Solution of Nathanson's Exponential Congruence

By Samuel S. Wagstaff, Jr.

Abstract. The exponential congruence $5^n \equiv 2 \pmod{3^n}$ has no solution n > 1. This result is proved by using a theorem of van der Poorten to produce an upper bound for the size of such solutions n which is within range of machine verification, and then checking that no n below this bound satisfies the congruence.

Nathanson [1] conjectured that the congruence

$$5^n \equiv 2 \pmod{3^n}$$

has no solution n > 1. Shortly after his paper appeared we searched for solutions to (1). We will describe below how we showed that there are none in the range $1 < n < 10^{104}$.

Recent work of van der Poorten [2] allows one to prove an upper bound on the size of any n satisfying (1). Happily, this bound is less than 10^{104} . Thus, we now know the general solution to (1).

THEOREM. The only positive integer solution to (1) is n = 1.

We next quote Theorem 4 of [2]. To avoid complicated notation, we restrict it to two rational integers α_i . (The original theorem considers several algebraic numbers α_i .) Let $\operatorname{ord}_p(a)$ denote the ordinal of a at the prime p.

PROPOSITION (VAN DER POORTEN [2]). Let α_1 and α_2 be nonzero rational integers. Let $\Omega' = \log \max \{|\alpha_1|, e^e\}$ and $A = \max \{|\alpha_1|, |\alpha_2|, e^e\}$. Let p be a rational prime and $T = 48^{36} p\Omega' \log \Omega'$. If $0 < \delta < 1$ and there exists a positive integer b such that

$$\infty > \operatorname{ord}_{p}(\alpha_{1}^{b}\alpha_{2}^{-1} - 1) > \delta b,$$

then

$$b < \delta^{-1} T(\log(\delta^{-1} T)) \log A.$$

The constant 48^{36} has no special significance and is not best possible. As van der Poorten notes, it is just a tidy constant which works.

LEMMA. Let n, u, v, and w be integers such that v > 1, (v, w) = 1, $u^n \neq w$, and

(2)
$$u^n \equiv w \pmod{v^n}.$$

Then $n \le T(\log T) \log A$, where $T = 48^{36} v \Omega' \log \Omega'$, $\Omega' = \log \max \{|u|, e^e\}$, and $A = \max \{|u|, |w|, e^e\}$.

Received October 26, 1978.

AMS (MOS) subject classifications (1970). Primary 10A10.

Key words and phrases. Exponential congruence.

Proof. Let $0 < \delta < 1$. Clearly, we may assume $n > e^2$. Let p be a prime divisor of v. Then $p \not\mid w$ because (v, w) = 1. Also, $u^n \equiv w \pmod{p^n}$, so that

$$\infty > \operatorname{ord}_n(u^n w^{-1} - 1) = n > \delta n.$$

From the proposition, the hypotheses of which we have just verified, we have

$$n < \delta^{-1} T'(\log(\delta^{-1} T'))\log A$$
,

where $T'=48^{36}p\Omega'\log\Omega'$. Our lemma follows when we replace p by v in T' and let $\delta \longrightarrow 1$.

Let us apply the lemma to (1). We have $\Omega' = e$, $A = e^e$, and $T = 3e48^{36}$. From the lemma we find that if n satisfies (1), then

$$n \le 3e^2 48^{36} (1 + \log 3 + 36 \log 48) < 48^{38} < 10^{104}$$
.

Although machine verification of the first 48^{38} cases of (1) may appear hopeless, the task is really quite easy. Note that since 5 is a primitive root modulo 3^n for each $n \ge 1$ and $(2, 3^n) = 1$, there is a unique integer a_n such that

$$5^{a_n} \equiv 2 \pmod{3^n}$$
 and $0 < a_n < \phi(3^n)$,

where ϕ is Euler's function. For $n \ge 1$, define integers k_n by

(3)
$$a_{n+1} = a_n + k_n \cdot \phi(3^n),$$

so that $k_n = 0, 1, \text{ or } 2.$

Table 1 gives values of 3^n , $\phi(3^n)$, a_n , and k_n for $1 \le n \le 20$. Table 2 shows k_n for $1 \le n \le 219$. The calculation of these tables required about five minutes on the IBM 360/75 at the University of Illinois. The program was run twice to insure accuracy. When these tables were made, we did not know what upper bound could eventually be proved for n. Checking the first 219 values of n represented a modest search for solutions to (1). We could easily have continued to n = 1000 or so.

