations, it may be useful in using this approach for more ex-
tensive computations, (cf. Section 6).

5. Computational Results. We determined the approximate location of all the
complex zeroes p = o + it of the four Artin L-functions L (s) given by (3.4) in the
region 0 < ¢ <1, [¢#] < 15. According to (3.3) these Artin L-functions are equal to
§.(8)/5Gs) for L = Q(a1/3),where a=2,3,6,and 12. The results appear in Table 1.
All the zeroes are simple and are on the critical line 0 = %. Furthermore, the zeroes
are symmetric about the real axis, so that only the ordinates ¢ of the zeroes with
t > 0 are listed in Table 1. (As a by-product of the computation, two zeroes with
[t| > 15 are included.) The values given are accurate to one unit in the last decimal
place. We note that no two of these L-functions have a common zero in the region
examined, and none of these zeroes coincides with the smallest nontrivial zero p =
0.5 + 14.1347i of the Riemann zeta function. The value 5.9999 in the column a = 12
is definitely not the integer 6.

The computation took place in two stages. The first consisted of locating zeroes
on the critical line %4. To do this, we computed A, (s) = 2“Da_s/ 2I‘(s)La(s), where
D, = 33,% 35 35 35 fora=2,3,6, 12, respectively, using the expansion of
Theorem 4.2, at a sequence of points on the critical line in the region 0 < ¢ < T,
where T was chosen suitably. A,(s) is real on the critical line (because it satisfies the
functional equation A, (s) = A,(1 — s)) and, hence, the number of sign changes of
A,(s) detected on the critical line is a lower bound for the number of zeroes of L (s)
on the critical line in that region. The second stage consisted of an application of the
argument principle to determine the total number of zeroes (counting multiplicity) in
the region 0 < Re(s) < 1, [Im(s)| < T. Since the second number was twice the first
for the four functions we computed, we concluded that all the zeroes were simple and
on the critical line. In the remainder of this section we describe the computations in
more detail, pointing out three limitations of our approach that led us to choose
Tr<1e.

Both stages of this computation require computing L,(s) for complex values of
s. We used the EZF expansions (3.4) for L,(s). In those cases D, is exactly the deter-
minant of all the corresponding quadratic forms in the expansions (3.4), and the
gamma factors in A,(s) give rise to exactly the corresponding left-hand sides of (4.1)
in Proposition 4.2, provided we choose 8 = (D,)~!/2. In that case (4.1) becomes

(5.1) AGs, Q)=s(s—l_l)+ Zy {G(s, M) ™20, y)) + G(1 - s, m(D,)~ 12 QCx, y)}.

(x,9)#(0,0)
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TABLE 1

Zeros p = 0 + it of £,()/¢(s), L = Q(@/®) with 0 <t < 15.
All these zeroes have o = %, so only the values of t are given.

a=2 a=3 a=6 a=12
2.8216 2.2936 1.5654 1.3371
4.5401 3.5288 2.6232 3.1589
6.1435 5.2442 4.2924 3.6358
7.2066 6.5394 4.8317 5.0959
8.6454 7.0925 5.7575 5.9999
9.7644 8.3878 7.0211 6.7446
10.6634 9.6447 7.7836 7.6588
12.1139 10.4387 8.4467 8.7441
12.8115 11.3704 9.2757 9.2822
13.9284 12.4669 10.3991 10.2246
14.9951 12.8922 11.0254 10.9676
14.3281 11.6787 11.7582
(15.0741) 12.4568 12.6027
13.3031 13.4468
14.2951 13.7589
14.8421 14.8129

(15.0658)

From this equation it is obvious that A(s, Q) is real on the critical line Re(s) = % and
satisfies the functional equation A(s, Q) = A(1 —s, Q). From (3.4), A,(s) also is real
on the critical line and A (s) = A,(1 — ).

For the actual computation we combined the incomplete gamma function ex-
pansions (5.1) for the various EZF’s involved in A (s) to obtain

(5.2) A 8) = Ezu ¢, (G(@s, D7V ?u) + G(1 —s, nD7 1w},
u

where U was the set of values taken by the quadratic forms involved and the ¢, are
coefficients computed using (3.4). (Note that the 1/s(s — 1) terms cancelled out of
this expression.) For 0 < Re(s) < 1 and a > 1 we have the trivial bound

(53) NG QI < [~ e du= e,

In the computation we used (5.3) and similar estimates to truncate the sum in (5.2)
at a point where the remainder was bounded by absolute value by 2 x 1013 in the
region

(54) {s:0<Re(s)<1,0<Im(s) <16 and —i < Re(s) <2, 15 < Im(s) < 16}.
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In the case a = 2 and @ = 12, this involved taking 8 and 20 values of u € U, respec-
tively.

The first limitation of this approach is inherent in expansion (5.1), more generally
in choosing a fixed value of § in Proposition 4.2 to use for all s. If o is held fixed
and s = % + it with ¢t — oo, then the incomplete gamma function I'(s, o) decreases
like |si~". On the other hand, I'(s) decreases like exp(— sl logls|) for s = % + it
with ¢ — oo by Stirling’s formula, while L,(% + ir) is known to grow relatively slowly.
Hence, for large ¢ the expansion (5.1) involves relatively large terms (compared to the
value of A,(s)) which must be cancelling each other. Since the number of significant
figures is limited by the largest element occurring in the course of a summation, ex-
pansion (5.1) is useful on a typical machine with double precision arithmetic only for
T < 20, say.

