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Solution of Nathanson’s Exponential Congruence

By Samuel S. Wagstaff, Jr.

Abstract. The exponential congruence 5™ = 2 (mod 3") has no solution n > 1. This
result is proved by using a theorem of van der Poorten to produce an upper bound for
the size of such solutions n which is within range of machine verification, and then
checking that no n below this bound satisfies the congruence.

Nathanson [1] conjectured that the congruence
) 5" =2 (mod 3")
has no solution n > 1. Shortly after his paper appeared we searched for solutions to (1).
We will describe below how we showed that there are none in the range 1 <n <1014,

Recent work of van der Poorten [2] allows one to prove an upper bound on the
size of any n satisfying (1). Happily, this bound is less than 10!%*. Thus, we now
know the general solution to (1).

THEOREM. The only positive integer solution to (1) isn = 1.

We next quote Theorem 4 of [2]. To avoid complicated notation, we restrict it
to two rational integers o;. (The original theorem considers several algebraic numbers
o;.) Let ord, (@) denote the ordinal of @ at the prime p.

PROPOSITION (VAN DER POORTEN [2]). Let o, and «, be nonzero rational
integers. Let ' = log max {loyl, e} and A = max {|o, |, la, |, €®}. Let p be a ratio-

nal prime and T = 483%pQ)' log Q. If 0 < & < 1 and there exists a positive integer b
such that

o >ord, (¢} oz — 1) >80,
then

b <8 1T(log(51T))log A.
The constant 4836 has no special significance and is not best possible. As van
der Poorten notes, it is just a tidy constant which works.

LEMMA. Let n,u, v, and w be integers such that v> 1, (v, w) = 1, u" # w, and
)] u" =w (mod v").

Then n < T(log T) log A, where T = 4836yQ' log ', Q' = log max {|ul, e®}, and
A = max {ul, [w], e°}.
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Proof. Let 0 <§ < 1. Clearly, we may assume n > e2. Let p be a prime
divisor of v. Then p | w because (v, w) = 1. Also, u” = w (mod p"), so that

> ord, @"w™' = 1) =n>bn.
From the proposition, the hypotheses of which we have just verified, we have
n<81T'(log(671T")log 4,
where T' = 4836pQ’ log . Our lemma follows when we replace p by v in T’ and
let § — 1.

Let us apply the lemma to (1). We have Q' = e, 4 = ¢, and T = 3¢483%. From
the lemma we find that if » satisfies (1), then

n < 3e%483%(1 + log 3 + 36 log 48) < 4838 < 10104,
Although machine verification of the first 483% cases of (1) may appear hopeless,
the task is really quite easy. Note that since 5 is a primitive root modulo 3" for each
n > 1 and (2, 3") = 1, there is a unique integer @, such that

57=2 (mod3") and 0<a, <¢(3"),
where ¢ is Euler’s function. For n > 1, define integers k, by
3) a,,, =a, +k, - ¢3"),
so that k, =0, 1, or 2.

Table 1 gives values of 3", ¢(3"), a,,, and k, for 1 <n <20. Table 2 shows k,
for 1 <n <219. The calculation of these tables required about five minutes on the
IBM 360/75 at the University of Illinois. The program was run twice to insure accu-
racy. When these tables were made, we did not know what upper bound could even-
tually be proved for n. Checking the first 219 values of n represented a modest search
for solutions to (1). We could easily have continued to » = 1000 or so.

Let k, = 1. From (3) we have a, = E?;l k; - #(3%) and a,,, =a, forn>1.
Also, 0 < n < ¢3") for n > 1, so n is a solution of (1) if and only if @, = n. Let
n > 1 be a solution of (1). From Table 1, we have n > 20. Also,a, = 317,50 n =
317. Finally,

218 X 218 .
G9= 3 k-9¢B)=1+2 ¥ k-3 ~ 14141967 - 10'%
i=0 i=1

from Table 2, so that n > 1014, This completes the proof of the theorem.

Using the method described above, one can solve many exponential congruences
of the type (2). In the special case # > v > w = 1, Nathanson [1] proved that 2”/n
< u¥, which is better than the lemma.

Among the numbers &, k,, ..., k,,4, the value O appears 70 times, 1 appears
76 times, and 2 appears 73 times, or 32%, 35%, and 33% of the time, respectively.
This data suggests the conjecture that &, takes on the three values with equal frequen-
cy on the average, that is, d({ n: k, =j}) = 1/3 forj =0, 1, 2, where d(4) denotes
the asymptotic density of the set 4 of integers. It is easy to see that the numbers &,
are the 3-adic digits of (Log(-2)/Log(—5) — 1)/2, where Log is the 3-adic logarithm.
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Thus, the conjecture asserts that this number is simply normal in the scale of 3. Since
it is irrational and arises naturally, it is probably normal, too.

TABLE 1
n 1.
n 3 &(37) a kn
1 3 2 1 2
2 9 6 5 1
3 27 18 11 2
4 81 54 47 2
5 243 162 155 1
6 729 486 317 1
7 2187 1458 803 1
8 6561 4374 2261 2
9 19683 13122 11009 0
10 59049 39366 11009 0
11 177147 118098 11009 1
12 531441 354294 129107 1
13 1594323 1062882 483401 0
14 4782969 3188646 483401 0
15 14348907 9565938 483401 2
16 43046721 28697814 19615277 0
17 129140163 86093442 19615277 1
18 387420489 258280326 105708719 1
19 1162261467 774840978 363989045 0
20 3486784401 2324522934 363989045 1

The referee notes that a better result than the lemma may be derived from Theo-
rem 1, p. 180, of [3]. It leads ton < 10'8 in our theorem, so that we only needed tc
compute about the first 40 k,’s.

TABLE 2

Values of k,, for 1 <n <219

n 12 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

1 212211120 01 1 0 0 2 0 1 1 0 1
21 021221202 2 2 2 0 1 1 1 0 1 1 2
41 020021222 0 1 1 1 2 1 1 1 2 1 0
61 1 01212012 2 o0 2 2 2 1 1 0 2 1 1
81 2 00120120 2 2 0 2 1 2 0 0 2 2 2
101 2 01112010 0 o0 2 1 1 2 0 1 0 2 O
121 111221022 2 1 0 1 0 1 1 0 2 0 O
141 1120100011 1 1 0 2 2 2 2 0 1 1 2
161 022011002 0 2 2 1 0 1 1 0 2 0 1
181 100012210 1 2 1 0 1 1 2 2 1 2 1
201 00002000O0O 1 2 2 2 1 1 0 0 2 0 -

The author thanks the Research Board of the University of Illinois for providing
the computer time.
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