Let $k_0=1$. From (3) we have $a_n=\sum_{i=0}^{n-1}k_i\cdot\phi(3^i)$ and $a_{n+1}\geqslant a_n$ for $n\geqslant 1$. Also, $0< n<\phi(3^n)$ for $n\geqslant 1$, so n is a solution of (1) if and only if $a_n=n$. Let n>1 be a solution of (1). From Table 1, we have n>20. Also, $a_6=317$, so $n\geqslant 317$. Finally,

$$a_{219} = \sum_{i=0}^{218} k_i \cdot \phi(3^i) = 1 + 2 \sum_{i=1}^{218} k_i \cdot 3^{i-1} \approx 1.4141967 \cdot 10^{104}$$

from Table 2, so that $n > 10^{104}$. This completes the proof of the theorem.

Using the method described above, one can solve many exponential congruences of the type (2). In the special case u > v > w = 1, Nathanson [1] proved that $2^n/n < u^v$, which is better than the lemma.

Among the numbers $k_1, k_2, \ldots, k_{219}$, the value 0 appears 70 times, 1 appears 76 times, and 2 appears 73 times, or 32%, 35%, and 33% of the time, respectively. This data suggests the conjecture that k_n takes on the three values with equal frequency on the average, that is, $d(\{n: k_n = j\}) = 1/3$ for j = 0, 1, 2, where d(A) denotes the asymptotic density of the set A of integers. It is easy to see that the numbers k_n are the 3-adic digits of (Log(-2)/Log(-5) - 1)/2, where Log is the 3-adic logarithm.

Thus, the conjecture asserts that this number is simply normal in the scale of 3. Since it is irrational and arises naturally, it is probably normal, too.

TABLE 1												
n	3 ⁿ	φ(3 ⁿ)	a n	k n								
1	° 3	2	1	2								
2	9	6	5	1								
3	27	18	11	2								
3 4 5	81 243	54 162	47 155	2								
5 6 7	729	486	317 803	1 1								
8	2187 6561	1458 4374	2261	2								
9	19683	13122	11009	0								
10	59049	39366	11009									
11	177147	118098	11009	1								
12	531441	354294	129107									
13	1594323	1062882	483401	0								
14	4782969	3188646	483401									
15	14348907	9565938	483401	0								
16	43046721	28697814	19615277									
17	129140163	86093442	19615277	1								
18	387420489	258280326	105708719									
19	1162261467	774840978	363989045	0								
20	3486784401	2324522934	363989045	1								

The referee notes that a better result than the lemma may be derived from Theorem 1, p. 180, of [3]. It leads to $n < 10^{18}$ in our theorem, so that we only needed to compute about the first 40 k_n 's.

TABLE 2

Values of k_n for $1 \le n \le 219$

n	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
1	2	1	2	2	1	1	1	2	0	0	1	1	0	0	2	0	1	1	0	1
21	0	2	1	2	2	1	2	0	2	2	2	2	0	1	1	1	0	1	1	2
41	0	2	0	0	2	1	2	2	2	0	1	1	1	2	1	1	1	2	1	0
61	1	0	1	2	1	2	0	1	2	2	0	2	2	2	1	1	0	2	1	1
81	2	0	0	1	2	0	1	2	0	2	2	0	2	1	2	0	0	2	2	2
101	2	0	1	1	1	2	0	1	0	0	0	2	1	1	2	0	1	0	2	0
121	1	1	1	2	2	1	0	2	2	2	1	0	1	0	1	1	0	2	0	0
141	1	1	2	0	1	0	0	0	1	1	1	0	2	2	2	2	0	1	1	2
161	0	2	2	0	1	1	0	0	2	0	2	2	1	0	1	1	0	2	0	1
181	1	0	0	0	1	2	2	1	0	1	2	1	0	1	1	2	2	1	2	1
201	0	0	0	0	2	0	0	0	0	1	2	2	2	1	1	0	0	2	0	-

The author thanks the Research Board of the University of Illinois for providing the computer time.

Department of Mathematics University of Illinois at Urbana-Champaign Urbana, Illinois 61801

- 1. M. B. NATHANSON, "An exponential congruence of Mahler," Amer. Math. Monthly, v. 79, 1972, pp. 55-57. MR 46 #133.
- 2. A. J. VAN DER POORTEN, "Linear forms in logarithms in the p-adic case," Chapter 2 of Transcendence Theory: Advances and Applications, (A. Baker and D. W. Masser, Eds.), Academic Press, London, 1977.
- 3. A. SCHINZEL, "On two theorems of Gelfond and some of their applications," *Acta Arith.*, v. 13, 1967, pp. 177-236. MR 36 #5086.