The second limitation we encountered was in computing the incomplete gamma
function I'(s, ). There are a large number of algorithms available for computing
I'(s, @) when s and « are both real [15]. If s is complex, we do not know of any very
satisfactory algorithm. Numerical integration as used in [35] does not seem very
efficient when Im(s) exceeds 10. The continued fraction method (see [21], [33])
seems very promising, but has not been proved to converge numerically for s off the
real axis. Therefore, we have used the following expansion [15]

o ok

I'(s, @) = T'(s) —ofe™@ kgo CFD G R

This formula is easily verified. Using (4.2) and repeated integrations by parts:

_ — (Y —u,s—1 _u'e™Y | 10 —us
I'(s) I‘(s,a)—foe u du = S 0+sfoe u’ du
N ok

(5:5) S L G D6 R

1

a
+ —u,,s+N .
s(s+1)~--(s+N)foe W du

In using this expansion, I'(s) was computed by estimating I'(s + 15) by Stirling’s
formula [1, Section 6.142] and then computing I'(s) from it via the recurrence sI'(s) =
['(s + 1). A value of NV on the right side of (5.5) was chosen for which the remaining
integral could be bounded (crudely) by ¢~® + 10~17. (This involved N on the order
of 10 to 50 for the values of « and s considered.)

The unsatisfactory feature of expansion (5.5) as it stands is that if « is large
compared to [s| then the maximal term in the sum in (5.5) will be large compared to
the final answer, and substantial cancellation must occur when Im(s) is large. This
limits the number of significant figures attainable in the computation.

These considerations sufficed to compute A,(s) to accuracy 10712 in the region
(5.4). We first computed A,(0.5 + 0.1ni) for 0 < n < 160 which enabled us to
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separate all the zeroes in Table 1. By successive approximation each of the zeroes so
separated was then located to four decimal places.

We now describe the argument principle computation. The argument principle
asserts the number of zeroes of an analytic function inside a contour (assuming none
on the contour) is the change in the argument around the contour divided by 27. We
consider the rectangular contour with vertices at 2 + iT, —2 + iT, —2 —iT, 2 —iT.
Using the symmetries of A,(s) (real on real axis, A,(s) = A,(1 —s)) we conclude that
the number of zeroes of A (s) inside this contour is 2/ times the change in argument
of A,(s) as s goes vertically from s = 2 to s = 2 + iT, and then horizontally to s =
% +iT. The change in argument of A (s) from s = 2 to s = 2 + iT is easy to esti-
mate. The argument change of a product is the sum of the argument changes of its
factors. The change due to 7~ *D;$/2I'(s) is easy to compute. This is essentially the
entire change, as L,(s) can be bounded on the vertical segment using its Euler product
(for all ) by

llog L,(2 +it)l < 2log ¢(2) < 0.996,

hence its change in argument is arg L, (2 + iT).

The computation of the argument change of A,(s) on the horizontal segment
from 2 + iT to ' + iT is much harder. We resorted to computing A,(s) at a large
set of points on this line (on the order of 50), along with its first three derivatives,
which were computed using a differentiated form of (5.6). We obtained upper bounds
on the fourth derivative of A,(s)|valid in the region 15 < Im(s) < 16, — 1 < Re(s) < 2,
and could then show A (s) could not change its argument by as much as 7 between
these points. The total argument change was then the sum of the differences in argu-
ments at consecutive points. The values of T for each A,(s) were chosen between 15
and 16 to be roughly halfway between the ordinates of zeroes previously located on
the critical line, in order to avoid points where A(s) is small. This accounts for the
two zeroes with ¢ > 15 included in Table 1.

The third limitation of this method is the use of the argument principle in this
form. As T becomes larger, the number of points at which A,(s) must be evaluated
on the segment 2 + iT to % + iT seems to become prohibitive. However, see the next
section.

All of the computations were carried out in double precision on a Honeywell
6000 computer. This machine has at least 17 significant figures.

6. Concluding Remarks. It would be useful to be able to do computations of
these functions to much greater heights in the critical strip. We indicate how the
three limitations discussed in the last section may potentially be circumvented.

The first limitation is the large size of some of the individual terms in the in-
complete gamma function expansions compared to the final answer. This is avoidable
by choosing the parameter § in Proposition 4.1 to have appropriate complex values.
Of course, this method is useful only if the resulting incomplete gamma functions
(which have both arguments complex) can be computed.
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The second limitation is the difficulty of computing the incomplete gamma
function. The continued fraction algorithm for I'(s, a) developed by R. Terras (see
[21], [33]) has been proved to converge numerically for s real, & > 0 real. We have
observed empirically that this algorithm converges to fifteen significant figure accuracy
for & > 0 real and s complex on the critical line, with the convergence becoming
(apparently) more rapid as Im(s) increases. It seems likely that this algorithm can in
fact be used to compute I'(s, &) to fifteen significant figures for a wide range of com-
plex s and «; it would be useful to prove it is numerically stable in certain complex
domains.

If these two limitations are overcome, then we could compute A,(s) with Im(s)
large. In particular, we could get lower bounds for the number of zeroes on the
critical line to some large height.

The third difficulty is the number of interpolation points necessary to apply the
argument principle, to prove that all the complex zeroes are on the critical line and
are simple (if this is so). Instead of doing this, one can generalize the elegant method
of Turing (see [18], [22]) which has been used to prove that all the zeroes of the
Riemann zeta function {(s) are simple and on the critical line, up to a great height.
This method uses only values of {(% + it) for various . However, the Turing method,
even if generalized to our case, would not have helped us as it requires computing
values on the critical line substantially higher than the region in which one hopes to
prove all zeroes are simple and on the critical line.
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